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a b s t r a c t

Efforts have been devoted to the identification of the impacts of occupant behavior on building energy
consumption. Various factors influence building energy consumption at the same time, leading to the lack
of precision when identifying the individual effects of occupant behavior. This paper reports the devel-
opment of a new methodology for examining the influences of occupant behavior on building energy
consumption; the method is based on a basic data mining technique (cluster analysis). To deal with data
inconsistencies, min–max normalization is performed as a data preprocessing step before clustering. Grey
relational grades, a measure of relevancy between two factors, are used as weighted coefficients of differ-
ata mining
luster analysis
rey relational analysis

ent attributes in cluster analysis. To demonstrate the applicability of the proposed method, the method
was applied to a set of residential buildings’ measurement data. The results show that the method facili-
tates the evaluation of building energy-saving potential by improving the behavior of building occupants,
and provides multifaceted insights into building energy end-use patterns associated with the occupant
behavior. The results obtained could help prioritize efforts at modification of occupant behavior in order
to reduce building energy consumption, and help improve modeling of occupant behavior in numerical

simulation.

. Introduction

The identification of major determinants of building energy con-
umption, together with a thorough understanding of the impacts
f the identified determinants on energy consumption patterns,
ould assist in achieving the goal of improving building energy
erformance and reducing greenhouse gas emissions due to the
uilding energy consumption. In general, the factor influencing
he total building energy consumption can be divided into seven
ategories:

1) Climate (e.g., outdoor air temperature, solar radiation, wind
velocity, etc.),

2) Building-related characteristics (e.g., type, area, orientation,
etc.)
3) User-related characteristics, except for social and economic fac-
tors (e.g., user presence, etc.),

4) Building services systems and operation (e.g., space cool-
ing/heating, hot water supplying, etc.),

∗ Corresponding author. Tel.: +1 514 848 2424x3200; fax: +1 514 848 7965.
E-mail address: haghi@bcee.concordia.ca (F. Haghighat).
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© 2011 Elsevier B.V. All rights reserved.

(5) Building occupants’ behavior and activities,
(6) Social and economic factors (e.g., degree of education, energy

cost, etc.), and
(7) Indoor environmental quality required.

Among these seven factors, social and economic factors will
partly determine the occupant attitude toward energy consump-
tion, and building occupants will embody such impact on their daily
activities and behavior, thereby influencing building energy con-
sumption. At the same time, indoor environment quality could be
regarded as being basically decided by building occupants, thereby
influencing building energy consumption. In essence, these two
categories of factors which represent occupants’ influences affect
building energy consumption indirectly. Therefore, their influences
on building energy consumption are already contained within the
effects of occupant behavior, and there is no need to take them into
consideration when identifying the effects of influencing factors.

The separate and combined influences of the first four factors

on building energy consumption can be identified via simulation.
With a variety of parameter settings, current simulation software
is robust in respect to simulating different situations based upon
these four factors. However, it is difficult to completely identify
the influences of occupant behavior and activities through sim-
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lation due to users’ behavior diversity and complexity; current
imulation tools can only imitate behavior patterns in a rigid way.
n recent years several models have been established to integrate
he influence of building occupant behavior into building simula-
ion programs [1–4]. However, these models focus only on typical
ctivities such as the control of sun-shading devices, while realistic
uilding user-behavior patterns are more complicated.

A number of studies [5–7] suggest that, in order to obtain the
ull effects of user behavior, one possible approach is to extract
orresponding useful information from real measured data, since
uch data already contains the full effects. For example, Yu et al. [7]
roposed a decision tree method for building energy demand mod-
ling, and applied this method to the historical data on Japanese
esidential buildings. The generated model has a flowchart-like tree
tructure, enabling users to quickly extract useful information on
he influence factors of building energy consumption. Such model
long with derived information could benefit the improvement
f building energy performance greatly. Generally, the previous
tudies on the effects of occupant behavior can be divided into
wo categories. The first category focuses on the effects of build-
ng user presence on building energy consumption. For example,
mery and Kippenhan [8] reported a survey on the effects of occu-
ant presence upon home energy usage in four nearly identical
ouses. The four houses were divided into two pairs, and the build-

ng envelope of one pair was constructed with improved thermal
esistance. One of each pair of houses was left unoccupied, while
he other was occupied by university student families. Researchers
ompared the first heating season’s (1987–88) total energy con-
umption of the occupied and unoccupied houses (i.e., the sum of
eating, lighting, and appliances). They found that the presence of
ccupants increased the total energy consumption of both occu-
ied houses, and the house with the improved building envelope
ad a smaller increase. The second category focuses on the effects
f actions occupants took to influence energy consumption. For
xample, Ouyang and Hokao [9] investigated energy-saving poten-
ial by improving user behavior in 124 households in China. In
his study, these houses were divided into two groups: one was
ducated to promote energy-conscious behavior and put corre-
ponding energy-saving measures into effect in July 2008, while
he other was required to keep behavior intact. Comparisons were

ade between monthly household electricity uses in July 2007
nd July 2008 for both groups. Researchers found that, on the
verage, effective promotion of energy-conscious behavior could
educe household electricity consumption by more than 10%. Evi-
ently, comparative analyses on measured data were conducted

n these studies to identify the effects of user behavior. However,
he limitations of this method are significant. First, apart from
ser behavior, the other four influencing factors also contribute
o the variation in building energy consumption simultaneously,
hile this method is unable to adequately remove the effects of

hose four factors and identify the influences of occupant behav-
or. Although in these studies some measures were implemented
o remove the impact of those factors, such as using nearly iden-
ical housing characteristics and taking energy data in other years
ith similar climatic conditions as a reference, the effects of these
easures are questionable since even a slight difference in some

uilding parameters (e.g., heat loss coefficient) and weather param-
ters (e.g., annual average outdoor air temperature) would result in
emarkable fluctuations in the building energy consumption. Sec-
nd, in real building databases, buildings are usually described by
mixture of variable types such as numerical variable, categorical

ariable (e.g., residential building types are divided into detached
nd apartment), and ordinal variable (e.g., buildings are rated as
latinum, gold, and silver). Such data of mixed variable types is dif-
cult to process by statistical methods that are normally utilized in
omparative analyses. This also adds the difficulty of distinguish-
gs 43 (2011) 1409–1417

ing between building-related effects and user-related effects. Third,
with regard to comparative analyses, buildings are usually classi-
fied into different groups to simplify research. Such classification is
commonly based on building-related parameters, such as floor area.
For example, if building floor area ranges from 100 m2 to 400 m2,
it can be replaced by small, medium, and large corresponding to
the intervals [100, 200], [200, 300], and [300, 400], respectively.
Accordingly, all the buildings are classified into three groups, i.e.,
small buildings, medium buildings, and large buildings; and fur-
ther study can be performed on each group. In this process, the
partition of building-related parameters is normally decided by
considerations of convenience and intuition. Why should 200 m2

and 300 m2 be the interval between each group? Hence, a more
rational classification method for grouping buildings is required.

Moreover, buildings are commonly represented by various typi-
cal parameters at the same time, such as building age and floor area.
All these parameters may be divided into different levels, such as
low and high, for simplicity. In order to perform a comprehensive
investigation, the sample size (i.e., number of buildings) necessary
for research should be determined by the combination of differ-
ent levels of all parameters. For example, suppose seven typical
parameters are selected for representation and each are stratified
into 3 levels (e.g. small, medium, and large). In terms of combina-
torial theory, it can be calculated that at least 37 = 2187 buildings
should be investigated for comparison, which may be quite
impractical.

The main purpose of this paper is to develop a methodology for
identifying the effects of occupant behavior on the building energy
consumption through data analysis, thereby evaluating the energy
saving potential by improving user behavior and providing deep
insights into the building energy consumption patterns.

This paper is organized as follows: Section 2 introduces the pro-
posed methodology. Section 3 describes the results of applying this
method to a set of field measurement data and discusses the related
work. Section 4 concludes the paper.

2. Methodology

A new methodology is proposed for examining the effects of
occupant behavior on the building energy consumption. Basically,
it is realized by organizing similar buildings among all the investi-
gated buildings into various groups based on the four influencing
factors unrelated to user behavior, so that for each building in the
same group the four factors have similar effects on the building
energy consumption. Accordingly, the effects of occupant behavior
on the building energy consumption can be identified accurately
in these groups. Further, provided there is a sufficient building
sample size and subject buildings have a large divergence in the
four influencing factors, implying that the full effects of the four
factors in each group can be similar enough and the energy con-
sumption difference caused by them is comparatively small, energy
consumption difference between buildings in each group could be
thought of as being caused only by occupant behavior. It is obvious
that the identification of building groups is the most important ele-
ment of this methodology. Such identification is achieved mainly
via cluster analysis.

2.1. Cluster analysis

Cluster analysis is the process of grouping the observations into

classes or clusters so that objects in the same cluster have high sim-
ilarity, while objects in different clusters have low similarity. Fig. 1
shows a clustering schema based on a hypothetical building data
table. It contains various energy-related variables such as outdoor
air temperature (T) and building heat loss coefficient (HLC).
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Fig. 1. Clustering schema.

The data table consists of m attributes and n instances. Each
ttribute represents a variable and each instance denotes a building.
ll the instances are grouped into w clusters. Accordingly, these w
lusters are homogeneous internally and heterogeneous between
ifferent clusters [10]. Such internal cohesion and external separa-
ion are based upon the m attributes as well as their influences; it
mplies that these attributes have the most similar holistic effects
n the building energy performance of the same cluster buildings,
hile the effects are significantly distinct for the buildings in dif-

erent clusters. Therefore, the separate effects of occupant behavior
n the building energy consumption can be identified more pre-
isely based on cluster analysis and the four influencing factors
nrelated to the occupant behavior. Note that these four influenc-

ng factors are represented by corresponding parameters selected
rom an existing database.

Before conducting cluster analysis, some preprocessing steps
re needed in order to deal with the inconsistencies of different
ttributes. For example, most of the energy-related attributes have
heir own units. Switching attribute units from one to another may
ignificantly change the attribute values, thereby impacting the
uality and accuracy of clusters. Therefore, data transformation
echniques should be applied in order to help avoid dependence
n the selection of attribute units. Also, data transformation can
elp prevent attributes with large ranges from outweighing those
ith comparatively smaller ranges. At the same time, the contribu-

ion of different attributes to the building energy consumption may
iffer considerably; thus, after data normalization, each attribute
hould be associated with a weight that reflects its significance.
rey relational analysis will be used to identify such weights. The
rocedure of data transformation and grey relational analysis will
e introduced in Sections 2.2 and 2.3, respectively.

The dissimilarity between observations in the database is cal-
ulated using the distance between them in the cluster analysis. In
his study, the most popular distance measure, Euclidean distance,
s used [10]:

(k, l) =
√

(xk1 − xl1)2 + (xk2 − xl2)2 + · · · + (xkn − xln)2

here k = (xk1, xk2, . . ., xkn) and l = (xl1, xl2, . . ., xln) are buildings. xk1,
. ., xkn are n parameters of k and xl1, . . ., xln are n parameters of l.

Commonly used clustering algorithms include K-means, K-
edoids, and CLARANS [10]. In this study, we employ the K-means,

long with open-source data mining software WEKA [11], to
erform cluster analysis, due to its high efficiency and wide appli-
ability.

The K-means algorithm is one of the simplest partition meth-
ds to solve clustering problem. Given a dataset (D) containing w
bjects, the K-means algorithm aims to partition these w objects
nto k clusters with two restraints: (1) the center of each cluster is
he mean position of all objects in that cluster, (2) each object has

een assigned to the cluster with the closest center. This algorithm
onsists of given steps: (1) randomly select k observations from
as the initial cluster centers, (2) calculate the distance between

ach remaining observation and each initially chosen center, (3)
ssign each remaining observation to the cluster with the closest
gs 43 (2011) 1409–1417 1411

center, (4) recalculate the mean values, i.e., the cluster centers, of
the new clusters, and (5) repeat steps 2–4 until the algorithm con-
verges, meaning that the cluster centers do not change. It should
be mentioned that K-means is quite sensitive to initial cluster cen-
ters. Therefore, different values should be tried so as to obtain the
minimum sum of the distances within a cluster. At the same time,
the number of clusters should be specified in advance.

2.2. Data transformation

As mentioned previously, data transformation has been applied
in order to deal with the inconsistencies in measured dataset.
Specifically, min–max normalization [10] is performed to scale the
values so that they fall within a predetermined range. The main
advantage of min–max normalization lies in its ability to reserve
the relationships between the initial data since it carries out a linear
normalization. Assume that xmax and xmin are the original maxi-
mum and minimum values of a numerical attribute. By min–max
normalization, a value, x, of this attribute can be transformed to x′

in the new specified range [x′
min, x′

max] by calculating

x′ = x − xmin

xmax − xmin
(x′

max − x′
min) + x′

min

In this study, the new range is defined as [0,1].
For binary attributes, their two states, such as the operation

states of room air conditioners, i.e. [ON, OFF], can be transformed
to [0,1] or [1,0] directly. The decision to recode these two states
to either [0,1] or [1,0] depends upon whether or not there is a
preferred positive value.

For multi-valued categorical attributes with an implicit order, it
is often necessary to rank their ordered states first, and then map
the obtained range onto [0,1] by

x′
i = ranki − 1

rankmax − 1

where x’: transformed value of each state, ranki: corresponding
rank of each state, rankmax: maximum rank.

For example, the four levels of certification in the Leadership
in Energy and Environmental Design (LEED) Green Building Rating
System, i.e. [CERTIFIED, SILVER, GOLD, PLATINUM], will be trans-
formed to [0,1/3, 2/3, 1] using the aforementioned method.

2.3. Grey relational analysis

Based on geometrical mathematics, grey relational analysis
(GRA) has been proposed in order to find grey relational grades
and a grey relational order (i.e., the rank of grey relational grades)
that can be used to describe primary trend relationships between
related factors, and to identify the important factors that signifi-
cantly influence predefined target factors [12]. For example, if the
building energy consumption is defined as the target factor, GRA
can provide grey relational grades for its various influencing fac-
tors, such as outdoor air temperature and floor area. These grey
relational grades are numerical measures of the impact of the influ-
encing factors on the total building energy consumption. The larger
the grey relational grades are, the more significant impacts the
influencing factors have. In comparison with other similar multi-
factorial analysis methods such as regression analysis and principal

component analysis, the main advantages of GRA are its compara-
tive simplicity and the ability to deal with small data sets that do
not have typical probability distributions.

Let y0 be the objective sequence (measured data of target factor,
such as the building energy consumption) and yi be the compared
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Table 1
Investigation items and methods.

Method Survey items Measuring time

Field measurement Different end-use loads of all kinds of fuel Electricity Measured every minute
Gas Measured every 5 min
Kerosene Measured every 5 min

floor) Measured every 15 min
nual income, etc. Once only

nformation Once only

s
e

t
a
a
m
i

3
b

3

m
o
I

Table 2
Conversion coefficients of different fuels.

Fuel Conversion coefficient Unit

Electricity 3.6 MJ/kWh
City gas (4A-7C) 20.4 MJ/Nm3
Indoor air temperature (1.1 m above
Questionnaire survey Lifestyle, utilization of equipment, an
Inquiring survey Other issues, such as basic building i

equences (measured data of related factors, such as various influ-
ncing factors of building energy consumption):

y0 = (y0(1), y0(2), . . . , y0(n))
yi = (yi(1), yi(2), . . . , yi(n)), i = 1, 2, . . . , m

The procedure of GRA is described as follows:

Step 1: Normalization of raw data (Min–max normalization is used
in this study), y0 and yi are used to denote obtained normalized
sequences;
Step 2: Calculate grey relational coefficients �. �i(k) between y0
and yi is defined as

�i(k) =
min

i
min

k
|y0(k) − yi(k)| + ˛max

i
max

k
|y0(k) − yi(k)|

|y0(k) − yi(k)| + ˛max
i

max
k

|y0(k) − yi(k)|

i = 1, 2, . . . , m; k = 1, 2, . . . , n

where ˛ is distinguishing coefficient and 0 < ˛ < 1, normally ˛ = 0.5;
Step 3: Calculate grey relational grade �

�(y0, yi) = 1
n

n∑
k=1

�i(k)

Step 4: Rank the obtained grey relational grades; thus, grey rela-
tional order can be identified.

As mentioned previously, grey relational grade will be employed
o be weighted coefficients of corresponding attributes in cluster
nalysis. Note that grey relational grades range from 0 to 1. Gener-
lly, r > 0.9 indicates a marked influence, r > 0.8 indicates a relatively
arked influence, r > 0.7 indicates a noticeable influence, and r < 0.6

ndicates a negligible influence [13].

. Case study – occupant behavior effects in residential
uildings

.1. Data collection and preprocessing
To evaluate and improve residential buildings’ energy perfor-
ance, a project entitled “Investigation on Energy Consumption

f Residents All over Japan” was carried out by the Architecture
nstitute of Japan from December 2002 to November 2004 [14].

Fig. 2. Measuring instruments (from left to right: e
City gas (12A-13C) 45.9 MJ/Nm3

Liquefied petroleum gas (LPG) 50.2 MJ/Nm3

Kerosene 36.7 MJ/L

For this project, field surveys on energy-related data and other
relevant information were carried out in 80 residential build-
ings located in six different districts in Japan: Hokkaido, Tohoku,
Hokuriku, Kanto, Kansai, and Kyushu. Table 1 shows the survey
items and corresponding investigation methods. Fig. 2 shows mea-
suring instruments which were used to monitor temperature and
consumptions of electricity, gas, and/or kerosene.

The building energy consumption was broken down into eight
major end-use loads: (1) HVAC, (2) hot water supply (HWS), (3)
kitchen (KITC, including cooking and other kitchen equipment such
as dishwasher and range hood), (4) lighting (LIGHT), (5) refrigerator
(REF), (6) amusement and information (A&I, such as television, tele-
phone, and computer), (7) housework and sanitary (HOUSE, such
as washing machine, vacuum, and electrical shaver), and (8) others
(OTHER, unidentified usage such as electrical shutter and all the
unclear items).

Scrutinizing the data from the 80 buildings, researchers found
that only 67 sets were complete, while 13 had missing values of
energy consumption data. Data reduction and aggregation was
then performed to obtain a smaller representation of the original
data. For example, diverse energy unit of different kinds of primary
energy sources used by the various buildings, including electricity,
natural gas, and kerosene, was converted to MJ based on conver-
sion coefficients in Table 2 so they could be added directly. Then,
readings of each end-use load at different intervals (e.g., 1 or 5 min)
were averaged over each month. The resulting data was stored in
a database.

3.2. Selection of typical parameters
The main parameters that could generally represent the four
influencing factors unrelated to the occupant behavior should be
identified before the cluster analysis. Based on the characteristics
of residential buildings in Japan, twelve representative parameters
of the four influencing factors were captured from the database and

lectricity, gas, kerosene and air temperature).
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Table 3
Representative parameters of the four influencing factors.

Influencing factors Representative parameters Category Unit Abbreviation

City climate (i) Annual mean air temperature Numerical ◦C T
(ii) Annual mean relative humidity Numerical RH
(iii) Annual mean wind speed Numerical m/s WS
(iv) Annual mean global solar radiation Numerical MJ/m2 RA

Building-related characteristics (i) House typesa Categorical HT
(ii) Building area Numerical m2 BA
(iii) Equivalent leakage areab Numerical cm2/m2 ELA
(iv) Heat loss coefficientc Numerical W/m3K HLC

User-related characteristics except social and economic factors (i) Number of occupants Numerical NO
Building services systems and operationd Energy source of usage for

(i) Space heating and cooling Categorical HC
(ii) Hot water supply Categorical HWS
(iii) Kitchen equipment Categorical KE
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House types are divided into either detached house or apartment.
b Measured by the fan pressurization method.
c Calculated based on building design plans.
d Energy source of usage is divided into either electric or non-electric. Since all o

quipment.

re outlined in Table 3:

.3. Results and discussion

.3.1. Grey relational grades
The ultimate goal of this study is to identify the influences

f the occupant behavior on the building energy consumption.
herefore, annual building energy use intensity (EUI) in 2003 was
elected as the objective sequence in GRA, and accordingly, there
s no need to consider the building area independently. Among
he remaining eleven parameters, four weather parameters are
ime-series variables that can be viewed as a function of time.
n order to take both the impact of season and regional climate
ifference into consideration, grey relational grades were first
alculated for each building based on monthly building EUI and
ocal monthly weather parameters [15]; then, an average was
aken over grey relational grades in each district. For the other
even parameters, considering the size of database, grey relational
rades were calculated on all the buildings.

The results of GRA are given in Table 4. It can be seen that, with
espect to weather parameters, generally outdoor air temperature
nfluenced EUI more significantly than the other three parameters,
specially in the cold districts, i.e., Hokkaido and Tohoku. At the
ame time, the number of occupants and the heat loss coefficient
ad noticeable impact on the building energy performance, since
he grey relational grades of these two parameters are between
.7 and 0.8. This implies that these two parameters deserve more
ttention in the building design phase.
.3.2. Cluster analysis
After data preprocessing and the calculation of the grey rela-

ional grades, i.e., weighted coefficients of the selected parameters
n Table 3, cluster analysis was conducted using the open-source

able 4
rey relational grades for each district.

District Grey relational grades

T WS RH RA NO

Hokkaido 0.799 0.584 0.620 0.683

0.701

Tohoku 0.831 0.555 0.765 0.662
Hokuriku 0.772 0.532 0.644 0.716
Kanto 0.737 0.601 0.732 0.641
Kansai 0.712 0.580 0.695 0.690
Kyusyu 0.654 0.605 0.661 0.675

a The two states of house types, i.e., detached house and apartment, are transformed to
b The two states of these three parameters, i.e., electrical and non-electrical, are transfo
pace cooling equipment is electric, the value of HC is determined by space heating

data mining software WEKA. The results of cluster analysis are
given in Table 5. With the consideration of the size of the database,
four clusters were determined by the K-means algorithms based
on Euclidean distance measures. Cluster centroids, which repre-
sent the mean value for each dimension, were used to characterize
the clusters. For example, it can be seen that cluster 1, in compari-
son with the other clusters, is a segment of buildings representing a
high outdoor air temperature (the cluster centroid of T in this clus-
ter is 0.609, which is higher than that in the other three clusters),
detached houses (the cluster centroid of HT in this cluster is 0, indi-
cating that all the buildings in this cluster are detached house), high
heat loss coefficients, low equivalent leakage areas, small number
of occupants, non-electrical hot water supplies and kitchen equip-
ment, etc. Similarly, the other clusters can be explained as follows:
Cluster 2 can be mainly characterized as high solar radiation, large
number of occupants, electrical space heating and cooling, and
electrical kitchen equipment. Cluster 3 is a segment of buildings
representing a low outdoor air temperature, low heat loss coeffi-
cients, high equivalent leakage area, and non-electrical hot water
supplies. Cluster 4 can be mainly characterized as high outdoor
relative humidity, non-electrical space heating and cooling, and
electrical kitchen equipment. In addition, the centroid of all the data
is also given for comparison with the cluster centroids, as shown
in full data column in Table 5. The internal cohesion and external
separation for the clusters based upon the eleven attributes imply
that these attributes have the most similar holistic effects on the
building energy performance in the same cluster, while the effects
are significantly distinct for the buildings in different clusters.
3.3.3. Effects of occupant behavior
3.3.3.1. End-use load shapes. After the generation of four clusters,
different end-use loads of various buildings in each cluster were
averaged over one year. Fig. 3 shows the average annual EUI of

HLC ELA HTa HCb HWSb KEb

0.780 0.490 0.617 0.537 0.514 0.551

[0,1].
rmed to [0,1].
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Table 5
Centroid of each cluster and statistics on the number and percentage of instances assigned to different clusters.

Attribute Full data Cluster

1 2 3 4

T 0.451 0.609 0.483 0.312 0.408
WS 0.313 0.316 0.303 0.339 0.302
RH 0.395 0.262 0.417 0.428 0.439
RA 0.347 0.318 0.370 0.343 0.343
HT 0.166 0.000 0.134 0.411 0.116
HLC 0.183 0.254 0.154 0.116 0.229
ELA 0.394 0.291 0.413 0.460 0.390
NO 0.275 0.216 0.320 0.234 0.296
HC 0.305 0.331 0.000 0.501 0.537
HWS 0.307 0.514 0.067 0.514 0.289
KE 0.222 0.551 0.000 0.514 0.000
Clustered instances

and proportion
67 (100%) 13 (19%) 23 (34%) 15 (22%) 16 (24%)

UI of

d
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Fig. 3. Average annual E

ifferent end-use loads for each cluster. The proportion of each end-
se load to the whole is also given above the corresponding bar.

As shown in Fig. 3, hot water supply and HVAC form the two
argest categories of end-use loads in terms of average annual
UI in all four clusters, while housework and sanitary and ‘oth-
rs’ have a modest contribution. Also, the two largest loads far
xceed the other six end-use loads that do not have significant
ariations in the proportion among most of the clusters. This indi-
ates that occupants in different clusters had similar behavior.
oreover, the proportions of both hot water supply and HVAC

emain approximately steady among these clusters, except that
here is a noticeable increase in the HVAC proportion in Cluster
, which is mainly characterized by medium-low outdoor air tem-
erature and non-electrical space heating equipment. This increase
ay be partly caused by two factors: (1) the high electricity rate
n Japan, and (2) the high efficiency of non-electrical space heat-
ng devices such as kerosene space heaters. A high electricity
ate tends to restrict occupants’ usage of electrical heating/cooling
quipment in the other three clusters, while high efficiency of
on-electrical space heating devices encourages occupants’ utiliza-
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Fig. 4. Boxplot of normalized annual
different end-use loads.

tion of them in Cluster 4, thereby increasing energy consumption.
Therefore, a rational combination of electricity rates and primary
heating/cooling sources could help reduce building energy con-
sumption through influencing occupant behavior.

3.3.3.2. Variability in annual EUI of different end-use loads induced
by occupant behavior. In order to examine the variability in annual
EUI of different end-use loads that is caused by the occupant behav-
ior, the end-use loads in each cluster were normalized and plotted.
Fig. 4 depicts a box plot of normalized annual EUI of different end-
use loads. The annual EUI of each building is normalized by the
mean value of all the buildings in that cluster, thus highlighting
the variability and allowing all the end-use loads to be plotted
together on the same scale. As shown in Fig. 4, a large variability
that ranges from close to zero to about four times upon the mean

value is induced by the user behavior. Since the end-use loads in
each building is normalized by the mean value of all the buildings
in that cluster, the value of end-use loads ranges from zero to twice
as many as the mean value was considered to be an insignificant
variation. Accordingly, the threshold value for significant variation
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Table 6
Annual EUI of different end-use loads of reference building for each cluster (MJ/m2).

HVAC HWS LIGHT KITC REF A&I HOUSE OTHER SUM

Cluster 1 77 165 31 24 25 12 29 0 363
Cluster 2 45 161 39 25 22 20 7 12 332
Cluster 3 154 141 33 42 20 13 6 0 409
Cluster 4 188 212 34 25 15 19 11 0 504

of different end-use loads of three typical buildings.
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on end-use loads over time and buildings, monthly variations
of average end-use loads in each cluster were plotted in semi-
logarithmical graphs, as shown in Figs. 6–9. Clearly HVAC shows
a significant variation in all the four clusters. Generally, the peak
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Fig. 5. Stacked-column diagram of annual EUI

s defined as 2 (illustrated by the dash line). Except for HWS and
EF, the range of the other six end-use loads exceeds the thresh-
ld value in most of the clusters. Such high variability implies that
here still remains great potential for energy saving by improv-
ng occupant behavior related to these six domestic end-use loads.
ontrarily, considering the relatively narrow range of HWS and REF,
here could be little expectation of reducing energy consumption
n these areas via improving occupant behavior.

.3.3.3. Reference building and energy-saving potential. In order to
valuate energy-saving potential for the four clusters, the reference
uilding for each cluster was first defined. The characterization of
he reference building was carried out by identifying the build-
ng with the energy consumption closest to the cluster energy
onsumption centroid in terms of Euclidean distance and end-use
oads. The annual EUI of different end-use loads of a reference build-
ng for each cluster is given in Table 6.

Fig. 5 shows the stacked-column diagram of annual EUI of
ifferent end-use loads of three typical buildings in the four clus-
ers: a reference building (RB) and buildings with the minimum
Min) and maximum (Max) annual EUI. Occupant behavior led
o a huge difference between these three different buildings in
ach cluster. In this study, annual EUI of different end-use loads
f a reference building was taken as a baseline. Accordingly, the
nergy-saving potential of a building with a larger annual EUI than
hat of a reference building could be determined by computing
he difference between them. For example, the potential energy
avings that could be achieved by improving occupant behavior
or the buildings with the maximum annual EUI in the four clus-
ers, i.e., EUIMax–EUIRB, were 281 MJ/m2, 250 MJ/m2, 198 MJ/m2,
nd 202 MJ/m2, respectively. Moreover, comparison with a refer-
nce building provided a means of examining which end-use load
eemed to have the greatest potential for energy conservation. For
nstance, comparison between the building with the maximum
nnual EUI and the reference building in each cluster indicated that
VAC contributed the most toward energy saving, while HWS had a
egligible contribution. This result is consistent with the conclusion
rawn from Fig. 3. Similarly, other end-uses loads with noticeable

nergy-saving potential in each cluster could be identified, such
s housework and sanitary in Cluster 1 and lighting in Cluster 4.
uch information can help building owners realize that which occu-
ant behavior should be modified in practice to effectively improve
uilding energy performance. Further, based on this information,
Month OTHER

Fig. 6. Monthly variation of end-use loads in Cluster 1.

a better effect may be achieved if building occupants receive an
energy-saving education and tips on how to improve their behav-
ior. It should be noted that, in comparison with a reference building,
buildings with the minimum annual EUI in the four clusters not
only had lower HVAC EUI, but also had much smaller HWS EUI. A
possible explanation for this is that occupants in these buildings
reduced energy consumption by being concerned about the cost in
living standards. For example, these occupants may decrease the
frequency of utilization of room air conditioners in the cooling sea-
son, even though the indoor temperature is not the best comfort
temperature. Further field investigation is needed to identify the
real reasons.

3.3.3.4. Monthly variations of end-use loads induced by occupant
behavior. In order to examine the effects of occupant behavior
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Fig. 7. Monthly variation of end-use loads in Cluster 2.
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Cluster 1.
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Fig. 11. Monthly average living-room temperature of three typical buildings in
Cluster 2.
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f HVAC occurred in the heating season, especially in December
nd January, while the trough of HVAC occurred in the cooling
eason, especially June and July. This may have occurred because
our districts (i.e., Hokuriku, Kanto, Kansai, and Kyushu) have

moderate climate and the other two (Hokkaido, Tohoku) are
ocated in a cold climate, and cooling energy demand is con-
iderably lower than heating energy demand. At the same time,
VAC in Cluster 3, characterized by the lowest outdoor air tem-
erature, had the biggest peak-to-trough ratio. This indicates that
eather conditions significantly influenced occupant behavior,

hereby impacting building energy consumption. With respect to
WS, its variation is noticeable, considering the absolute magni-

ude of the variation is comparatively large. In general, the peak of
WS occurred in December or January, while the trough occurred

n August or September. Evidently this was also caused by weather
onditions, especially outdoor air temperature. With regard to
IGHT, KITC, REF, and A&I, these four curves bear a remarkable sim-
larity to each other in the four clusters, and almost all of them vary
y less than 20% from the mean. This indicates that these house-
olds tended to maintain their lifestyles, and the level of their
eneral indoor activities associated with these end-use loads did
ot fluctuate wildly from month to month. In addition, the remain-

ng two smaller end-use loads, i.e., HOUSE and OTHER, showed a
arked seasonal variation in the four clusters, while the absolute
agnitude of the variation is comparatively small. Basically the

nd-use loads in a heating season are higher than in a cooling sea-
on. A further investigation of corresponding occupant-behavior
atterns needs to be performed to explain the reasons for this vari-
tion.

.3.3.5. Monthly average indoor temperature of air-conditioned room.
ifferent occupant behavior, especially those associated with
VAC, can significantly affect indoor climate, which in turn will
ave an influence on occupant behavior, thereby causing dramatic
ifferences in building energy consumption. Therefore, the effects
f occupant behavior on building energy consumption should be
nderstood and interpreted in conjunction with the investigation
f indoor climate. Figs. 10–13 show the monthly average living-

oom temperature of three typical buildings in each cluster: the
eference building (RB) and buildings with the maximum and min-
mum annual EUI (Max and Min). These selected living rooms had
ir conditioners and/or heating equipment. As shown in Fig. 10,
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Fig. 9. Monthly variation of end-use loads in Cluster 4.
Month

Fig. 12. Monthly average living-room temperature of three typical buildings in
Cluster 3.

there is a significant difference between living-room temperatures
of the three buildings in the cooling season and a minor difference
in other seasons. The living room of Max was maintained at a tem-
perature of about 24 ◦C in the cooling season. At the same time, the
room temperature of Min was around 5 ◦C higher than that of Max,
and the room temperature of RB was generally between that of Max
and Min in this season. Considering that Cluster 1 is characterized
by the highest outdoor air temperature, it can be deduced that the
frequency of utilization of room air conditioners in the cooling sea-
son in these three buildings can be ranked as: Max > RB > Min. With
respect to the other three clusters, Figs. 11–13 shows that the living
room of Max was maintained at a temperature of about 24 ◦C all
year, while living-room temperatures of RH and Min varied with
the outdoor air temperature. Clearly the frequency of utilization
of space cooling/heating equipment in the three buildings in these
three clusters has the same order as that in Cluster 1 in both heating
and cooling seasons. These results suggest that occupant behavior
that seeks thermal comfort normally results in high energy con-
sumption. Therefore, there has to be a trade-off between human

thermal comfort and building energy consumption, and it is nec-
essary to strike a balance between achieving a high comfort level
and reducing energy consumption through modifying occupant
behavior.
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Fig. 13. Monthly average living-room temperature of three typical buildings in
Cluster 4.
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. Summary and conclusions

The main purpose of this paper includes the development of a
ovel data analysis methodology through clustering techniques for

dentifying the effects of occupant behavior on building energy con-
umption. It is realized by organizing similar buildings among all
he investigated buildings into various groups based on the four
nfluencing factors unrelated to user behavior, so that for each
uilding in the same group the four factors have similar full effects
n energy consumption. Min–max normalization techniques are
erformed as a data preprocessing step to deal with the inconsis-
encies of different attributes. Grey relational analysis is also carried
ut, and grey relational grades, a measure of relevancy between two
actors, are used as weighted coefficients of attributes in cluster
nalysis.

In order to demonstrate its applicability, this methodology was
pplied to a group of residential buildings located in six differ-
nt districts of Japan. Energy-related data of these buildings was
easured, and a database was developed after scrutinizing the
easured data. Twelve attributes were captured from the database

o represent the influencing factors unrelated to occupant behavior.
-means method was selected in cluster analysis and four clusters
ere obtained as a result.

In these four clusters the effects of occupant behavior on build-
ng energy consumption were examined at the end-use level.
nd-use variations over time and buildings induced by occupant
ehavior were analyzed. Also, as a preliminary step toward identi-
ying energy-saving potential, a reference building was defined as
he building whose energy consumption was the closest to cluster
nergy consumption centroid in terms of Euclidean distance and
nd-use loads. Moreover, indoor climate was investigated to better
nderstand and interpret the effects of occupant behavior.

This proposed method allows researchers to evaluate building
nergy-saving potential by improving user behavior, and provides
ultifaceted insights into building energy end-use patterns asso-

iated with occupant behavior. The results obtained could help
rioritize efforts of modification of occupant behavior to reduce

uilding energy consumption, and also could be used to improve
odeling of user behavior in numerical simulation.
The main focus of future research should be placed on identi-

ying appropriate building sample sizes and number of clusters,
electing typical attributes that can adequately represent the

[
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influencing factors unrelated to occupant behavior, since these
measures will provide more precise effects of occupant behavior.
In addition, more case studies in different sectors, such as commer-
cial buildings and office buildings, should be conducted to further
improve building energy performance and policy formulation.
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