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Abstract 
Energy management systems provide an opportunity to collect vast amounts of building-related 
data. The data contain abundant knowledge about the interactions between a building’s energy 
consumption and the influencing factors. It is highly desirable that the hidden knowledge can be 
extracted from the data in order to help improve building energy performance. However, the data 
are rarely translated into useful knowledge due to their complexity and a lack of effective data 
analysis techniques. This paper first conducts a comprehensive review of the commonly used data 
analysis methods applied to building-related data. Both the strengths and weaknesses of each 
method are discussed. Then, the critical analysis of the previous solutions to three fundamental 
problems of building energy performance improvement that remain significant barriers is performed. 
Considering the limitations of those commonly used data analysis methods, data mining techniques 
are proposed as a primary tool to analyze building-related data. Moreover, a data analysis process 
and a data mining framework are proposed that enable building-related data to be analyzed more 
efficiently. The process refers to a series of sequential steps in analyzing data. The framework includes 
different data mining techniques and algorithms, from which a set of efficient data analysis 
methodologies can be developed. The applications of the process and framework to two sets of 
collected data demonstrate their applicability and abilities to extract useful knowledge. Particularly, 
four data analysis methodologies were developed to solve the three problems. For demonstration 
purposes, these methodologies were applied to the collected data. These methodologies are 
introduced in the published papers and are summarized in this paper. More extensive investigations 
will be performed in order to further evaluate the effectiveness of the framework. 
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1 Introduction 

The energy consumption in the building sector is of mounting 
concern. With rising living standards, building energy 
consumption has significantly increased over the past few 
decades. The current high level of consumption and the 
steady increase in demand for energy necessitate a thorough 
understanding of the major influencing factors in order  
to develop effective approaches to reducing building  
energy consumption. Factors influencing building energy 
consumption can be divided into seven categories (Yu et al.  
2011a), as shown in Table 1. 

These seven factors play an essential role in reducing 

building energy consumption and efforts should be made to 
clearly understand their influences. However, there still are 
significant barriers that prevent researchers and architects 
from completely understanding these factors. For example, 
researchers and architects often observe a large discrepancy 
between the designed/simulated and the actual building 
energy consumption. The reasons for this discrepancy are 
not well understood and often have more to do with 
occupant behavior than building design. Three fundamental 
problems of building energy performance improvement 
that remain significant barriers are as follows: 
(1) Building energy demand models are developed mainly 

for the purposes of the prediction of the total building 
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energy consumption (Yu et al. 2010). How can we 
develop interpretable building energy demand models 
that can also help us to understand the influence of these 
factors on total building energy consumption and that 
can be easily used by those who lack advanced technical 
expertises in building thermal analysis? 

(2) Various factors influence building energy consumption 
at the same time, leading to a lack of precision when 
identifying the individual effects of occupant behavior 
(Yu et al. 2011a). How can we quantitatively identify such 
effects without including the impact of other influencing 
factors such as weather conditions? Moreover, it is 
difficult to investigate the occupant behavior analytically 
due to its complicated characteristics (Yu et al. 2012). 
How can we identify occupant behavior that needs   
to be modified for energy conservation and make 
recommendations for such modification? 

(3) Based on building automation systems (BASs), large 
number of heating, ventilation, and air-conditioning 
(HVAC) system parameters can be monitored and 
huge amounts of operational data can be collected. How 
can one examine all the associations (i.e., connections or 
relationships) and correlations among these parameters 
and acquire useful information from them to better 
understand building behavior and develop methodology 
to reduce its energy consumption? 
These barriers can lead to misunderstandings of how 

the influencing factors affect building energy performance, 
and thus can add difficulties to developing plans for energy 
saving measures. Therefore, it is vital that these barriers  
are removed so that building energy performance can be 
improved efficiently. 

To overcome these barriers, one effective method is to 
analyze building-related data and acquire relevant useful facts, 
considering that such data contain abundant knowledge 
about these influencing factors. In general, building-related 
data can be categorized into three categories (Yu et al. 2011a), 
as shown in Table 2. 

Since the introduction and implementation of BASs  
in buildings, vast amounts of building-related data have  
been collected and stored. Moreover, for an existing 
building, building-related data can be surveyed through 
different methods (e.g., analysis of design documentation, 
questionnaires, and interviews). The data contain abundant 
information on building design, operation, and maintenance 
that can be extracted to help reduce building energy 
consumption. However, the data are rarely analyzed and 
translated into useful knowledge, mainly due to their 
complexity (especially, large volumes and poor quality) and 
a lack of effective data analysis techniques. Consequently,  
it is necessary to develop more effective data analysis 
techniques to deal with the challenges caused by the 
complexity of building-related data. Moreover, based on the 
proposed data analysis techniques, a data analysis process 
and a data analysis framework can be established to assist 
in analyzing building-related data more efficiently. Note 
that the data analysis process refers to a series of sequential 
steps in analyzing building-related data. The data analysis 
framework includes different data analysis algorithms, 
from which a set of efficient data analysis methodologies 
can be developed. Both the process and the framework are 
aimed at successfully extracting (mining) hidden and useful 
knowledge from building-related data in order to improve  
building energy performance. 

Table 1 Seven categories of influencing factors of building energy consumption 

No. Influencing factor Example 

1 Climate Outdoor air temperature, solar radiation 

2 Building-related characteristics  Type, area, orientation 

3 User-related characteristics, except for social and economic factors User presence 

4 Building service systems and operation  Space cooling/heating, hot water supplying 

5 Building occupants’ behavior and activities Turn on/off lights, TVs 

6 Social and economic factors Degree of education, energy cost 

7 Indoor environmental quality required Preferred indoor air quality and comfort 

Table 2 Three categories of building-related data 

No. Building-related data Example 

1 Climatic data  Outdoor air temperature, outdoor relative humidity 

Operational data of HVAC systems Supply air temperature, outdoor airflow rates 

IEQ data Occupant thermal comfort and health 2 Building operational data 

Energy data  Monthly electricity consumption, end-use loads of household appliances 

3 Building physical parameters  Floor area, window-to-wall ratio 
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2 Commonly used methods for analyzing building- 
related data 

Methods for analyzing building-related data, with the goal 
of evaluating and improving building energy performance, 
can be classified into three main categories (see Table 3). 
Each method is reviewed and evaluated in the following 
sections. 

Table 3 Three categories of methods of analyzing building-related 
data 

No. Method Example 

1 
 

Typical indicator method 
 

Annual total energy use, energy 
use intensity  

2 
 

Statistical analysis method 
 

Regression analysis, correlation 
analysis 

3 Building simulation method EnergyPlus, TRNSYS, ESP-r  

2.1 Typical indicator method 

Typical performance indicators, particularly indicators of 
energy use intensity and energy use efficiency, are a simple 
means of analyzing building-related data and evaluating 
building energy performance.  

2.1.1 Indicators of energy use intensity 

Energy use intensity (EUI) is a unit of measurement that 
describes energy consumption of buildings or building 
service systems, such as space heating/cooling and lighting. 
Generally, a building’s EUI is calculated as the ratio of 
annual total building energy consumption to the total floor 
area of the building, thus representing the energy consumed 
by the building relative to its size. Similarly, building service 
systems’ EUI can also be calculated.  

EUIs were mainly utilized to survey building energy  
use patterns and identify the underlying factors influencing 
building energy consumption (Chung and Hui 2009; 
Priyadarsini et al. 2009; Chen et al. 2009a). In particular, 
these indicators could be utilized to compare the building 
energy consumption before and after retrofitting, thereby 
evaluating the energy-saving potential of various energy-  
efficient technologies (Balaras et al. 2003).  

2.1.2 Indicators of energy use efficiency 

Indicators of energy use efficiency test the quality of 
consuming energy. A representative indicator in the field of 
building engineering is coefficient of performance (COP), a 
measure of the energy efficiency of various cooling/heating 
devices. COP is calculated as the ratio of the amount of 
energy provided by a system to the amount energy consumed 
by that system. Therefore, a higher COP indicates a more  

energy-efficient system.  
COPs were used to investigate the effects of various 

operating conditions, as well as the design parameters, on 
the performance of heating/cooling systems (such as heat 
pumps, chillers, and heat transformers) (Balta et al. 2010; 
Wood et al. 2010; Chekir and Bellagi 2011). In particular, 
heating/cooling system performance optimization could  
be carried out by maximizing the COP of the systems 
(Waltrich et al. 2011) or by identifying the optimum design 
parameters of the systems with an acceptable result of COP 
(Bi et al. 2008; Abu Hamdeh et al. 2010). Also, COPs have 
been used to predict the operating energy performance of  
heating/cooling systems (Wang et al. 2012).  

2.1.3 Strengths and weaknesses 

The major advantage of the typical indicator method is   
its simplicity. Moreover, the use of these typical indicators 
makes it possible to draw a direct comparison of energy 
performance between different buildings. However, typical 
indicators alone are insufficient to analyze building-related 
data and to evaluate building energy performance. Further- 
more, they cannot provide insights into building energy-use 
patterns and investigate the impact of each influencing factor  
on the total building energy performance. 

2.2 Statistical analysis method 

Statistical analysis techniques, particularly regression analysis 
(both linear regression and nonlinear regression) and 
correlation analysis, were extensively applied to analyze  
building-related data.  

2.2.1 Regression analysis 

Regression analysis was mainly used to predict building 
energy consumption based on environmental data or building 
physical parameters (Lam et al. 1997; Dong et al. 2005b). 
Also, regression analysis was used to predict among other 
parameters, such as indoor air temperature and relative 
humidity (Givoni and Krüger 2003; Krüger and Givoni 
2004; Freire et al. 2008), the overall heat transfer coefficient 
(the U-value) (Jiménez and Heras 2005), and the energy 
consumption of different types of cooling plants (e.g., 
centrifugal chillers and ice storage systems (Kim and Kim 
2007)). An additional application of regression analysis was 
to compare the effects of influencing factors on building 
energy performance. For example, Zhang (2004) compared 
the influence of climatic characteristics on residential building 
energy performance in China with that in Japan, Canada, 
and the United States by examining regression equations 
between annual energy consumption per household and  
heating degree-days. 
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2.2.2 Correlation analysis 

Correlation analysis was utilized to identify the relationship 
between building energy consumption and influencing factors 
such as climate, building physical parameters, occupancy 
patterns, and HVAC system design and operation (Tonooka 
et al. 2006; de la Flor et al. 2006; Chen et al. 2009b). The 
relationship contributes to a clear understanding of the 
effects of these influencing factors on building energy 
consumption. Factors with major effects were given priority 
over other factors during building design and operation, with 
the ultimate goal of reducing energy consumption (Deng  
and Burnett 2000). 

2.2.3 Strengths and weaknesses 

The strength of statistical techniques is their simplicity and 
widespread familiarity. However, the outcome of regression 
analysis methods is normally complicated mathematical 
equations, which are not understandable and interpretable 
especially for common users without advanced mathematical 
knowledge. For example, when predicting the building 
energy consumption, it is difficult to ascertain the influence 
of the seven factors from the equations. Moreover, building 
operational data (e.g., operational data of HVAC systems) 
are usually recorded at short time intervals, which can be 
considered instantaneous. As a result, various random 
disturbances that do not usually follow a normal (Gaussian) 
distribution, such as occupancy, ventilation rates, and solar 
gains, can add bias and noise to the data, reducing the  
prediction accuracy (Ghiaus 2006). 

Correlation analysis is mainly utilized with the premise 
that data analysts, based on their expertise, “believe” that 
strong associations and correlations exist among two or 
more parameters. For example, one performs correlation 
analysis between building energy consumption and outdoor 
air temperature based on “believing” that outdoor air 
temperature may have a significant influence on the building 
energy consumption. Such analysis depends mainly on the 
prior expertise of analysts and adopted statistical techniques. 
As a result, useful knowledge could be lost, especially 
indirect associations and correlations between data (e.g., 
parameters A and B do not have a direct impact on C, but 
they may have an indirect impact through parameters D 
and E). Moreover, commonly a large number of parameters 
are monitored from HVAC systems and huge amounts   
of operational data are collected. Consequently, it is very 
difficult and often infeasible for data analysts to conduct 
statistical analyses, the correlation analyses, for example, on 
every combination of the parameters in order to discover 
all of the associations and correlations that are crucial   
for achieving the optimum building performance. In this 
regard, consider, for example, a database with n parameters. 

A data analyst employs traditional correlation analysis to 
identify the associations/correlations between each pair of 
the parameters in this database. The number of possible 
combinations is C(n, 2). Suppose n = 100, then the analyst  
has to conduct 4950 correlation tests, which is impractical. 

2.3  Building simulation method 

Building energy simulation is another method widely 
employed to analyze building-related data for evaluating and 
improving building energy performance. The method was 
mainly applied to simulate building energy consumption 
under various conditions in order to identify the relationship 
between building energy consumption and different 
influencing factors (e.g., total building energy consumption 
and building relative compactness (Ourghi et al. 2007), 
heating/cooling loads and building control strategies (Eskin 
and Türkmen 2008), and annual electricity consumption  
and the overall heat transfer coefficient, U (Lam 2000) ).  

2.3.1 Strengths and weaknesses 

Building simulation allows for the prediction of building 
energy performance under various conditions. However, 
this method does not perform well in simulating energy 
performance for occupied buildings, as compared to 
unoccupied buildings, due to a lack of sufficient knowledge 
about occupant behavior and the patterns of building use, 
which are normally not deterministic and depend on the  
occupant and building function.  

3 Critical analyses of previous solutions to the 
fundamental problems 

As mentioned in Section 1, there still remain a number of 
fundamental problems with improving thermal performance 
of buildings. Different solutions have been proposed and  
they will be discussed in the following sections. 

3.1 Building energy demand models 

In recent years, different models have been developed to 
predict building energy demand. Generally, these models can 
be divided into three main categories: regression models, 
simulation models and Artificial Neural Network models. 
The strengths and weaknesses of regression models and 
simulation models have already been reviewed in Sections 
2.2.3 and 2.3.1, respectively. The application of Artificial  
Neural Network models is reviewed as follows. 

Previous studies showed that Artificial Neural Network 
models have been widely applied to correlate the total 
building energy consumption with climatic/physical variables  
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(Ekici and Aksoy 2009; Escrivá-Escrivá et al. 2011). Also, 
both building cooling and heating demand were predicted 
by using Artificial Neural Network models. For example, 
Olofsson and Andersson (2001) investigated the potential 
of a neural network to predict the annual space heating 
demand of a building, based on the measured average daily 
outdoor and indoor temperatures and space heating energy 
consumption for a limited time period. Hou et al. (2006) 
developed a novel method integrating rough sets (RS) theory 
and Artificial Neural Network in order to predict building 
cooling demand, based on building operational data of HVAC 
systems. In addition, it was noticed that, new neural network 
algorithms such as Support Vector Machines (SVM) were 
applied to predict building energy demand (Dong et al. 2005a)  
and building cooling/heating demand (Qiong et al. 2009).  

The most important advantage of Artificial Neural 
Network models, over other models, is the ability to provide 
predictions even for a multivariable mixed-integer problem, 
which involves both integers (e.g., binary values) and 
continuous variables (Yao et al. 2006). However, the major 
limitation of this method is that the network is considered 
a black-box model—a relationship between the individual  
influencing factor and output cannot be observed directly.  

In summary, a review of the three main energy demand 
modeling methods was conducted. These modeling methods 
have been successfully applied to predict building energy 
demand. However, the models developed using these methods 
are not understandable and interpretable. This makes it 
difficult for these methods to provide useful knowledge of 
building energy performance improvement. New modeling 
methods need to be proposed in order to overcome such  
limitations. 

3.2 Study on occupant behavior  

3.2.1 The influences of occupant behavior on building energy 
consumption 

Recently there has been mounting interest in studying the 
influences of occupant behavior on the total building energy 
consumption (Kyrö et al. 2011) or end-use loads such as 
lighting (Yun et al. 2012) and space/water heating (Santin 
et al. 2009). Generally, these studies can be divided into  
two categories. The first category focuses on the effects of 
occupant presence on building energy consumption. For 
example, Emery and Kippenhan (2006) reported a survey 
on the effects of occupant presence on energy usage in four 
nearly identical houses. These houses were divided into two 
pairs, and the building envelope of one pair was constructed 
with improved thermal resistance. One of each pair of houses 
was left unoccupied, while the other was occupied. They 
compared the total building energy consumption of the  

occupied and unoccupied houses in a heating season. Masoso 
and Grobler (2010) compared energy consumption during 
non-working hours with that during working hours in six 
commercial buildings. Sub-hourly power consumption pro-  
files for different buildings have been audited and compared.  

The second category of studies focuses on the effects of 
occupants’ actions on the building energy consumption. 
For example, Schweiker and Shukuya (2010) investigated 
the quantitative effects of the occupant behavior change 
(frequency of using the air-conditioner units, either occasion- 
ally or frequently) and building envelope improvement  
on the exergy consumption for heating and cooling. The 
data were collected in 39 student rooms of a university 
dormitory. Ouyang and Hokao (2009) investigated energy- 
saving potential by improving user behavior in 124 
households in China. These houses were divided into two 
groups: one group was educated to promote energy-conscious 
behavior and put corresponding energy-saving measures into 
effect, while the other group was not. Comparisons were made  
between monthly energy consumption for both groups.  

Evidently, comparative analyses on measured data  
were conducted in these studies to identify the effects of 
occupant behavior. However, apart from occupant behavior, 
the other influencing factors also simultaneously contribute 
to the variation in building energy consumption, while this 
method is unable to adequately remove the effects of those 
factors and identify the influences of occupant behavior. 
Although in these studies some measures were implemented 
to remove the impact of those factors, such as by using 
nearly identical housing characteristics and by taking energy 
data in other years with similar climatic conditions as a 
reference, the effects of these measures are questionable 
since even a slight difference in some building parameters 
(e.g., heat loss coefficient, infiltration) and weather 
parameters (e.g., annual average outdoor air temperature) 
would result in remarkable fluctuations in the building 
energy consumption. Therefore, new methods need to be 
developed in order to identify the effects of occupant  
behavior precisely. 

3.2.2 Modification of occupant behavior  

A number of studies have been conducted to study the 
modification of building occupants’ behavior. As reviewed in 
Section 3.2.1, Ouyang and Hokao (2009) improved occupant 
behavior in 124 households in China and estimated the 
energy-saving potential. Al-Mumin et al. (2003) simulated 
occupant behavior improvement (i.e., occupant behavior 
before and after the modification such as turning off lights 
when rooms are empty and setting the air-conditioner 
thermostat to a higher temperature) and the corresponding 
annual electricity consumption reduction by using the 
energy simulation program ENERWIN. In these studies, 
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two approaches were used to modify occupant behavior: 
energy-saving education approach and building simulation 
approach. Both of them can have an immediate effect on 
the building energy consumption reduction. However, both  
approaches have certain limitations.  

Regarding the energy-saving education approach, com- 
monly detailed energy-saving measures and tips on the 
efficient use of various household appliances should be 
provided for occupants. Considering that a family normally 
has a number of appliances, and that each appliance may 
require specific tips (e.g., for air-conditioners: select the 
highest thermostat setting within the comfort range, clean 
or change air filters regularly, keep indoor/outdoor coils 
clean, get a programmable thermostat, etc.), there could  
be a large number of energy-saving measures and tips   
for an individual family. For example, one family may have 
40 household appliances, with each appliance having an 
average of 7 energy-saving tips. Accordingly, the occupants 
need to follow and implement 280 tips, which is impractical. 
Although a booklet of these tips can be prepared for building 
occupants, it is very difficult for occupants to remember 
them all distinctly and implement them for a long time in 
practice. Furthermore, occupants may not fully understand 
and have confidence in these tips’ effectiveness because they 
only provide qualitative information. In addition, some 
energy-saving opportunities can only be initiated by building 
occupants themselves. For example, when occupants realize 
they have consumed too much energy on both TVs and 
computers, they can avoid using both devices simultaneously 
when they can really only focus on one of them, or make a 
conscious effort to reduce usage time. Therefore, instead of 
simply providing occupants with a number of general energy- 
saving recommendations, it is more rational and efficient 
to help them modify their behavior in two steps. First, it is 
necessary to identify the behavior that needs to be modified. 
This can be achieved by analyzing measured building-related 
data. Second, feasible recommendations to mitigate the 
identified behavior can be presented with the goal of reducing  
total building energy consumption.  

With regard to the building simulation approach, current 
simulation tools can only imitate some typical activities  
in a rigid way, such as the control of sun-shading devices, 
while realistic building occupant behavior patterns are more  
complicated. 

In summary, new methods are needed for evaluating 
occupant behavior in existing buildings and for helping 
occupants to efficiently modify their activities/usage.  

3.3 Associations and correlations between building- 
related data 

Building-related data may have a direct/indirect influence 

on each other, considering that they are closely related   
to the same buildings. Specifically, there may be strong 
associations and correlations between them. Both these 
associations and correlations should be examined to 
understand building operation, determine rules of conserving  
energy, and develop appropriate strategies to design buildings.  

A number of studies have been conducted to identify 
associations and correlations between measured building- 
related data. Researchers utilized statistical analysis techniques, 
particularly correlation analysis, and focused mainly on the 
relationships between building energy consumption and  
its influencing factors, as reviewed in Section 2.1.2 (the 
limitation of these techniques has already been addressed). 
Moreover, few researchers examined associations and 
correlations between building operational data, especially 
operational data of HVAC systems, to better understand 
building operation in order to improve building energy 
performance. This is mainly due to the complexity of such 
data and a lack of effective data analysis techniques. Note 
that the energy consumption of HVAC systems can account 
for a large portion of total building energy consumption  
(Pérez-Lombard et al. 2011). 

Clearly, new methods are needed for discovering all the 
useful and important associations and correlations between 
building operational data.  

4    Data mining and its applications in building 
engineering  

4.1 Data mining 

Considering the limitations of the data analysis methods 
commonly used in building engineering, data mining is 
proposed as a primary tool to analyze building-related  
data to extract useful and hidden knowledge. Data mining 
techniques excel at automatically analyzing huge amounts of 
data and searching for useful information: these techniques 
fit well with the purpose of this study. 

Different definitions of data mining have been given by 
various researchers. For example, Hand et al. (2001) define 
data mining as “the analysis of large observational datasets 
to find unsuspected relationships and to summarize the data 
in novel ways so that data owners can fully understand and 
make use of the data.” As defined by Cabena et al. (1998), 
data mining is “an interdisciplinary field bringing together 
techniques from machine learning, pattern recognition, 
statistics, databases, and visualization to address the issue of 
information extraction from large databases.” Based on 
these statements, it can be concluded that data mining is 
essentially a combination of multidisciplinary approaches. 
It is often used to extract unseen patterns from a large 
volume of data and to transform them in turn into 
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useful/practical knowledge that could benefit future work,  
such as reducing building energy consumption.  

In this study, three main data mining techniques: data 
classification, cluster analysis, and association rule mining 
are proposed. Before these techniques are introduced, basic 
terms and concepts in relation to data mining are explained: 
 Dataset, Attribute, and Instance. A dataset is a set of 

data items. It is roughly equivalent to a two-dimensional 
(i.e., column and row) spreadsheet or database table, as 
shown in Fig. 1. Each database table consists of a set of 
attributes (usually in different columns or fields) and 
stores a large set of instances (usually in rows or records). 
Consider a mechanically ventilated building with 1000 
monitored parameters. Each parameter can be considered 
an attribute, and a record of all these parameters in a 
specific time point can be considered an instance. 

 Target attribute, Predictor attribute. A target attribute 
is the attribute predicted as a function of other attributes 
(i.e., predictor attributes). For example, building energy 
consumption (i.e., target attribute) could be predicted as 
a function of building-related parameters such as floor 
area and number of occupants (i.e., predictor attributes).  

Based on the above definition of data mining terms, data 
classification, cluster analysis, and association rule mining 
are described as follows. Moreover, considering that each 
data mining technique has a number of algorithms, a typical 
algorithm of each technique is also briefly introduced. 
 Data classification. A form of data analysis that can be 

used to build classification models describing important 
data classes. The models are constructed for target 
attributes as a function of the values of predictor 
attributes. The goal of data classification is to classify 
data into various predefined classes (e.g., air-conditioner 
operating states can be classified as “ON” or “OFF”), 
thereby providing the description, categorization, and 
generalization of given databases.  

The decision tree algorithm is one of the most commonly 
used data classification algorithms; it uses a flowchart-like 
tree structure (Quinlan 1986; Han and Kamber 2006).  

 
 

 Attribute 1 … Attribute m 

Instance 1 × … × 

… … … … 

Instance i × … × 

… … … … 

Instance j × … × 

… … … … 

Instance n × … × 

Fig. 1 A schematic diagram of dataset, attribute, and instance 

Figure 2 shows a decision tree indicating whether 
occupants turn lights on or off in their offices. Assume 100 
instances are used to build this decision tree, and each instance 
has three attributes: working hours, office occupancy, and 
the state of lights. The target variable for the above decision 
tree is light states, with potential states being classified as 
either turning on or down. The predictor variables are 
working time (during normal working hours or not) and 
office occupancy (occupied or empty). As shown in Fig. 2, 
the decision tree consists of three kinds of nodes: root, 
internal, and leaf. A root node and an internal node denote 
a binary split test on an attribute, while a leaf node represents 
an outcome of the classification, and thus holding a 
categorical target label. Moreover, the numbers in the 
parentheses at the end of each leaf node depict the number 
of data records in this leaf. If some leaves are impure (i.e., 
some instances are misclassified into this node), the number 
of misclassified instances will be given after a slash. For 
example, (60/5) in the leftmost leaf in Fig. 2 means that 
among the 60 instances not during normal working hours 
that have been classified as turned down, 5 of them actually 
have the value turned on. Whether light states should be 
classified as being “turned on” or “turned down” can be 
predicted by using this decision tree. For example, if the 
working time is during normal working hours and the office 
is not empty, occupants will turn lights on; otherwise they  
will turn them down.  

The procedure for generating a decision tree is explained 
as follows. Initially, all instances are grouped together into 
a single partition. At each iteration, the algorithm chooses a 
predictor attribute that can “best” separate the target class 
values in the partition. The ability that a predictor attribute 
can separate the target class values is measured based on an 
attribute selection criterion, which can be referred to (Yu et 
al. 2010). After a predictor attribute is chosen, the algorithm 
splits the partition into child partitions such that each child 
partition contains the same value of the chosen selected 
attribute. The decision tree algorithm iteratively splits a 
partition and stops when either of the following terminating  
conditions is met: 
(1)  All records in a partition share the same target class 

value. Thus, the class label of the leaf node is the target 
class value. 

(2)  There are no more records for a particular value of a 
predictor variable. In this case, a leaf node is created 
with the majority class value in the parent partition. 

 Cluster analysis. The process of merging data into 
different clusters so that instances in the same cluster 
have a high similarity, while instances in different 
clusters have a low similarity. The similarity between the 
instances is evaluated based on their attribute values, and 
it is normally computed based on the distance between 
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each pair of instances. One popular distance measure is 
Euclidean distance (Han and Kamber 2006): 

2 2 2
1 1 2 2( , ) ( ) ( ) ( )u v u v um vmd U V x x x x x x= - + - + + -  

where U = (xu1, xu2,  , xum) and V = (xv1, xv2,  , xvm) are 
instances. xu1,  , xum are m attribute values of U and xv1,  , 
xvm are m attribute values of V.  

Figure 3 shows a clustering schema based on a hypothetical 
building data table. It contains various energy-related 
attributes such as outdoor air temperature (T) and building  
heat loss coefficient (HLC). 

The data table consists of m attributes and n instances. 
Each attribute represents a variable and each instance denotes 
a building. All the instances are grouped into w clusters. 
Accordingly, these w clusters are homogeneous internally 
and heterogeneous between different clusters (Han and 
Kamber 2006). Such internal cohesion and external separation 
are based upon the m attributes as well as their influences; 
it implies that these attributes have the most similar holistic 
effects on the building energy performance of the same 
cluster buildings, while the effects are significantly distinct  
for buildings in different clusters. 

 
 

  Attribute 1 
(T) … Attribute m

(HLC) 

Instance 1 × × × 
… × × × Cluster 1  

Instance i × × × 
 … × × × 

Instance j × × × 
… × × × Cluster w  

Instance n × × × 
Fig. 3 Clustering schema 

The K-means algorithm is one of the simplest partition 
methods to solve a clustering problem. Given a dataset  
(D) containing l instances, the K-means algorithm aims to 
partition these l objects into k clusters with two restraints: 
(1) the center of each cluster is the mean position of all 
instances in that cluster; and (2) each instance has been 
assigned to the cluster with the closest center. This algorithm 
consists of five steps: (1) randomly select k instances from 
the dataset as the initial cluster centers; (2) calculate the 
distance between each remaining instance and each initially 
chosen center; (3) assign each remaining instance to the 
cluster with the closest center; (4) recalculate the mean 
values, i.e., the cluster centers, of the new clusters; and (5) 
repeat steps 2 to 4 until the algorithm converges, meaning  
that the cluster centers do not change. 
 Association rule mining (ARM). It is a method to 

identify all associations and correlations between attribute 
values. The output is a set of association rules that are 
used to represent patterns of attributes that are frequently 
associated together (i.e., frequent patterns). For example, 
assume that 100 occupants live in 100 different rooms in 
a building, and each occupant has both a computer and a 
table lamp. Assume 40 occupants turn on their computers 
and 20 occupants turn on their table lamps. If 10 occupants 
turn on both computers and table lamps during the same 
period of time, it can be calculated that these 10 occupants 
account for 10% of all the building occupants, and 25% 
of the occupants who turn on computers. Then, the 
information that occupants who turn on computers  
also tend to turn on table lamps at the same time can be 
represented in the following association rule: 

   
turn_on_computers turn_on_table_lamps
[ 10%, 25%]support confidence



= =
 

In this statement, support and confidence are employed 
to indicate the validity and certainty of this association  
rule. Different users or domain experts can set different 

 
Fig. 2 Schematic illustration of a simple hypothetical decision tree 
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thresholds for support and confidence, according to their 
own requirements, in order to discover useful knowledge in 
the end. Accordingly, association rule mining can be defined 
as discovering association rules that satisfy the predefined  
minimum support and confidence from a given database. 

Mathematically, support and confidence can be calculated 
by probability, P(XY )1, and conditional probability, 
P(Y |X), respectively (X denotes the premise and Y denotes  
the consequence in the sequence). That is, 

( ) ( )support X Y P X Y =   

( ) ( | )confidence X Y P Y X =  

Another concept, lift, which is similar to confidence, is 
commonly used to demonstrate the correlation between 
the occurrence of X and Y when conducting the ARM. 
Mathematically,  

( | )( )( )
( ) ( ) ( )

P Y XP X Ylift X Y
P X P Y P Y

 = =
  

Particularly, a lift value greater than 1 represents a 
positive correlation (the higher this value is, the more likely 
that X coexists with Y, and there is a certain relationship 
between X and Y (Han and Kamber 2006)), while a lift value 
less than 1 represents a negative correlation. If the value  
is equal to 1, i.e., ( ) ( ) ( )P X Y P X P Y=  the occurrence of 
X is independent of the occurrence of Y, and there is no  
correlation between X and Y.  

A commonly used ARM algorithm is the frequent-pattern 
growth (FP-growth) algorithm (Han and Kamber 2006). The 
FP-growth algorithm adopts a “divide-and-conquer” strategy 
to further improve the efficiency of examining association 
rules in a database. A frequent-pattern tree is first constructed 
to represent the database. Based on this tree, the database  
is divided into a set of sub-databases that will be mined  
separately. 

Data classification, Cluster analysis, Association rule 
mining have been extensively applied in various fields such 
as industrial and medical (Delgado et al. 2001; Jiao and 
Zhang 2005; Georgilakis et al. 2007; Pan et al. 2007; Hsu 
2009). However, their applications in the field of energy are 
still sparse. It should be mentioned that, due to the fact that 
several classification methods (e.g., Artificial Neural Network 
method, Genetic Algorithm, Rough Set approach, and Fuzzy 
Set approach) were less commonly used for data classification 
in commercial data mining systems, in this study these 
methods were not assigned to data classification (but they  
are included in the data mining system). 

                                                        
1 In data mining, the notation P(X Y) indicates the probability that 
an instance contains both X and Y, but not either X or Y. 

4.2    Current applications of data mining in building 
engineering  

Previous work seldom studied how to use these data mining 
techniques to process building-related data and extract 
useful and hidden knowledge. To the best of our ability, no 
literature was found regarding the association rule mining 
technique. 

Tso and Yau (2007) used the data classification technique 
to compare the accuracy of regression analysis, the Artificial 
Neural Network method, and the decision tree method (i.e., 
one typical data classification method) in predicting the 
average weekly electricity consumption for both summer and  
winter in Hong Kong.  

Santamouris et al. (2007) applied cluster analysis 
technique to classify and rate the energy performance of 
school buildings. Based on the cluster analysis and Principal 
Component Analysis (PCA) techniques, Gaitani et al. (2010) 
proposed an approach to rating the energy performance of 
space heating and evaluating the potential energy savings 
in the school sector. Also, Lam et al. (2009) combined cluster 
analysis and PCA to identify climatic influences on chiller 
plant electricity consumption. Wu and Clements-Croome 
(2007) applied the cluster analysis technique to analyze 
noisy indoor environmental data measured from wireless 
sensor networks. They used cluster analysis first to discover 
outliers and then to estimate the distribution of indoor  
temperature.  

In summary, data mining is a relatively new concept/tool 
applicable to energy conservation in buildings. By definition 
(see Section 3.1), there is a distinct possibility that, in order 
to improve building energy performance, data mining can 
be employed to extract hidden useful knowledge from huge 
amounts of building-related data. To achieve this goal, in the 
following sections a data analysis process and a systematic 
data mining framework are proposed that enable building- 
related data to be analyzed more efficiently. 

5 Proposed data analysis process  

A step-by-step data analysis process of extracting useful 
knowledge from building-related data is proposed (see Fig. 4). 
 Problem definition and objective setting; 
 Data source selection: select buildings available to collect 

building-related data;  
 Data collection: collect building-related data through BASs, 

field surveys, etc., and then construct a database; 
 Data pre-processing/preparation: detect and remove 

outliers and noise, handle missing values, deal with 
inconsistencies and complexity through data transformation 
(e.g., transforming daily data into monthly data) and 
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integration (e.g., combining data from multiple sources), 
etc.; 

 Data warehouses (DWs) or data marts construction: con- 
struct DWs or data marts so as to model multidimensional 
data and provide on-line analytical processing. The gray 
block in Fig. 4 denotes that the step is unnecessary when 
the database is relatively small and there is no need to 
build a high-dimensional DW; 

 Data mining and model construction: perform data mining 
based on the proposed data mining framework; 

 Results analysis and evaluation: identify the most useful 
rules and patterns from the data mining results; 

 Knowledge discovery and presentation: discover useful 
knowledge based on both expertise in building engineering 
and obtained rules/patterns. 

6 Data mining framework 

Figure 5 shows the proposed data mining framework con- 
sisting of four components, which are introduced below. 

6.1 Component 1: Data analysis techniques/algorithms 

Component 1 indicates the data analysis techniques used  
in this framework, including both the three data mining 
techniques (Data classification, Cluster analysis, Association 
rule mining) and traditional statistical analysis (e.g., correlation 
analysis and confidence levels). Typical algorithms of each 
data mining technique are also provided in this framework. 
For example, data classification can be conducted by using 
the decision tree algorithm (classify and/or predict categorical 
parameters) or regression tree algorithm (classify and/or 

predict numerical parameters); cluster analysis can be 
conducted using the K-means algorithm (clustering low- 
dimensional data) or CLIQUE algorithm (clustering 
high-dimensional data); and association rule mining can be 
conducted using the Apriori algorithm (mining Boolean 
association rules in small datasets) or FP-growth algorithm 
(mining Boolean association rules in large datasets) (Cios 
2007; Lior and Oded 2008; Cao et al. 2009). Furthermore, 
different data mining techniques can be combined to  
mine building-related data, such as cluster analysis and data 
classification (e.g., clustering-then-classification), or cluster 
analysis and association rule mining (e.g., association rule 
clustering system and frequent pattern-based clustering 
analysis). It should be mentioned that data mining 
techniques/algorithms can be implemented using the open- 
source data mining program RapidMiner, which provides a 
simple and friendly graphical user interface (GUI) (RapidMiner  
2012). 

6.2 Component 2: Potential applications of data mining 
in building engineering 

Component 2 indicates the potential applications of data 
mining in the field of building energy conservation. Generally, 
data mining can be applied to help accomplish three  
categories of tasks: 
 Construct data analysis models to classify and/or predict 

building-related attributes, thereby benefiting the design 
and operation of energy-efficient buildings. Both numerical 
attributes (e.g., cooling/heating loads) and categorical 
attributes (e.g., building energy consumption classified as 
either ‘HIGH’ or ‘LOW’) can be used as target attributes. 

 
Fig. 4 Process for data analysis in building engineering 
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This task is mainly performed using data classification. 
 Compute similarities/dissimilarities between objects (e.g., 

buildings and occupant behavior) represented by various 
building-related attributes (e.g., floor area and building 
age) and user-related attributes (e.g., number of occupants). 
The goal is to provide insights into building energy 
consumption patterns and identify the effects of influencing 
factors on building energy consumption. This task is mainly 
performed using cluster analysis.  

 Discover useful associations and correlations among 
measured data (e.g., various HVAC system parameters 
such as supply air temperature, supply air flow rates, fan 

pressure drop, etc). The goals are to better understand 
building operation and provide opportunities for energy 
conservation. This task is mainly performed using 
association rule mining.  

6.3 Component 3: Input 

Component 3 indicates the data that can be input to the 
framework. Both building-related data and user-related 
data can be measured, collected, and input to the proposed 
framework for knowledge discovery. The collected data can 
be stored in the dataset illustrated in Fig. 1. 

 
Fig. 5 Overview of the proposed data mining framework 
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6.4 Component 4: Output 

Component 4 indicates the output of the framework. 
According to the three categories of tasks in Component 2, 
the framework mainly outputs the following useful informa- 
tion about building energy performance improvement: 
 building energy demand modeling; 
 the effects of influencing factors on building energy 

consumption; 
 low/no cost operational strategies for building operation. 

Other useful knowledge can also be output in terms of 
the objective setting, available data, and the usage of data 
mining techniques/algorithms. 

7 Demonstration of the applicability of the process 
and framework 

To demonstrate the applicability of the proposed process 
and framework, the three fundamental problems listed in 
Section 1 were addressed in sequential steps in the process. 
Two available data sources were selected and from them two 
sets of data were collected. Then a database was constructed. 
The two datasets are briefly introduced as follows: 

Dataset 1 To evaluate and improve residential buildings’ 
energy performance, a project entitled “Investigation on 
Energy Consumption of Residents All over Japan” was 
carried out by the Architecture Institute of Japan from 
December 2002 to November 2004 (Murakami et al. 2006). 
For this project, field surveys on energy-related data and 
other relevant information were carried out in 80 residential 
buildings located in six different districts in Japan: Hokkaido, 
Tohoku, Hokuriku, Kanto, Kansai, and Kyushu. Table 4 
shows the survey items and corresponding investigation 
methods.  

Dataset 2 The EV pavilion in Montreal, a complex 
building that mainly includes offices and wet labs, was 
selected as another data source in this study. This building 
consists of two parts: the ENCS part (17 floors) and the  
VA part (12 floors). Both parts have their own VAV air- 
conditioning systems. In order to conduct the case study, 
the historical data of the air-conditioning systems in both 
parts were collected from December 2006 to May 2009. 

However, since the online monitoring program was updated 
from November 2007 to January 2008, data reports were not 
generated during this period. In total, 61 parameters were  
monitored at a 15-minute interval (Yu et al. 2012).  

To solve the three fundamental problems, four data 
analysis methodologies were developed based on the 
framework and applied to the collected data. The four 
methodologies are introduced in (Yu et al. 2010; 2011a,b; 
2012) and summarized as follows. Interested readers can 
refer to (Yu et al. 2010; 2011a,b; 2012) for more detailed  
descriptions.  
(1) Classification analysis (decision tree) was applied to 

develop a methodology for establishing building energy- 
demand predictive models (i.e., decision tree-based 
models) (Yu et al. 2010). To demonstrate its applicability, 
the methodology was applied to Dataset 1 in order to 
estimate residential building energy performance indexes 
by modeling building energy use intensity (EUI) levels 
(either high or low). The results indicate that the 
methodology’s competitive advantage over other widely 
used modeling techniques, such as regression methods 
and Artificial Neural Network methods, lies in its ability 
to generate accurate predictive models with interpretable 
flowchart-like tree structures that enable users to quickly 
extract useful information. The accuracy of predicting 
the EUI levels is 92% (for comparison, prediction models 
by using regression methods and Artificial Neural 
Network methods were also developed based on the 
same data set. The accuracy of the obtained regression 
model and Artificial Neural Network model is 72% and 
88%, respectively. However, it should be mentioned 
that the decision-tree model can only predict the EUI 
levels while the regression model and Artificial Neural 
Network model can predict the EUI values). Moreover, 
a lot of useful information on building energy per- 
formance improvement can be extracted from the 
developed model. For example, it can automatically 
identify and rank significant influencing factors of 
building EUI, as shown in Table 5. Note that outdoor 
air temperature was found as the most important factor 
and, for clarity, influencing factors were ranked in high 
and low temperature regions in Japan separately.  

Table 4 Investigation items and methods 

Method Survey item Measuring time 

Electricity Measured every minute 

Gas Measured every 5 minutes Different end-use loads of all kinds of fuel 

Kerosene Measured every 5 minutes 
Field measurement 

Indoor air temperature (1.1 m above floor) Measured every 15 minutes 

Questionnaire survey Lifestyle, utilization of equipment, annual income, etc. Once only 

Inquiring survey Other issues, such as basic building information Once only 
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Table 5 Influencing factors and their rank 
Influencing factor 

Rank High temperature region Low temperature region 
1 Heat loss coefficient  Space heating modec* 
2 Equivalent leakage area  Number of occupants 
3 Hot water supply modea* House typed* 
4 Kitchen energy modeb* Heat loss coefficient  

a* Electric or non-electric; b* Electric or gas; c* Electric or non-electric; 
d* Detached or apartment 

 
Based on such information, designers can clearly realize 

which parameter deserves extra attention when designing 
energy-efficient buildings. Also, the model can provide the 
combination of significant factors as well as the threshold 
values that will lead to high building energy performance. 
For example, in high temperature regions, a lower building 
heat loss coefficient than 3.89 W/(m2·K), together with a high 
equivalent leakage area (> 4.41 cm2/m2), will normally cause 
a low EUI. The detailed discussion on such information 
can be found in (Yu et al. 2010). Another advantage is  
that it can be utilized by users without requiring a lot of 
computation knowledge. The generated model, and the 
derived information, could greatly benefit building owners 
and designers; one crucial benefit is the reduction of building  
energy consumption.  
(2) Cluster analysis (K-means) was used to develop a 

methodology for examining the effects of occupant 
behavior on building energy consumption (Yu et al. 
2011a). Such effects can be shown by “removing” the 
effects of the first four factors in Table 1. Note that the 
first four factors are unrelated to occupant behavior. The 
last two factors which represent occupants’ influences 
affect building energy consumption indirectly. Their 
influences are already contained within the effects of 
occupant behavior, and there is no need to take them 
into consideration when identifying the effects of 
occupant behavior. The methodology is realized by 
clustering similar buildings into various groups based 
on the first four influencing factors, so that for each 
building in the same group the four factors have similar 
effects on building energy consumption. Accordingly, the 
effects of occupant behavior can be identified accurately 
in these groups. The identification of building groups is 
the most important element of this methodology and it 
is achieved mainly via cluster analysis. To demonstrate its 
applicability, the methodology was applied to Dataset 1. 
The effects of occupant behavior, as well as behavior 
patterns, were identified through examining different 
end-use loads associated with occupant behavior. The 
following data analysis was conducted: 
(a) Analysis of the average annual EUI of different end-use 
loads for each cluster—this mainly indicates the degree 
to which various behavior influences the total building 

energy consumption. 
(b) Analysis of the variability in annual EUI of different 
end-use loads for each cluster—a boxplot of annual EUI 
of each end-use load was drawn. A large variability 
implies that there still remains great potential for energy 
saving by improving occupant behavior related to the 
end-load uses. 
(c) Analysis of monthly variations of average end-use 
loads for each cluster—this mainly indicates the effects 
of occupant behavior over both time and buildings. 
(d) A reference building for each cluster is defined, and 
then the energy-saving potential of buildings in each 
cluster can be evaluated by comparison with the reference 
building. 
(e) Analysis of monthly average indoor temperature of 
air-conditioned room of three typical buildings (i.e., the 
reference building, buildings with the maximum and 
minimum annual EUI) for each cluster—the effects of 
occupant behavior should be understood and interpreted 
in conjunction with the investigation of indoor climate. 
Occupant behavior, especially those associated with 
HVAC, can significantly affect indoor climate, which in 
turn will have an influence on occupant behavior, 
thereby causing dramatic differences in building energy 
consumption. 
The results show that the methodology facilitates the 

evaluation of building energy-saving potential by improving 
the behavior of building occupants, and provides multifaceted 
insights into building energy end-use patterns associated 
with the occupant behavior.  
(3) Association rule mining (FP-growth) was employed to 

develop a methodology for examining all associations 
and correlations among building operational data, thereby 
discovering useful knowledge about energy conservation 
(Yu et al. 2012). Building operational data in two different 
time periods (i.e., both a day and a year) are mined; 
associations and correlations between operational data 
in different time periods could be significantly different. 
Hence, it can help us find and take advantage of more 
complete associations and correlations. Moreover, data 
in two different years are mined, and the associations 
and correlations in the two years are compared. Such 
comparison can assist in identifying a discernible change 
in associations and correlations, and also in building 
operation, thereby uncovering useful information. To 
demonstrate its applicability, the methodology was 
applied to Dataset 2. The procedure was able to: 
(a) identify the energy waste in the air-conditioning 
system (e.g., it was found that, in the fresh air handling 
units, the heat added to the outdoor air was first 
transferred to humidifier, and then simply drained to 
municipal sewage. This energy waste was confirmed 
through the discussion with the building operator); 
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(b) detect the equipment faults (e.g., it was found that, 
either fan 1 or fan 2 (or both of them) in a fresh air 
handling unit has a fault); 
(c) propose low/no cost strategies for saving energy in 
system operation (e.g., it was found that, the existing 
operating strategy of extracting exhaust air from the 
building was to use two of three fans while the other 
one was turned off. Given that these three fans are 
identical and controlled by individual variable-speed 
drive, one possible energy-saving method is to use all 
these three fans instead of two of them). 
The results obtained could help us to better understand 

building operation and provide opportunities for energy 
conservation. 
(4) Cluster analysis (K-means), classification analysis (decision 

tree), and association rule mining (FP-growth) were 
combined to formulate a methodology for identifying 
and improving occupant behavior in buildings (Yu et al. 
2011b). In this study, end-use loads were divided into 
two levels (i.e., main and subcategory), and they were 
used to deduce corresponding two-level user activities 
(i.e., general and specific occupant behavior) indirectly. 
Cluster analysis and classification analysis were combined 
to analyze the main end-use loads, in order to identify 
energy-inefficient general occupant behavior. Then, 
association rules were mined to examine end-use loads 
at both levels to identify energy-inefficient specific 
occupant behavior. To demonstrate its applicability, the 
methodology was applied to Dataset 1, and one building 
with the most comprehensive household appliances 
was selected as the case building. The results show that, 
for the case building, the methodology was able to identify 
the behavior that needed to be modified, and to provide 
occupants with feasible recommendations so they could 
make required decisions. For example, it was found 
that, the usage of TV (in the master bedroom in the 
second floor) would quite possibly lead to the usage of 
lamp in the second floor. This may have occurred since 
the building occupants always turned the lights on when 
they were watching TV. An effective way of reducing 
energy consumption in this building is to watch TV 
with dim light. 
The results could help building occupants modify their 

behavior, thereby significantly reducing building energy 
consumption. Moreover, given that the proposed method is 
partly based on comparison with similar buildings, it could 
motivate building occupants to modify their behavior.  

8 Summary and concluding remarks 

Vast amounts of building-related data are measured and 
collected. The data can provide abundant useful knowledge 
about the interactions between building energy consumption 

and its influencing factors. Such interactions play a crucial 
role in developing and implementing control strategies to 
improve building energy performance. It is highly desirable 
for hidden useful knowledge to be extracted from the data 
in order to gain a clear and thorough understanding of such 
interactions. 

Commonly used data analysis methods for extracting 
useful knowledge from building-related data are summarized 
and evaluated. Our comprehensive review indicates that 
three general categories of data analysis techniques were 
used: typical indicator method, statistical analysis method, 
and building simulation method. Both the strengths and the 
weaknesses of these methods are addressed. Considering 
the increased size of building historical databases and   
the diversity of the influencing factors, these commonly 
used data analysis methods are insufficient to take full 
advantage of the data and extract useful information  
about the interactions and to help improve building energy  
performance. 

In this study, data mining technique (classification 
analysis, cluster analysis, and association rule mining) is 
proposed to extract useful facts from the data. Moreover,  
a data analysis process and a data mining framework are 
proposed, enabling building-related data to be analyzed more 
efficiently. The applications of the process and framework 
to two sets of collected data demonstrate their applicability 
and usefulness. Accordingly, four data analysis methodologies  
were developed and applied to the collected data: 

Classification analysis was applied to develop a 
methodology for establishing building energy-demand 
predictive models. The results demonstrate that the 
methodology can generate interpretable building energy- 
demand models that can help us understand the influence 
of the seven influencing factors on total building energy  
consumption.  

Cluster analysis was used to develop a methodology for 
examining the influences of occupant behavior on building 
energy consumption. The results show that the methodology 
can quantitatively identify the effects of occupant behavior  
without including the impact of other influencing factors.  

Association rule mining was employed to develop a 
methodology for examining all associations and correlations 
among building operational data, thereby discovering useful 
knowledge about energy conservation. The results show 
there are possibilities for saving energy by modifying the 
operation of mechanical ventilation systems and by repairing  
equipment.  

Cluster analysis, classification analysis, and association 
rule mining were combined to formulate a methodology for 
identifying and improving occupant behavior in buildings. 
The results show that the methodology is able to identify 
the behavior that needs to be modified, and to provide 
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occupants with feasible recommendations so they can make 
required decisions to modify their behavior. 

The proposed data analysis process and data mining 
framework provide an opportunity for standardizing the 
process of data mining in the field of building. By using 
them, researchers and designers can develop efficient data 
analysis methodologies and extract useful knowledge from 
monitored data. However, it should be mentioned that, 
while a lot of building-related data are sensory stream data, 
the current framework does not address the demand of 
real-time detection and response to (unexpected) events 
and incidents. To provide a real-time (or close to real-time) 
response, the current framework has to be extended to 
perform data mining operations on sensory stream data. 
The main focus of future research should be placed on 
applying the proposed process and framework to various 
building sectors, climates, and building automation systems 
in order to further evaluate their effectiveness and to   
help account for the interactions between building energy  
consumption and its influencing factors. 
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