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Abstract—Non-negative tensor factorization has been shown a practical solution to automatically discover phenotypes from the
electronic health records (EHR) with minimal human supervision. Such methods generally require an input tensor describing the
inter-modal interactions to be pre-established; however, the correspondence between different modalities (e.g., correspondence
between medications and diagnoses) can often be missing in practice. Although heuristic methods can be applied to estimate them,
they inevitably introduce errors, and leads to sub-optimal phenotype quality. This is particularly important for patients with complex
health conditions (e.g., in critical care) as multiple diagnoses and medications are simultaneously present in the records. To alleviate
this problem and discover phenotypes from EHR with unobserved inter-modal correspondence, we propose the collective hidden
interaction tensor factorization (cHITF) to infer the correspondence between multiple modalities jointly with the phenotype discovery.
We assume that the observed matrix for each modality is marginalization of the unobserved inter-modal correspondence, which are
reconstructed by maximizing the likelihood of the observed matrices. Extensive experiments conducted on the real-world MIMIC-III
dataset demonstrate that cHITF effectively infers clinically meaningful inter-modal correspondence, discovers phenotypes that are
more clinically relevant and diverse, and achieves better predictive performance compared with a number of state-of-the-art
computational phenotyping models.

Index Terms—Electronic health records, computational phenotyping, tensor factorization, multi-modal data mining
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1 INTRODUCTION

The adoption of electronic health records (EHR) has been
growing rapidly over the last decade. Consequently, a large
amount of clinical data about patients were accumulated,
including diagnosis codes, medication prescriptions, and
laboratory tests, triggering numerous studies on secondary
analysis of the EHR data to accelerate clinical research [1],
[2], [3], [4], [5]. However, due to the complex nature of
healthcare and the data collection process, the raw EHR data
normally contains heavy missingness, frequent inaccuracy
and potential bias [6], hindering the application of data-
driven approaches to analyzing them. Thus, it is often
required to map the raw EHR data to clinically meaningful
concepts, i.e., phenotypes [7], and the process of discovering
phenotypes from the raw EHR data is called phenotyping. A
phenotype is formally defined as a group of clinical features
that are highly relevant and better characterizes the health
status of patients. Conventionally, phenotyping is done in a
supervised manner, involving an iterative process of man-
ually labelling the case and control patients, and summa-
rizing and refining the discriminative features for a pre-
specified diseases [8], which is obviously time-consuming
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and labor-intensive [6]. To expedite the phenotyping pro-
cess, applying machine learning methods, especially the un-
supervised ones, to automatically extract phenotypes from
large-scale EHR data without intensive human supervision
has been gaining increasing attention recently [9], [10], [11].

Among the efforts, the non-negative tensor CP factoriza-
tion has been found particularly promising due to its high
degree of interpretability and capability of preserving high-
order interactions. For example, a third-order tensor X can
be constructed to represent the interactions among patients,
diagnoses and medications, where the tensor entry xpdm can
be interpreted as “patient p was prescribed medication m
in response to the diagnosis d”. Like its two-dimensional
counterpart, the non-negative matrix factorization [12], the
non-negative CP factorization takes a high-order interaction
tensor as input and learns a set of non-negative rank-one
tensors to approximate the input tensor. As a result of its
linearity and additive property, the non-negative CP factor-
ization is able to reveal the “parts-of-whole” relationship
underlying data [7], [13].

Despite of the great success in computational pheno-
typing by non-negative CP factorization, there are several
fundamental challenges that hinders its application to some
of the real-world scenarios, including:

Challenge 1: Hidden interactions. As the input to any
ordinary tensor factorization models, including the non-
negative CP factorization, the tensor need to be well defined
to represent the interaction between different modalities.
However, this information is often not available in practice.
Take diagnoses and medications as an example, the EHR
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Dx 1: Essential Hypertension
Dx 2: Pneumonitis due to solids and liquids
Dx 3: Type II Diabetes

Rx 1: Vancomycin HCL
Rx 2: Metoprolol
Rx 3: Captopril

(a) Equal-correspondence (b) Correspondence inferred by HITF 

Fig. 1. Real examples of the diagnosis-medication correspondence from
MIMIC-III dataset: Each row denotes a diagnosis (Dx1/Dx2/Dx3) and the
“1/0” value next to it indicates if the diagnosis is present or not. Each col-
umn denotes a medication (Rx1/Rx2/Rx3) and the number underneath
each medication denotes the amount of prescribed medications. (a)
Adopting equal-correspondence strategy. (b) Correspondence inferred
by the proposed HITF model, which is more reasonable.

data typically only contain the list of patients’ diagnoses and
the list of the medication prescriptions, yet the correspon-
dence between the medication and the diagnoses are totally
unrecorded. Existing methods turn to an alternative strat-
egy, namely to consider the “co-occurrence” relationship,
which implicitly assume that all medications and diagnoses
co-occurring in the same clinical visit would correspond to
each other equally.

This “equal-correspondence” assumption can be reason-
able for some specific types of datasets, e.g., primary care or
outpatient data, where patients typically have very distinct
diagnosis in each clinical visit and the medications pre-
scribed are associated with the diagnosis. However, the real-
world EHR data can often be highly complex, for instance
the inpatient care or intensive care data, where patients
are generally with very complex medical conditions: pa-
tients could have more than a dozen of diagnosis codes
assigned and tens of medications prescribed. The “equal-
correspondence” assumption no longer hold in this case. As
a real example, Fig. 1 shows a part of the diagnosis codes
and medications of a patient extracted from the MIMIC-III
dataset. This patient was diagnosed essential hypertension,
and prescribed with three medications: vancomycin HCL,
metoprolol and captopril. Fig. 1(a) is the correspondence
based on the “equal-correspondence” assumption, where
metoprolol is assumed to be corresponding to hypertension
and pneumonitis equally as they co-occurred in the same
hospital visit, and all three medications are assumed to cor-
respond to hypertension equally as well. However, in clini-
cal practice, metoprolol is often used to treat hypertension,
but not pneumonitis. Recall that the non-negative CP factor-
ization aims at approximating the input tensor, constructing
the input tensor under such assumption cause inevitable
error. On the other hand, our proposed model, as illustrated
in Fig. 1(b), can infer that the medication metoprolol only
corresponds to hypertension. This is achieved because HITF
does not rely on the “equal-correspondence” assumption to
construct the input data, but rather it explicitly infers the
hidden correspondence between the two modalities.

Challenge 2: Multi-modality. The unprecedented rich-
ness of EHR is unfolded through its multi-modal nature.
Apart from the diagnoses and medications, a typical EHR
dataset (e.g. MIMIC-III) can involve other modalities in-

cluding procedures, laboratory test results, and input fluids.
Each of them contains unique information about the patients
in different aspects, yet they usually can be very correlated
and often interact with each other in a complex way [14],
posing additional difficulties in modeling the multi-modal
EHR data in one single tensor and discovering phenotypes
from it. First of all, with more modalities involved, it is more
difficult to define unambiguously the interaction among
modalities, based on which the input tensor should be
constructed. As the number of modalities grows, the phys-
ical meaning of the tensor entries become subtle and the
interpretability could suffer. For instance, the interactions
among diagnoses, medications and lab tests can be vaguer
than that between only diagnoses and medications, in that
lab tests could be requested for confirming a diagnosis, or
otherwise monitoring the usage of a medication. Moreover,
the running time of tensor factorization models typically
grow exponentially with the number of modalities, making
it unscalable to multi-modal data. Furthermore, different
modalities often have different data types, for example
binary data for the diagnoses, indicating the presence or
absence of a diagnosis code in patients’ records, while the
amount of fluids input to the patients are recorded in real
values. One of the keys to improving the quality of the
phenotypes derived is appropriate combination of different
modalities to maximize the interpretability.

To tackle the above challenges, we propose a
novel framework collective Hidden Interaction Tensor
Factorization (cHITF) that allows different modalities to be
combined so that the unobserved inter-modality correspon-
dence together with the phenotypes can be simultaneously
inferred with only marginalized observations of the hid-
den interaction tensor. We conducted extensive experiments
based on the real-world MIMIC-III and eICU datasets. The
inferred inter-modal correspondences and phenotypes are
found to be highly interpretable and clinically relevant as
confirmed by clinicians, and the phenotypes are found to
outperform the state-of-the-art computational phenotyping
models on predictive task as well.

2 RELATED WORK

Among the earliest efforts of computational phenotyping,
[7] proposed to apply the non-negative tensor factorization
method to discover multiple phenotypes from the EHR
data. Various constraints have later been incorporated in
different ways to further improve the interpretability of
the results, namely to derive phenotypes that are more
clinically meaningful and relevant. For example, [15] incor-
porates a bias component to capture the overall baseline
characteristics among the whole population; in [10], existing
medical knowledge are integrated as additional constraints
by defining a guidance matrix; in [16] and [11], label infor-
mation including in-hospital mortality and medical cost are
leveraged to discover more discriminative phenotypes by
incorporating a supervised term, and [11] also exploits the
clustering structure among the diagnoses and medications
to further ensure the discovered phenotypes being more
distinct from each other. More recently, researchers also start
to model the temporal information in EHR to enhance the
interpretability [17], [18].
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However, these models construct the input tensor based
on the “equal-correspondence” assumption illustrated ear-
lier, which limits its applicability to phenotyping from clin-
ical data with more complex inter-modal interactions, e.g.,
data collected in ICU. The work most similar to ours is
[19], [20], which performs non-negative matrix factorization
over a collection of matrices with one shared dimension,
each corresponding to one modality. Yet this model essen-
tially ignores the interactions among different modalities
which has been proven important by numerous computa-
tional phenotyping models based on the tensor factorization
framework as mentioned above. In summary, it remains
a fundamentally challenging issue to discover phenotypes
from clinical data where the “equal-correspondence” as-
sumption between modalities are no longer reliable, while
preserving the inter-modal interactions.

Other matrix/tensor factorization models aiming at im-
proving robustness while modeling the skewed data, such
as expectile matrix factorization [21] and M-estimation [22],
also have potentials to be applied to discover phenotypes
from EHR data, which are generally long-tail distributed.
However, they do not consider interactions and correspon-
dence between different modalities that are explicitly mod-
eled by our proposed framework.

Besides, some recent research focus on applying deep
learning and graph mining techniques to analyze EHR
data, e.g. [23], [24]. Most of them are supervised predictive
models, requiring a large amount of expensive label efforts.
Although there also exist unsupervised ones, they focus on
learning representations for down-stream tasks. On the con-
trary, tensor factorization models, including our proposed
one, primarily focuses on discovering interpretable factors
underlying data, and do not rely on labels to learn.

3 BACKGROUND AND PRELIMINARIES

Before presenting our framework, we provide necessary
background and preliminaries about tensor and its non-
negative CP factorization. We also give an overview of
applying tensor factorization framework to computational
phenotyping problem. Unless otherwise specified, we use
the notations defined in Table 1.

3.1 Tensor and Its Non-negative CP Factorization
Tensor and Rank-One Tensor. Tensors are multidimen-
sional arrays [25]. The order of a tensor (a.k.a. modes or
ways) refers to the number of dimensions of the tensor. For
example, a two-dimensional matrix is a second-order tensor.
A Dth-order tensor X is rank-one if it can be written as the
outer product of D vectors, i.e., X = u(1) ◦ u(2) ◦ · · · ◦ u(D).

CP Factorization. The CP factorization [26], [27] approxi-
mates the input tensor with the sum of component rank-one
tensors. For example the CP decomposition of a N th-order
tensor X is defined as follows:

X ≈ JU(1),U(2), . . . ,U(D)K =
R∑

r=1

u(1)
r ◦u(2)

r ◦· · ·◦u(D)
r , (1)

where J·K is a shorthand for the CP factorization, and R
is the number of rank-one tensors. U(d) is called the CP
factor matrix corresponding to the dth mode of the tensor,

TABLE 1
Symbols and notations used in this paper

Symbol Definition

V Observations: a collection of matrices
V(n) The nth matrix with non-binary values in V
V′(n) The nth matrix with binary values in V
V̂(n) The reconstruction of the V(n)

X The hidden interaction tensor
U The collection of the factor matrices

U(s) The factor matrix corresponding to patients
U(n) The factor matrix corresponding to the nth modality
e Vector of all ones
σ2 Variance of Gaussian distribution
Is Size of the shared dimension (patients)
In Size of the nth modality
N Number of modalities
R Number of phenotypes
◦ Outer product
1(·) The indicator function
Φ(·) The CDF of standard Gaussian distribution
erf(·) the error function

diag(x) A diagonal matrix with vector x on its diagonal
J·, . . . , ·K Shorthand for CP factorization

and is obtained by combining the vectors from the rank-one
tensors, i.e., U(d) = [u

(d)
1 ,u

(d)
2 , . . . ,u

(d)
R ].

Tensor Slice. We define a slice of a tensor as a matrix
obtained by fixing all but two indices of the tensor. For
instance, for a third-order tensor X , the slice X:j: is obtained
by varying two indices of the tensor (the first and the
third mode in this example) while fixing the remaining
one. With the notion of the CP factor matrices defined as
aforementioned, the slice X:j: can be written as [28]:

X:j: ≈ U(1) diag(u
(2)
j: )U(3)>. (2)

Tensor Marginalization. We define the maginalization of a
tensor as a matrix obtained by summing all slices of the
tensor along two fixed modes. For a third-order tensor X ,
the accumulation along the second dimension is:

V =
J∑

j=1

X:j: ≈ U(1) diag(e>U(2))U(3)>, (3)

where e is the vector of all ones.

3.2 NTF for Computational Phenotyping

Non-negative constraints can be imposed on the factor ma-
trices when applying the CP factorization, leading to an ad-
ditive model which is often referred to as the non-negative
tensor factorization (NTF) [27], [29]. NTF is known to yield
interpretable factors: the input tensor can be regarded as
the sum of R latent concepts, each one corresponds to a
rank-one tensor. In each rank-one tensor, the non-negative
vector u(n)

r represents the soft-clustering membership of the
corresponding items in the nth mode.

The process of applying NTF to computational pheno-
typing roughly contains three steps: constructing the input
tensor, solving for the factor matrices, and extracting in-
terpretations of the phenotype definitions [7]. As already
briefly described in Section 1, existing models adopt the
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Fig. 2. Non-negative Tensor Factorization for Computational Pheno-
typing: Each resulting rank-one tensor is interpreted as a phenotype,
where its entries with non-zero values are extracted as the definition
of the phenotype. For example, phenotype 1 consists of two diagnoses:
Cardiac dysrhythmias and heart failure, and two medications: Metoprolol
and Furosemide. “Dx” denotes diagnosis and “Rx” denotes medications.

“equal-correspondence” strategy to construct the input ten-
sor. Specifically, they set the tensor values to either the num-
ber of co-occurrence of items in different modes, or zero or
one indicating the presence or absence of the co-occurrence.
After the input tensor is constructed, the NTF algorithms
are applied to solve for the factor matrices. One of the most
popular NTF algorithms is CP-APR [27], which assumes
Poisson distributions for the entries of the input tensor to
model the counting data, and formulate the problem as
maximizing the likelihood of the input tensor. Formally, CP-
APR solves the following optimization problem [27]:

arg min
U(n)

f(M) ≡
∑
i

mi − xi logmi

s.t. M = Jλ;U(1), . . . ,U(N)K,

U(n) ≥ 0 for n = 1, . . . , N,

‖u(n)
r ‖1 = 1 ∀r, n,

(4)

where λ absorbs the `1 norms of the columns of the matrix
factors.

The final step is to interpret the latent factors. Fig. 2
illustrates how the phenotypes are extracted from the non-
negative factor matrices. Essentially, the items with positive
values in each mode in the rth rank-one tensor are extracted
as the definition of the rth phenotype.

4 PROPOSED FRAMEWORK

We first present the building block of our framework,
the Hidden Interaction Tensor Factorization (HITF) model,
which aims at discovering the hidden correspondence be-
tween two modalities when the latent interaction tensor is
not observed. Then we introduce our cHITF framework,
which ensembles more modalities in a flexible and easy-
to-interpret way.

4.1 HITF: Hidden Interaction Tensor Factorization
HITF aims at discovering the unobserved correspondence
between items from different modalities given the marginal-
ized observations [30]. Let V = {V(n) ∈ RIs×In}Nn=1

denotes a set of N observation matrices, each of which
corresponds to a specific modality. The observation matrices
share the first dimension with size Is. We assume that
the observation matrices are generated by marginalizing

an unobserved high-order tensor that describes the inter-
modality interactions. As an illustrative example, Fig. 3
depicts the HITF model with two modalities: the medication
prescriptions and the diagnosis codes in EHR. We observe
two matrices: the patient-by-medication matrix V(1), and the
patient-by-diagnosis matrix V(2), recording the medications
being prescribed and the diagnosis codes being assigned
to each patient, respectively. It is reasonable to assume
that there exists some correspondence between this two
modalities — the medications are prescribed to the patients
in response to some of the diagnoses. Therefore, we assume
that there is a high-order hidden interaction tensor X with
N+1 modes, describing the inter-modality correspondence,
and the observation matrices V are obtained by marginaliz-
ing the hidden interaction tensor as shown in Eq. (3).

Similar to the ordinary non-negative CP factorization,
we factorize the hidden interaction tensor into a set of
latent factor matrices U = {U(s)} ∪ {U(n)}Nn=1, where
U(s) ∈ RIs×R is associated with the shared dimension of the
observation matrices (e.g. the patient mode), U(n) ∈ RIn×R

is associated with the nth mode, and R is the number of
latent factors, i.e., phenotypes. We denote the reconstruction
from the latent factors as X̂ . Following the CP factorization,
the entries of the hidden interaction tensorX are assumed to
be drawn from some distribution (e.g. Poisson or Gaussian)
with the mean being the reconstructed tensor X̂ , i.e.,

xi ∼ p(x̂i,θ), (5)

where i denotes the index of the tensor entry and θ is the set
of parameters of the underlying distribution of the hidden
interaction tensor.

In ordinary CP factorization, the factors can be estimated
via minimizing the reconstruction error or maximizing the
likelihood of the input tensor. However, in our setting,
we only observe the marginalization of the high-order
interaction tensor. Therefore, we solve for the factors by
maximizing the likelihood of the marginalizations, instead
of that of the tensor itself. To this end, we first apply the
same marginalization to the reconstruction and obtain the
marginalization along the nth dimension V̂(n) as follows:

V̂(n) = U(s)
∏
k 6=n

diag
(
eᵀU(k)

)
U(n)ᵀ. (6)

Then we derive the likelihood of the observation matrices.
Finally, we can apply the projected gradient descent to
solve for the factors. Here, we present the derivation of the
likelihood of the marginalized observations under two com-
monly used distributions: Poisson distribution for counting
data and Gaussian distributions for real-valued data.

4.1.1 Poisson Distribution

Poisson distributions are naturally used to model counting
data, and are parameterized solely by their mean, and the
sum of independent Poisson-distributed random variables
follows another Poisson distribution where the mean is the
sum of the parameters of the composing Poisson distribu-
tions. Therefore, we have:

V(n) ∼ Poisson(V̂(n)) (7)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 5

~𝐕 Rx

marginalization

quantization

𝐕 Dx

𝑝( )

+ … ++

Hidden Interaction Tensor Reconstruction

p
at

ie
n

ts

diagnoses

𝐕′ Dx

Fig. 3. The building block: Hidden Interaction Tensor Factorization
(HITF), illustrated in a third-order example with medications and diag-
noses. Only the marginalization along the medication mode and the
diagnoses mode are known, leaving the interactions totally unobserved.
The hidden interaction tensor are assumed to be drawn from some distri-
bution p parameterized by the CP factorization of the hidden interaction
tensor.

The log likelihood of the observation V(n) is then given by:

LPoisson, integer

(
V(n)

)
=
∑
i,j

log
(
p
(
v
(n)
ij

∣∣∣{U(n)}Nn=1

))
=
∑
i,j

{−v̂ij + vij log(v̂ij)}+ c, (8)

where c is a constant.
In practice, for some modalities, the observation is bi-

nary instead of concrete countings, for example the entries
of the patient-by-diagnosis matrix take value of one if the
corresponding diagnosis code is present in the patient’s
records, zero otherwise. Directly fitting the binary obser-
vation using the above Poisson distribution is obviously
undesirable. Inspired by the related work in binary matrix
factorization [31], we assume that the binary observations
are generated via a deterministic quantization process, i.e.,

v′
(n)
ij = 1

(
v
(n)
ij > 0

)
, (9)

where 1(·) is the indicator function. Thus, it is obvious that
the entry of the binary observation matrix v′

(n)
ij follows a

Bernoulli distribution with its mean being the probability of
v
(n)
ij larger than zero. Formally, we have:

Pr
(
v′

(n)
ij = 1

)
= Pr

(
v
(n)
ij > 0

)
= 1− Pr

(
v
(n)
ij = 0

)
= 1− exp

(
−v̂(n)

ij

) (v̂(n)
ij

)0
0!

.

(10)

We can reorganize the above equation into matrix form
and obtain:

V′
(n) ∼ Ber

(
1− exp

(
−V̂(n)

))
. (11)

The log likelihood of binary observations can then be
derived as below:

LPoisson, binary

(
V′

(n)
)

=
∑
i,j

(
v′

(n)
ij log

(
exp

(
v̂′

(n)

ij

)
− 1

)
− v̂′

(n)

ij

)
. (12)

4.1.2 Gaussian Distribution
Gaussian distributions are often preferred when the obser-
vations are real-valued data. Similar to [32], we consider the
following Gaussian distribution for the hidden interaction
tensor:

xi ∼ N (x̂i, σ
2), (13)

where σ2 is the variance of the Gaussian distributions, and
is a hyper-parameter shared for all entries of the hidden
interaction tensor. Summing up multiple Gaussian distribu-
tions yields another Gaussian distribution with its mean and
variance being the sum of that of its composing Gaussian
distributions, which gives:

V(n) ∼ N

V̂(n),

∑
k 6=n

Ik

σ2

 . (14)

The log likelihood of the marginalized observation with
the hidden interaction tensor following Gaussian distribu-
tion then can be computed by:

LGaussian, real-value

(
V(n)

)
=− 1

2

∑
i,j

{
log(2πtnσ

2) +
1

tnσ2
(vij − v̂ij)2

}
, (15)

where tn =
∑

k 6=n Ik.
For binary marginalized observations, we apply the

same quantization process as in Eq. (9) and obtain the
probability of v′ij taking value of one as below:

pij = 1− Pr
(
v̂
(n)
ij ≤ 0

)
=

1

2
− 1

2
erf

(
−

v̂
(n)
ij√
2tnσ

)
, (16)

where Φ(·) is the cumulative distribution function (CDF) of
a standard Gaussian distribution, and erf(·) denotes its error
function given by:

erf(x) =
2√
π

∫ x

0
e−t

2

dt, (17)

which can be numerically approximated by its Taylor ex-
pansion with sufficient degree.

Then, it is straightforward to see that the log likelihood
of the binarized value of the observation which follows
Gaussian distribution can be written as:

LGaussian, binary

(
V′

(n)
)

=
∑
i,j

v′ij log pij + (1− v′ij) log(1− pij), (18)

where pij is defined in Eq. (16).

4.2 Towards Multiple Modalities: collective Hidden In-
teraction Tensor Factorization Framework

Although HITF is capable of modeling more than two
modalities, directly applying it to the multi-modal EHR data
for computational phenotyping can often be hindered by
the difficulties in interpreting the correspondence among
all the modalities as aforementioned. Thus, a more suitable
way is to discover the correspondence of interest between
each two modalities for better interpretation. For example,
given the diagnoses, medications and lab tests, we can infer
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Fig. 4. Overview of the cHITF framework, illustrated with an concrete example with three hidden interaction tensors and four modalities. Generally
the number of interaction tensors and the modalities involved in each tensor can be determined by the nature of the data and the problem flexibly.
Each hidden interaction tensor may follow different distributions, and marginalize to a subset of the observed matrices. The factor matrices (i.e., the
phenotypes and the patient representations) are used to reconstruct the hidden interaction tensor, with the factor matrix corresponding to the same
modality being forced to be the same. Finally, the learned patient representations can be used as features for subsequent tasks.

the correspondence between diagnoses and medications,
and that between diagnoses and lab tests, respectively. To
achieve this, we introduce the collective Hidden Interaction
Tensor Factorization (cHITF) framework to simultaneously
learn the phenotypes and infer the correspondence between
modalities. We illustrate the framework in Fig. 4 with the
following modalities involved:

• Diagnosis codes are represented in a binary matrix de-
noted by V(Dx) ∈ {0, 1}Is,IDx containing the diagnoses
that are assigned to patients.
• Medication prescriptions are organized in a counting

matrix V(Rx) ∈ ZIs,IRx
≥0 containing the number of times

each medications being prescribed to patients.
• Abnormal lab tests are organized similarly with the

medications, i.e., V(Lab) ∈ ZIs,ILab
≥0 , containing the number

of abnormal lab tests observed for each patient.
• Input fluids are represented in a non-negative real-

valued matrix, V(Input) ∈ RIs,IInput

≥0 . This matrix describes
the total amount of fluids administrated to patients.

Among them, the modality of diagnosis plays a central role
of the clinical data, in that the medications are prescribed
and fluids are administrated mostly due to the diagnoses;
the abnormal lab test results are metrics that reflect abnor-
mal biochemical state caused by the pathology or diagnosis.
Obviously, it is easier to interpret the correspondence be-
tween diagnoses and each one of the other three modalities.
Therefore, we assume that there exist three hidden inter-
action tensors capturing the correspondence between the
diagnoses and the medications, between the diagnoses and
the lab tests, and between the diagnoses and the input fluids
respectively. We apply HITF to jointly solve each of them.
The patient mode is the shared dimension (corresponding
to the U(s) factor matrix) in all the sub-problems, and the
diagnosis mode is also shared due to our diagnosis centered
design; hence, we force their corresponding factor matrices
to be the same in the framework.

We now formalize the cHITF framework with an arbi-
trary number of modalities and latent interaction tensors.
Given the set of marginalized observation matrices V , we as-

sume that there exists a set of M hidden interaction tensors
{X (m)}Mm=1, and each of them is marginalized to a subset
of the observation matrices Vm = {V(m,k)}Km

k=1 ⊂ V , where
Km is the number of composing modalities of the mth hid-
den interaction tensor (e.g. Km = 2,m = 1, 2, 3 for the ex-
ample in Fig. 4). We indicate the distribution of the mth hid-
den interaction tensor by Dm ∈ {Poisson,Gaussian}, and
the data type of the observation matrix V(m,k) by Tm,k ∈
{integer, binary, real-value}. The parameters to be learned
are the latent factor matrices, i.e., U = {U(s)} ∪ {U(n)}Nn=1.
We reorganize the latent factors according to the hidden
interaction tensors. Specifically, we associate a subset of the
latent factors Um = {U(s)}∪{U(m,k)}Km

k=1 ⊂ U with the mth

hidden interaction tensor. For example, a patient-diagnosis-
medication hidden interaction tensor is associated with the
latent factors for patient, diagnosis and medication. Some
modalities are involved in more than one hidden interaction
tensors (e.g. diagnosis). We force the latent factor matrices of
each hidden interaction tensor that actually correspond to
the same modality being the same. For instance, the latent
factor matrix for diagnosis in the patient-diagnosis-medication
and patient-diagnosis-lab-test hidden tensors are forced to
be the same. Meanwhile, we allow the latent factors of
different modalities for different hidden interaction tensors
to be independent of each other. This yields the following
optimization problem:

min
U

M∑
m=1

Km∑
k=1

−LDm,Tm,k

(
V(m,k) | V̂(m,k)

)
+ Ω(U)

s.t. Um = {U(s)} ∪
{
U(m,k)

}Km

k=1
⊂ U m = 1, . . . ,M,

V̂(m,k) = U(s)
∏
k′ 6=k

diag
(
eᵀU(m,k′)

)
U(m,k)ᵀ ∀(m, k),

U(m,k) = U(m′,k′)

∀(m, k,m′, k′) ∈
{

(m, k,m′, k′) | V(m,k) = V(m′,k′)
}
,

U(s) ≥ 0, U(m,k) ≥ 0 ∀(m, k),
(19)

where Ω(U) is the regularization imposed on the latent
factors.
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4.3 Interpretability-Enhancing Regularizations
Additional regularizations can be incorporated to further
improve the interpretability of the learned phenotypes. We
incorporate two of them: the elastic net regularization for
sparsity and the angular regularization for diversity.

4.3.1 Promoting Sparsity: Elastic Net Regularization
To encourage sparse latent factors, we incorporate the elastic
net regularization [33], which takes the convex combination
of the `1 norm and `2 norm of the parameter vector. For-
mally, we define:

Ω1 = γ
N∑

n=1

R∑
r=1

(
α‖u(n)

r ‖22 + (1− α)‖u(n)
r ‖1

)
, (20)

where γ and α are hyper-parameters controlling the
strength of the overall regularization and the `1 term.

4.3.2 Promoting Diversity: Pairwise Angular Regularization
It is also of critical importance to derive diverse phenotypes,
instead of having a set of phenotypes that are very similar
to each other. Angular constraint [34] was found promising
for encouraging diversity in latent variable models, and a
variant was also introduced in discovering diversified phe-
notypes from EHR data [35] by penalizing the factors which
has pairwise cosine similarity above a certain threshold.
We follow these works to incorporate the pairwise angular
regularization defined as below:

Ω2 = β

N∑
n=1

R∑
r=2

r−1∑
r′=1

(
max

{
0,

(u
(n)
r )ᵀu

(n)

r′

‖u(n)
r ‖2‖u(n)

r′ ‖2
− θn

})2

, (21)

where β is a hyper-parameter controlling the regularization
strength. θn is a hyper-parameter defining the angular pe-
nalization threshold. Factors having pairwise cosine similar-
ity larger than this threshold will be penalized.

4.4 Learning Algorithms
We estimate the parameters by solving the optimiza-
tion problem (19) via block coordinate descent (BCD) ap-
proach [36]. Specifically, we alternate between the latent
factors in U and update each of them with all others fixed.
We use projected gradient descent to update the latent
factors. Such block coordinate gradient projection method
has been shown to enjoy a global sublinear rate of con-
vergence [37]. We summarize the optimization procedure
in Appendix A, available in the supplemental materials.
Our implementation is publicly available at https://github.
com/jakeykj/cHITF.

5 EXPERIMENTS

5.1 Datasets
We evaluate our model using two open-source, large-
scale, de-identified and ICU patients related EHR datasets,
MIMIC-III [38] and eICU [39]. MIMIC-III contains data
related to over forty thousand patients who stayed in the
intensive care units at Beth Israel Deaconess Medical Center
between 2001 and 2012, and eICU is a multi-center ICU
database covering ICU admissions across the United States.
The two datasets are different from outpatient datasets since

patients in ICU are mostly with severe and life-threatening
illnesses or injuries, and are likely to have multiple com-
plications. For example, each patient has 11 diagnoses per
clinical visit on average in MIMIC-III. Moreover, they con-
tain considerably many medications which are used not for
treating specific diseases, such as pain relievers, making the
diagnosis-medication correspondence more obscure.

To avoid over sparsity, we group the diagnosis codes
according to the first three digits of their corresponding
ICD-9 codes and only use the items in each modality that
appeared in the records of at least 5% of the patients. We also
exclude the base type medications such as D5W. For MIMIC-
III, we obtain a dataset containing 22,080 patients with 160
distinct diagnosis codes, 177 distinct medications, and 150
distinct lab tests (hereinafter referred to as “full dataset”).
For eICU, we use the modality of treatment instead of lab
test, and extract a subset containing 10,000 admissions and
use the top 100 most frequent items for each modality.

5.2 Baselines and Hyperparameter Tuning

We compare our model against some of the following base-
lines for different tasks:

• CP-APR [27] is a widely used Poisson NTF model.
• Marble [15] is a computational phenotyping model based

on CP-APR with a bias tensor to account for the baseline
characteristics of the overall population.
• Rubik [10] is a non-negative tensor factorization model

based on a quadratic loss between the input tensor and
the reconstruction; a pairwise constraint is introduced to
encourage diversity of phenotypes.
• Granite [35] is a variant of Marble with a regularization

as in Eq. (21) to encourage diversity of phenotypes.
• SiCNMF [19], [20] is a collective matrix factorization

model developed for computational phenotyping. This
model is the only one that does not assume that co-
occurring items correspond to each other equally.

Similar to a recent work [40], we choose the distribution
for each hidden interaction tensor based on their data types.
Specifically, we use Poisson distribution for medications, lab
tests (in MIMIC-III) and treatments (in eICU) as they are
recorded as counts. We use Gaussian distribution for input
fluid volumes, because they are recorded as real values. An
empirical validation and more discussion can be found in
the supplementary materials.

We tune the hyperparameters using grid search. Only
50% of the data is used due to the efficiency reason. To
balance the representational power and interpretability, we
first pick the hyperparameter combinations that yield top-
three highest PR-AUC scores for the in-hospital prediction
task. The hyperparameters are then determined by man-
ually inspecting the quality of inferred phenotypes and
correspondence. The only exception is the variance in the
Gaussian distribution (σ2), which is tuned purely based on
prediction performance. Finally, we set γ to 1e-5, α to 0.7,
β to 1, θn to 0.5 for all n, and σ2 to 1e-9. The sensitivity
analysis can be found in Appendix B. The hyperparameters
of all the baselines are also carefully tuned by grid search.
We set the number of phenotypes to 50 for all models, unless
otherwise specified.

https://github.com/jakeykj/cHITF
https://github.com/jakeykj/cHITF


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 8

Diabetes

Insulin 0.63
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Metoprolol ?
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Model A:  
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meaningfulness score = 0.27×2 + 0.14×0
0.27 + 0.14 = 1.32
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Step 3

Results by different models

Fig. 5. The process of quantitatively evaluating the inter-modal corre-
spondence, illustrated with an example of medications for diabetes. Step
1: We gather all the correspondence items from all models and randomly
shuffle them. Step 2: We present the items to clinicians for blind scoring.
There are three options: 0 for “not clinically relevant”, 1 for “possibly
clinically relevant”, and 2 for “clinically relevant”. Step 3: We compute the
quality score of each model by taking weighted sum of the score given
by the clinician weighted by the weighting produced by each model.

5.3 HITF Discovers Correspondence with Significantly
Improved Clinical Meaningfulness

We first evaluate the inter-modal correspondence inferred
by HITF, the building block of the proposed framework.
As previously stated, the correspondence among more than
two modalities are difficult to be interpreted, so we sep-
arately construct a patient-diagnosis-medication tensor and
a patient-diagnosis-labtest tensor for baselines. We exclude
SiCNMF as it does not model the high-order interactions.

5.3.1 Correspondence Extraction
The inter-modal correspondence matrix of an individual
patient with index i can be obtained by fixing the patient
index of the reconstructed hidden interaction tensor at i. As it is
infeasible to examine the quality of inferred correspondence
for each individual patient, we focus on the average cor-
respondence over the population with the same diagnosis.
For instance, regarding the diagnosis-medication correspon-
dence, we extract all the patients with the index of a diagno-
sis of interest j as the base population, and accumulate the
inferred interaction tensor along the patient dimension over
the base population, resulting in a diagnosis-by-medication
average correspondence matrix C. We extract the jth row
and normalize it using its `1 norm. The normalized value
then can be interpreted as the probability of each medication
being corresponding to the selected diagnosis. We define the
entry cij as the correspondence score of the jth medication to
the ith diagnosis. We follow the same procedure to extract
the correspondence between diagnoses and lab tests.

5.3.2 Evaluation Methods
We collaborate with a clinical expert to conduct the quan-
titative evaluation of the inferred correspondence, and the
evaluation process is illustrated in Fig. 5. As it is not feasible
to evaluate the quality of the inferred correspondence for all
diagnoses, we select 10 diagnoses with different frequencies
in the dataset. For each diagnosis, we collect the top ten
medications or lab tests inferred by each model and take the
union of them. After randomly shuffling, we present them
to the clinician and ask the clinician to annotate the inferred

correspondence as 0 (not meaningful), 1 (possibly mean-
ingful), or 2 (meaningful). The correspondence between a
medication and a diagnosis can be either the medication
being used for treating the diagnosis, or the diagnosis being
caused by applying the medication. The evaluation process
is “blind” in that the clinician is unaware of the model
inferring the medications or lab tests.

We define a meaningfulness score to quantitatively mea-
sure the performance of each model. For each model and
diagnosis, we first re-normalize the correspondence score
of the top ten items obtained in Section 5.3.1. Then we
compute the weighted sum of the annotation scores given
by the clinician with the weights being the normalized
correspondence score. Formally, we define:

Meaningfulness Score(j) =

∑
j∈Ji

cijzij∑
j∈Ji

cij
, (22)

where i is the index of the target diagnosis, Ji is the index
set of the top ten items for the ith diagnosis, and zij denotes
the clinician annotation score of the jth item to the ith diag-
nosis. The meaningfulness score takes range between 0 and
2 (inclusive), and higher score indicates more meaningful
items inferred in the top ten corresponding items.

5.3.3 Results and Discussions

We report the meaningfulness scores of the medications
and the lab tests to ten diagnoses obtained by each model
in Fig. 6. The percentage inside the parentheses after the
diagnosis index indicates the frequency of that diagnosis in
the dataset. We run each model five times and report the
average value in the bar graph and the standard deviation
by the error bar. As shown in Fig. 6a, HITF outperforms all
baselines consistently. More interestingly, HITF is especially
advantageous for less frequent diseases. For example, all
baselines fail to correctly infer any medications correspond-
ing to Dx10 (Symptoms involving nervous and musculoskeletal
systems), yet HITF can discover its corresponding medica-
tions that are annotated to be clinically meaningful. Fig. 6b
shows that HITF also outperforms the baselines for inferring
the correspondence between the diagnoses and the lab tests,
although by a smaller margin. It is also worth noting that the
superiority of HITF for less frequent diagnoses is consistent
with what we observe in Fig. 6a, e.g., HITF outperforms all
baselines substantially for Dx7-9.

We list some inferred correspondence obtained by HITF
and Rubik in Table 2 (medications) and Table 3 (lab tests) for
further comparison. The number following each item is the
corresponding score inferred. Annotated by the clinician,
items in red bold text are clinically meaningful, that in
blue italic text are possibly meaningful, and the rest are
not meaningful. As shown, the advantage of HITF over
Rubik is twofold. First, HITF infers meaningful medica-
tions or lab tests that cannot be discovered by Rubik. For
example, HITF discovered that the medication enoxaparin
sodium is corresponding to the diagnosis arterial embolism
and thrombosis, and the lab test transferrin [Blood] is corre-
sponding to iron deficiency anemias. Second, HITF assigns
much larger weights to the meaningful items, yet Rubik
assigns almost all items even weights. For instance, HITF
and Rubik both inferred the medication insulin and the lab
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(a) Meaningfulness score of medications inferred by different models

(b) Meaningfulness score of lab tests inferred by different models

Fig. 6. The meaningfulness score of medications and lab tests inferred by HITF and baselines. The inter-modal correspondence inferred by HITF
are significantly better than baselines. “Dx” is the abbreviation of diagnosis, and the percentage inside the parentheses denotes the frequency
of the corresponding diagnosis. The ten diagnoses listed in the figure are as follows. Dx1: Cardiac dysrhythmias, Dx2: Heart failure, Dx3: Other
forms of chronic ischemic heart disease, Dx4: Diabetes mellitus, Dx5: Disorders of fluid electrolyte and acid-base balance, Dx6: Bacterial infection
in conditions classified elsewhere and of unspecified site, Dx7: Iron deficiency anemias, Dx8: Chronic bronchitis, Dx9: Arterial embolism and
thrombosis, Dx10: Symptoms involving nervous and musculoskeletal systems.

TABLE 2
Examples of Diagnosis-Medication Correspondence Inferred by HITF and Rubik

Heart Failure
HITF Furosemide (0.56); Potassium Chloride (0.23); Magnesium Sulfate (0.03); Prednisone (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Furosemide (0.02).

Diabetes Mellitus
HITF Insulin (0.88); Insulin Human Regular (0.05); Dextrose 50% (0.01); Metformin (0.01).
Rubik Acetaminophen (0.02); Potassium Chloride (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Sodium Chloride 0.9% Flush (0.02).

Iron Deficiency Anemias
HITF Pantoprazole Sodium (0.33); Sodium Chloride 0.9% Flush (0.27); Pantoprazole (0.21); Acetaminophen (0.09); Heparin (0.03)
Rubik Acetaminophen (0.02); Potassium Chloride (0.02); Insulin (0.02); Sodium Chloride 0.9% Flush (0.02); Pantoprazole (0.02)

Arterial Embolism and Thrombosis
HITF Sodium Bicarb (0.36); Enoxaparin Sodium (0.33); Isosorbide Mononitrate (0.22); Tacrolimus (0.03); Mycophenolate Mofetil (0.01)
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Furosemide (0.02)

TABLE 3
Examples of Diagnosis-Lab-Test Correspondence Inferred by HITF and Rubik

Heart Failure
HITF PT [B] (0.16); Hematocrit [B] (0.14); Hemoglobin [B] (0.13); Red Blood Cells [B] (0.13); Urea Nitrogen [B] (0.11).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); Urea Nitrogen [B] (0.03);

Diabetes Mellitus
HITF Glucose [B] (0.21); Urea Nitrogen [B] (0.16); Hemoglobin [B] (0.09); Creatinine [B] (0.08); Red Blood Cells [B] (0.08).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); White Blood Cells [B] (0.03).

Iron Deficiency Anemias
HITF Transferrin [B] (0.26); Total Iron Binding Capacity [B] (0.25); Iron [B] (0.19); Ferritin [B] (0.17); Vitamin B12 [B] (0.04)
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); White Blood Cells [B] (0.03);

Arterial Embolism and Thrombosis
HITF PT [B] (0.77); Sodium, Whole Blood [B] (0.06); Lactate [B] (0.05); Chloride, Whole Blood [B] (0.03); Vancomycin [B] (0.03)
Rubik Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Glucose [B] (0.03); PT [B] (0.03);
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Fig. 7. Quantitative evaluations of the clinical relevance of the pheno-
types inferred. cHITF outperforms the baselines significantly by having
18 phenotypes annotated as relevant by the clinical expert.

test glucose [Blood] to be corresponding to diabetes mellitus;
however, HITF assigned corresponding scores of 0.88 and
0.21 to them, whereas Rubik assigned only 0.02 and 0.03
to them, respectively. The results obtained by other models
also suggest similar conclusions, and more examples are
included in the supplemental materials.

5.4 cHITF Infers Clinically Relevant Phenotypes
Inferring phenotypes that are clinically interpretable and
relevant from multi-modal EHR data is our primary task.
In this section, we evaluate the discovered phenotypes in
two important aspects: the clinical relevance and the diversity.

We set the number of phenotypes to be 50, and run
cHITF and the baselines to derive phenotypes. Since most of
the baselines cannot simultaneously handle modalities with
different distributions, we do not involve the modality of
input events in this section. Most of the baselines are based
on factorizing the input tensor, which has an exponential
complexity with respect to the number of modes and makes
them infeasible to converge in a reasonable time. For fair
comparison, we shrink the size of the dataset by 50%, and
only use the top 80 most frequent items for each modality.

5.4.1 Clinical Relevance
The clinical relevance are evaluated by the clinical expert,
who annotates each phenotype as either “not clinically rele-
vant”, “possibly clinically relevant”, or “clinically relevant”.
As the annotation process is time-consuming and labor-
intensive, it is not feasible to evaluate all the baselines. So
we only compare against SiCNMF and Granite in terms of
the clinical relevance. The former takes the same observation
matrices as cHITF but ignoring the inter-modal interactions;
the latter relies on the “equal-correspondence” assumption
to construct the input tensor.

We summarize the clinical relevance of the inferred
phenotypes in Fig. 7. Our cHITF framework significantly
outperforms Grinate and SiCNMF in that 18 and 22 out of
50 phenotypes are annotated by the clinical expert to be clin-
ically relevant and possibly relevant, respectively. SiCNMF,
by contrast, only generates 8 relevant phenotypes. SiCNMF
takes the same input as cHITF, namely each matrix for one
modality. However, it differs from our model significantly
as it does not model the interactions between different

TABLE 4
Three examples of clinically relevant phenotypes inferred by cHITF

Phenotype 1 (Trauma)

Dx

Fracture of vertebral column without
mention of spinal cord injury (0.139);

Fracture of rib(s) sternum larynx and trachea (0.128);
Other open wound of head (0.105); ...

Rx Morphine Sulfate (0.287); Famotidine (0.141);
Acetaminophen (0.104); ...

Lab MCHC [Blood] (0.998); Specific Gravity [Urine] (0.001);
Calculated Bicarbonate, Whole Blood [Blood] (0.001).

Phenotype 2 (Fluid, electrolyte and acid-base disorders)
Dx Disorders of fluid electrolyte and acid-base balance (1.000).

Rx Potassium Chloride (0.284); Magnesium Sulfate (0.078);
Calcium Gluconate (0.039); ...

Lab Bicarbonate [Blood] (0.143); Calcium, Total [Blood] (0.136);
Phosphate [Blood] (0.108).

Phenotype 3 (Acute myocardial infarction)
Dx Acute myocardial infarction (1.000).

Rx Captopril (0.088); Clopidogrel Bisulfate (0.071);
Metoprolol Tartrate (0.067); ...

Lab
Creatine Kinase (CK) [Blood] (0.108);
Creatine Kinase, MB Isoenzyme [Blood] (0.103);
Troponin T [Blood] (0.103); ...

modalities. Our framework explicitly takes the inter-modal
interaction into consideration, leading to the impressive
improvement of the phenotype quality. Another interesting
observation is that Grinate fails to generate any phenotypes
that are clinically relevant, and the majority of the generated
phenotypes are annotated as irrelevant. The reason behind
its failure is twofold. First, as described previously, Grinate
relies on the pre-established inter-modal interactions that
are constructed by the “equal-correspondence” assumption
which leads to inevitable and massive noise in the input
to the model. The second is related to the nature of the data
we used: unlike the longitudinal records or outpatient data1,
MIMIC-III is collected in ICU, where patients usually have
a large amount of diagnoses and medications. As a result,
only a small portion of the constructed interactions are truly
clinically relevant. In general, the comparison shown in
Fig. 7 suggests that modeling the inter-modal interactions
is of crucial importance for discovering phenotypes that are
clinically relevant, but the interactions should be established
in a reasonable way, or be inferred jointly from the data, like
our cHITF framework.

To qualitatively illustrate the superiority of cHITF in
terms of the clinical relevance of the phenotypes, we present
three examples of the phenotypes inferred by cHITF in
Table 4. The first phenotype in Table 4 is annotated by
the clinician to be highly related to trauma. The diagnoses
are different subtypes of trauma; the medications are very
relevant in that morphine and acetaminophen are typical
pain killers that are important in trauma management,
and famotidine is a protectant to prevent stress ulcers of
the stomach. Moreover, the lab tests are also typical for
trauma diagnoses as they quantify blood loss (anaemia),
acidosis (inadequate organ perfusion due to blood loss) and

1. Granite was originally developed and tested with a longitudinal
EHR dataset [35].
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TABLE 5
Sparsity and diversity of phenotypes inferred from MIMIC-III dataset

Reg. Sparsity
Cosine

Similarity
Jaccard@10

CP-APR – 0.67 (0.001) 0.64 (0.001) 0.26 (0.008)
Marble – 0.51 (0.001) 0.50 (0.001) 0.18 (0.007)
Rubik – 0.95 (0.003) 0.87 (0.005) 0.26 (0.006)

Granite – 0.90 (0.003) 0.78 (0.018) 0.12 (0.062)
SiCNMF – 0.08 (0.026) 0.33 (0.069) 0.12 (0.017)

cHITF Both 0.17 (0.002) 0.11 (0.005) 0.04 (0.002)
cHITF Neither 0.24 (0.002) 0.19 (0.008) 0.06 (0.002)
cHITF Elastic net 0.19 (0.001) 0.17 (0.004) 0.06 (0.002)
cHITF Angular 0.21 (0.002) 0.11 (0.002) 0.04 (0.001)

Reg.: abbreviation of “Regularization” indicating the active regularization(s).

dehydration (low blood pressure due to blood loss). The
remaining two phenotypes are evidently related to fluid,
electrolyte and acid-base disorders and acute myocardial
infarction, respectively. More examples can be found in the
supplemental materials.

5.4.2 Sparsity and Diversity
The sparsity and diversity are another two desired proper-
ties to indicate that the set of inferred phenotypes are dis-
tinct enough for characterizing different disease states. We
measure the sparsity by the ratio of non-zero entries in the
factor matrix, and use two metrics to quantify the diversity:
the average cosine similarity and the Jaccard similarity at
K . The average cosine similarity is defined as below [11]:

Cosine Similarity =

∑R
r1=1

∑R
r2>r1

{∑N
n=1 cos(U

(n)
:r1 ,U

(n)
:r2 )
}

N ×R× (R− 1)
,

(23)
where R is the number of phenotypes, N is the number of
modalities, and U

(n)
:r is the rth column of the factor matrix

corresponding to the nth modality. We define the Jaccard
similarity at K as:

Jaccard@K =
1

R(R− 1)

R∑
r1=1

R∑
r2>r1

|Qr1(K) ∩Qr2(K)|
|Qr1(K) ∪Qr2(K)| , (24)

where Qr(K) is the union of the top K items of each
modality of the rth phenotype, and |Q| is the size of the set
Q. The cosine similarity measures the overall distinctness
of the phenotypes, whereas the Jaccard@K measures the
distinctness of the top K items in each phenotype as they
are often of utmost interest to clinicians. In this paper, we set
K to be ten. Both smaller cosine similarity and Jaccard@K
indicate more diverse phenotypes.

We summarize the results obtained using the three met-
rices in Table 5. cHITF can generate most diverse pheno-
types, with cosine similarity of 0.11 and Jaccard@10 of as
small as 0.04. CP-APR and Rubik generate the least diverse
phenotypes as they rely on the “equal-correspondence”
assumption that does not reflect the true inter-modal inter-
actions; thus, the input tensor is dominated by the false and
redundant interactions, leading to non-distinct phenotypes.
Marble has a more effective sparsity constraint that enforces
the majority of the entries to be zero, which indirectly

TABLE 6
The AUPRC score for predicting in-hospital mortality of MIMIC-III

Dx & Rx Dx & Lab Dx & Rx & Lab

CP-APR 0.34 (0.030) 0.38 (0.024) 0.36 (0.020)
Marble 0.33 (0.024) 0.36 (0.020) 0.34 (0.021)
Rubik 0.32 (0.030) 0.30 (0.021) 0.34 (0.024)

Granite 0.30 (0.016) 0.33 (0.017) 0.30 (0.019)
SiCNMF 0.31 (0.036) 0.24 (0.021) 0.38 (0.076)

HITF 0.46 (0.013) 0.41 (0.011) 0.39 (0.032)
cHITF – – 0.47 (0.012)

TABLE 7
The AUPRC score for predicting in-hospital mortality of eICU

Dx & Rx Dx & Treatment Dx & Rx & Treatment

CP-APR 0.31 (0.027) 0.29 (0.036) 0.32 (0.028)
Marble 0.31 (0.021) 0.33 (0.062) 0.34 (0.019)
Rubik 0.43 (0.020) 0.35 (0.040) 0.35 (0.136)

Granite 0.32 (0.043) 0.26 (0.045) 0.23 (0.028)
SiCNMF 0.38 (0.037) 0.28 (0.045) 0.37 (0.045)

HITF 0.48 (0.016) 0.39 (0.051) 0.38 (0.025)
cHITF – – 0.51 (0.022)

contributes to the improved diversity. Granite, although
with its input dominated by false interactions, achieved
impressive diversity performance with Jaccard@10 of 0.12.
This attributes to the angular regularization that Granite
adopts. However, we observe a larger cosine similarity for
Granite, and we speculate that this is because the sparsity
constraint adopted by Granite is less effective. SiCNMF
achieves the second-best diversity as its input does not
consider the inter-modal interactions, and thus not domi-
nated by the false interactions. cHITF considers the inter-
modal interactions and learn them from the data to alleviate
the false-interaction issue in its latent interaction tensor.
In addition, cHITF also adopts the angular constraint that
further improves the diversity.

Regarding the impact of the two regularization terms
incorporated, we conduct an ablation study and summarize
the results in the last three rows in Table 5. Compared to the
case without any regularization, the elastic net regulariza-
tion improves the sparsity and the cosine similarity. And the
angular regularization improves the diversity with 33.3%
relative improvement of the Jaccard@10 score. With both
regularization terms incorporated, cHITF finally achieves
the best performance in terms of diversity.

5.5 cHITF Infers Phenotypes with Improved Predictive
Power

We evaluate the performance of using the phenotypes in-
ferred by cHITF as features for the subsequent in-hospital
mortality prediction task. We first divide the dataset for
training and testing with a proportion of 8:2 and adopt five-
fold cross validation. Then we apply cHITF and all of the
baselines with different modalities to learn the phenotypes
and the patient representations of the training subset, after
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which we project the test subset onto the learned pheno-
types to obtain the patient representations of the test subset.
We use a lasso-regularized logistic regression to perform the
binary classification with the patient representations as the
features. We use AUPRC (Area Under the Precision-Recall
Curve) as the evaluation metric calculated.

Tables 6 and 7 summarize the prediction performance
of cHITF and the baselines with different modalities on
MIMIC-III and eICU, respectively. Each column corresponds
to a particular combination of modalities. “Dx” denotes
diagnosis, “Rx” denotes medication, and “Lab” denotes lab
test. All baseline models give similar prediction perfor-
mance, whereas HITF outperforms all the baselines by a
large margin. One phenomenon we observe is that most of
the baselines based on “equal-correspondence” assumption
obtain better prediction performance with lab tests than
medications; however, the prediction performance of SiC-
NMF and HITF using lab tests are worse than that using
medications. The reason is that unlike medications, many
abnormal lab tests do not correspond to specific diagnoses.
So the issue of dominating false interaction is less severe
than the case of medications, and inferring the relationship
between diagnoses and lab tests is much harder. Neverthe-
less, HITF still outperforms all the baselines. Given only
two modalities, one hidden interaction tensor is sufficient,
and in this case the cHITF reduces to the HITF model.
The third column shows the results obtained based on all
three modalities. All baselines except SiCNMF have similar
performance to their counterparts obtained based on only
two modalities. The AUPRC of SiCNMF with all three
modalities was boosted to 0.38, achieving almost 23% rel-
ative improvement compared to that with only Dx and Rx.
Yet its prediction performance is not obviously better than
other baselines, even though the phenotypes inferred by
SiCNMF are impressively sparse as shown in Table 5. This is
mainly because it is based on collective matrix factorization
and does not consider the inter-modal interactions at all. We
tried HITF with one forth-order hidden interaction tensor to
account for all the modalities, leading to a surprising drop
of around 15%. This suggests that inferring the diagnosis-
medication-lab-test interactions is much more challenging
and can easily compromise the representational power of
the learned factors. With our cHITF framework, where the
diagnosis-medication interactions and the diagnosis-lab-test
interactions are separately modeled with two latent interac-
tion tensors, the prediction performance further improved
by nearly 24% compared with the best-performing baseline.

5.6 cHITF Models Modalities with Different Distribu-
tions
Finally, we incorporate the modality of input fluids to cHITF
in MIMIC-III. The input fluids are the total amount of fluids
input to the patients, and thus we model it using the Gaus-
sian distribution. As the baselines are not capable of simulta-
neously considering modalities with different distributions,
we focus on two aspects in this section: first, whether
incorporating the input fluids helps improve representa-
tional power; second, whether cHITF infer interpretable and
clinically relevant diagnosis-fluid correspondence.

Table 8 shows the AUPRC for the mortality prediction
and the two diversity measures based on different combi-

TABLE 8
Performance with different combinations of modalities in MIMIC-III

Modalities AUPRC
Cosine

Similarity
Jaccard@10

Dx & Fluid 0.44 (0.029) 0.31 (0.010) 0.04 (0.004)
Dx & Rx 0.46 (0.013) 0.05 (0.002) 0.02 (0.001)

Dx & Rx & Fluid 0.48 (0.021) 0.35 (0.057) 0.05 (0.011)
Dx & Lab 0.41 (0.011) 0.08 (0.009) 0.03 (0.002)

Dx & Lab & Fluid 0.47 (0.019) 0.32 (0.008) 0.05 (0.001)
Dx & Rx & Lab 0.47 (0.012) 0.11 (0.005) 0.04 (0.002)

Dx & Rx & Lab & Fluid 0.51 (0.059) 0.21 (0.064) 0.06 (0.017)

TABLE 9
Examples of diagnosis-fluid correspondence inferred by cHITF

Heart Failure
PO Intake (0.19); Insulin (0.17); Propofol (0.10);
Lactated Ringers (0.09); Levophed-k (0.07); ...

Diabetes Mellitus
Insulin (0.31); Gastric Meds (0.22); D5W (0.07);
0.9% Normal Saline (0.04); GT Flush (0.03); ...

Organic sleep disorders
Midazolam (0.25); Fentanyl (0.15); Amiodarone (0.10);
Lasix (0.08); D5W (0.06); ...

Peritonitis and retroperitoneal infections
Lactated Ringers (0.32); Albumin 25% (0.18); D5W (0.06);
Gastric Meds (0.05); Po Intake (0.05); ...

nations of modalities. Incorporating the input fluids further
improves the prediction performance by 4-9% for different
combinations of modalities, demonstrating that the use of
fluids enhances the representational power of the learned
factors and that the cHITF framework is capable of mod-
elling modalities with different distributions. On the other
hand, integrating the input fluids compromises the diversity
of the inferred phenotypes. This is related to the dataset we
used. In fact, many fluids being input into patients are rather
generic. For instance, lactated ringers is commonly used in
ICU for fluid resuscitation after a blood loss, which can
be caused by many different diagnoses, e.g., trauma, burn
injury and surgery. Nonetheless, cHITF is still capable of
identifying relevant items, for example, insulin for diabetes
mellitus and midazolam for sleep disorders.

5.7 cHITF is Efficient and Scalable

We also compare the running time against the baselines.
All baselines are run on high-end servers equipped with
dual 64-core AMD EPYC 7742 CPUs and 1TB memory. Our
model is run on GPU servers equipped with a 10-core Intel
E5-2630v4 CPU, 256 GB memory and dual NVIDIA Tesla
P40 GPUs. It is worth noting that none of the baseline mod-
els can run on GPUs as they rely on heavy tensor operations
that are not available in GPU computing environments.
Fig. 8 shows the running time of cHITF and all baselines
on the MIMIC-III subset. We run all models until they reach
their convergence criteria. cHITF only takes 446 seconds,
while the fastest baseline, Rubik, takes 9,496 secons, which
is 21 times slower than cHITF.
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Fig. 8. Running time of cHITF and baselines on the MIMIC-III subset
with modalities of diagnosis, medication and lab test.

5.8 Summary
Through extensive and comprehensive experiments with
real-world EHR dataset, we demonstrated the superiority
of HITF in terms of inferring the inter-modal interactions
and cHITF in terms of modelling multiple modalities simul-
taneously. The reason behind the significant performance
improvement of both clinical relevance is that HITF does not
rely on the “equal-correspondence” assumption. Instead, it
infers the inter-modal correspondence from the data so that
false interactions can be effectively avoided. The phenotypes
inferred by cHITF are more clinically relevant, more diverse
and of better prediction performance. To summarize, con-
sidering the inter-modal interactions is critically important
to discover phenotypes of better quality and cHITF provides
a better way than the existing models to handle the unob-
served inter-modal correspondence.

6 CONCLUSION

In this paper, we introduce a novel tensor factorization
method, called HITF, to infer the hidden interactions be-
tween modalities and learn the phenotypes jointly, given
only the marginalized observations. We present its formu-
lation with both Poisson distribution for integer data and
Gaussian distribution for real-valued data. Furthermore,
using HITF as building blocks, we propose the cHITF
framework that allows multiple hidden interaction tensors
to account for the interactions between different modalities.
We evaluate the proposed model and framework using
a real-world EHR dataset. The results demonstrate that
the inter-modal correspondence inferred by HITF are sig-
nificantly more meaningful and relevant than the “equal-
corrrespondence” assumption adopted by the existing com-
putational phenotyping models based on tensor factoriza-
tion. Consequently, the phenotypes learned by cHITF are
more clinically relevant and diverse. Moreover, the remark-
able improvement of the predictive performance also val-
idates the effectiveness of representing patients using the
phenotypes learned by cHITF.
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APPENDIX A
OPTIMIZATION PROCEDURES

We summarize the optimization procedures in Algorithm 1.
We implement the learning algorithm in PyTorch, and the
gradients of the variables are computed by backpropagation
on the fly.

Note that Eq. (16) involves computing the error function
(erf) of a standard Gaussian distribution, which is defiend
in Eq. (17). Although computing erf requires numerical
approximation, its derivative can be derived analytically as
follows:

d

dx
erf(x) =

2√
π
e−x

2

, (A1)

which follows immediately from the definition of erf(·).

Algorithm 1: collective Hidden Interaction Tensor
Factorization

Input : observation matrices: V = {V(n)}Nn=1

Output: patient representation: U(s)

phenotype definitions: {U(n)}Nn=1

1 initialize U(s) and {U(n)}Nn=1 randomly;
2 repeat
3 compute gradient w.r.t. U(s):

∇U(s) ←
∂f

∂U(s)

4 update U(s) by: U(s) ← U(s) − η∇U(s) ;
5 non-negative projection:

U(s) ← max
{
0,U(s)

}
6 for n = 1 : N do
7 compute gradient w.r.t. U(n):

∇U(n) ←
∂(f(U(n)) + Ω(U(n)))

∂U(n)

8 update U(n) by: U(n) ← U(n) − η∇U(n) ;
9 non-negative projection:

U(n) ← max
{
0,U(n)

}
10 end
11 until converge or reach maximum number of iterations;

APPENDIX B
DISTRIBUTION SELECTION, HYPERPARAMETER
SETTING AND SENSITIVITY ANALYSIS

B.1 Distribution Selection
Selecting appropriate distribution is crucial to accurately
model the input data. A useful rule of thumb is to ded-
icate the choice of distributions based on the data type
of the particular modality. For example, medications are
recorded in form of non-negative counts; therefore, Poisson
distribution is preferred over Gaussian distribution for the
hidden interaction tensor of diagnoses and medications.
On the other hand, Gaussian distribution is more suitable
than Poisson distribution for the diagnosis-fluid hidden
interaction tensor.

We also conduct experiments to validate our choice of
distributions. We fit different modalities in MIMIC-III using

Poisson and Gaussian distributions, respectively, and mea-
sure the AUPRC score for predicting in-hospital mortality.
We run each experiment for five times and report the mean
and standard deviation in Table A1. From the results, it
is obvious that Poisson distribution outperforms Gaussian
distribution for counting data while Gaussian is better for
real-valued input. It also shows that wrong distribution
specification not only worsens the predictive performance,
but also increases the uncertainty.

TABLE A1
The AUPRC score for predicting in-hospital mortality of MIMIC-III using

different modalities fitted with Poisson and Gaussian distributions

Data Type Poisson Gaussian

Dx & Rx Counting 0.46 (0.013) 0.42 (0.031)
Dx & Lab Counting 0.41 (0.011) 0.39 (0.017)

Dx & Fluid Real value 0.42 (0.058) 0.44 (0.029)

B.2 Hyperparameter Setting and Sensitivity Analysis
As described in Section 5.3, we tune the hyperparameters
using grid search. We summarize the search spaces and the
final optimal values of the hyperameters in Table A2. We
use the same set of hyperparameters for both datasets. We
further analyze the sensitivity of prediction performance,
and sparsity and similarity of the phenotypes inferred to
the hyperparameter settings. To this end, we conduct exper-
iments using the MIMIC-III subset containing modalities of
diagnosis, medication and lab test, as described in Section
5.7. For each hyperparameter, we vary its value and measure
the changes of the quantitative measures with all other
hyperparameters fixed to their optimal values. The results
are summarized in Fig. A1(a)-(e), where the red solid lines
represent the prediction performance measured by AUPRC,
the blue solid and dotted lines represent the cosine similar-
ity and sparsity of the inferred phenotypes, respectively. The
vertical black dotted lines represent the final optimal values
for the corresponding hyperparameter.

Number of Phenotypes: As shown in Fig A1(a), the
prediction performance increases significantly with the in-
creasing number of phenotypes, which is expected due to
the increased number of parameters to represent the under-
lying patterns. Meanwhile, the sparsity and similarity also
decrease. This indicates that a larger number of phenotypes
would allow more distinct phenotypes to be discovered.
However, with the number of phenotypes larger than 50,
it becomes very time-consuming for clinicians to manually
examine the quality of the phenotypes inferred.

Elastic Net Weighting parameter (γ): Fig. A1(b) shows
that the algorithm is not very sensitive to γ when it takes
value between 10−7 and 10−5 as the changes of AUPRC,
sparsity and similarity are marginal. When γ takes value
larger or equal to 10−4, although the sparsity and similarity
decreases significantly as the strength of regularization in-
creases, the prediction performance also drops rapidly. This
shows that a too-large γ hurts the representational power of
the model.

Angular Regularization Weighing Parameter (β):
Fig. A1(c) shows that β significantly affects both prediction
performance and interpretability of the model. When β is



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 16

TABLE A2
Search spaces and optimal values of hyperparameters

Parameter Description Search Space Optimal Value

γ Strength of the elastic net regularization {1e-7, 5e-6, 1e-6, 5e-5, 1e-5, 5e-4, 1e-4, 5e-3, 1e-3} 1e-5
α Strength of the `1 term in elastic net {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 0.7
β Strength of the angular regularization { 1e-3, 1e-2, 5e-2, 0.1, 0.5, 1, 5, 10, 50, 100 } 1
θn Angular penalization threshold {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 0.5
σ2 Variance in Gaussian distribution {1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6} 1e-9

(a) (b) (c)

(d) (e) (f)

Fig. A1. Sensitivity of the prediction performance, sparsity and similarity to different hyperparameters. (a): Number of phenotypes; (b): Weighting
parameter of the elastic net regularization (γ); (c): Weighting parameter of the angular regularization (β); (d): The ratio of `1 term in the elastic
net regularization (α); (e): The threshold parameter in the angular regularization (θn); (e): The variance in the Gaussian distribution for input fluid
modality (σ2). The red line represent the in-hospital mortality prediction performance, the dotted blue line represent the sparsity, and the solid blue
lines represent the cosine similarity. The vertical dotted black lines represent the final optimal value we used in the experiments.

set to 1, highest AUPRC and lowest sparsity and similarity
are obtained simultaneously. When β is larger than 1, the
similarity surprisingly increases by a wide margin.

`1 Ratio in Elastic Net Regularization (α): Fig. A1(d)
shows that the prediction performance and the similarity
are not sensitive to α as their changes over different values
of α are quite small. However, it does have an impact on the
sparsity, which reduces significantly with α increasing from
0.3 to 0.8.

Threshold Parameter in Angular Regularization (θn):
Fig. A1(e) shows that θn impacts both prediction and in-
terpretability. Note that smaller threshold implies stronger
regularization because factors having pairwise cosine simi-
larity larger than the threshold is penalized by the angular
regularization. The highest AUPRC is obtained when θn
takes value of 0.5. If θn is further decreased, sparsity and
similarity improves due to stronger regularization. How-
ever, the prediction performance decrease as well.

Variance in Gaussian Distribution (σ2): Fig. A1(f) is
obtained using another subset of MIMIC-III containing the

modality of input fluid as well. In general, smaller variance
of the Gaussian distribution tends to force the Gaussian
distribution to concentrate its density very close to its
mean value. Our experiments reveal that best prediction
performance is obtained when σ2 is set to 10−9. Meanwhile,
the most distinct phenotypes (smallest similarity) are also
obtained.

APPENDIX C
CONVERGENCE OF THE LEARNING ALGORITHM

As described in Section 4.4, the BCD optimization frame-
work we used to learn the parameters has previously been
shown to converge with a sublinear rate. Here we provide
empirical evidence on its convergence. Fig. A2 shows the
convergence curve of our algorithm on the MIMIC-III subset
with the modalities of diagnosis, medication and lab test.
We run the algorithm for 100k iterations with ten different
train/test data split and random initialization, and the dark
blue line in Fig. A2 shows the average of the loss function
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Fig. A2. Convergence curve of cHITF obtained by running the algorithm
with ten different train/test data split and random initialization. The loss
function value does not include regularization terms.

TABLE A3
Sparsity and diversity of phenotypes inferred from eICU dataset

Reg. Sparsity
Cosine

Similarity
Jaccard@10

CP-APR – 0.62 (0.004) 0.59 (0.003) 0.12 (0.002)
Marble – 0.67 (0.007) 0.75 (0.001) 0.10 (0.003)
Rubik – 0.84 (0.007) 0.72 (0.010) 0.15 (0.004)

Granite – 0.98 (0.002) 0.87 (0.001) 0.14 (0.001)
SiCNMF – 0.05 (0.001) 0.27 (0.002) 0.09 (0.001)

cHITF Both 0.07 (0.003) 0.04 (0.001) 0.03 (0.002)
cHITF Neither 0.17 (0.003) 0.16 (0.006) 0.06 (0.002)
cHITF Elastic net 0.11 (0.004) 0.15 (0.005) 0.06 (0.001)
cHITF Angular 0.14 (0.002) 0.11 (0.001) 0.04 (0.001)

Reg.: abbreviation of “Regularization” indicating the active regularization
term(s).

values excluding the regularization terms over the ten runs.
The area filled in light blue indicates the standard deviation.
Fig. A2 clearly shows that the learning algorithm converges
fast on the MIMIC-III subset.

APPENDIX D
EXTENDED RESULTS

D.1 Sparsity and Diversity of Phenotypes from eICU
Dataset

We summarize the sparsity and diversity of the phenotypes
inferred by cHITF and baselines in Table A3. The results
follow similar patterns to that obtained from MIMIC-III, as
shown in Table 5. Specifically, SiCNMF obtains the best spar-
sity, followed by cHITF with a small margin. cHITF obtains
the best cosine similarity and Jaccard@10, suggesting that
cHITF infers the most distinct and interpretable phenotypes.
Besides, the elastic net and angular regularization terms
both help improve the interpretability.

D.2 Inter-Modal Correspondence
Due to space limit, we only exhibited some representa-
tive examples of the inferred diagnosis-medication and
diagnosis-lab-test correspondence in Table 2 and Table 3.
Here we provide the full list of the top five corresponding
medications and lab tests inferred by all models for all of
the ten diagnoses in Table A4 and Table A5, respectively.

D.3 Clinically Relevant Phenotypes
In Section 5.5.1, we run cHITF to generate 50 phenotypes,
out of which 18 were annotated by the clinician as “clinically
relevant”. We showed three examples in Table 4 due to
space limit. Here we exhibit in Table A6 the remaining
15 phenotypes (indexed 4 to 18) that were annotated as
clinically relevant.
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TABLE A4
The Diagnosis-Medication Correspondence Inferred by HITF and the Baselines.

Dx1: Cardiac dysrhythmias
HITF Metoprolol (0.17); Metoprolol Tartrate (0.12); Warfarin (0.11); Amiodarone (0.11); Heparin Sodium (0.10).

CP-APR Potassium Chloride (0.03); Acetaminophen (0.03); Magnesium Sulfate (0.02); Insulin (0.02); Furosemide (0.02).
Marble Acetaminophen (0.03); Potassium Chloride (0.03); Magnesium Sulfate (0.02); Insulin (0.02); Furosemide (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Furosemide (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Magnesium Sulfate (0.01); Insulin (0.01); Sodium Chloride 0.9% Flush (0.01).

Dx2: Heart failure
HITF Furosemide (0.56); Potassium Chloride (0.23); Magnesium Sulfate (0.03); Prednisone (0.02).

CP-APR Acetaminophen (0.03); Furosemide (0.03); Potassium Chloride (0.03); Insulin (0.02); Magnesium Sulfate (0.02).
Marble Acetaminophen (0.03); Potassium Chloride (0.03); Insulin (0.02); Furosemide (0.02); Magnesium Sulfate (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Furosemide (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Magnesium Sulfate (0.01); Insulin (0.01); Sodium Chloride 0.9% Flush (0.01).

Dx3: Other forms of chronic ischemic heart disease
HITF Furosemide (0.07); Acetaminophen (0.06); Aspirin EC (0.06); Metoprolol Tartrate (0.05); Potassium Chloride (0.05).

CP-APR Acetaminophen (0.03); Potassium Chloride (0.03); Magnesium Sulfate (0.02); Docusate Sodium (0.02); Furosemide (0.02).
Marble Acetaminophen (0.03); Potassium Chloride (0.03); Docusate Sodium (0.02); Magnesium Sulfate (0.02); Furosemide (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Magnesium Sulfate (0.02); Insulin (0.02); Docusate Sodium (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.02); Magnesium Sulfate (0.01); Insulin (0.01); Sodium Chloride 0.9% Flush (0.01).

Dx4: Diabetes mellitus
HITF Insulin (0.88); Insulin Human Regular (0.05); Dextrose 50% (0.01); Metformin (0.01).

CP-APR Insulin (0.03); Acetaminophen (0.03); Potassium Chloride (0.03); Sodium Chloride 0.9% Flush (0.02); Magnesium Sulfate (0.02).
Marble Insulin (0.03); Acetaminophen (0.03); Potassium Chloride (0.03); Sodium Chloride 0.9% Flush (0.03); Heparin (0.02).
Rubik Acetaminophen (0.02); Potassium Chloride (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Sodium Chloride 0.9% Flush (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Insulin (0.01); Sodium Chloride 0.9% Flush (0.01); Magnesium Sulfate (0.01).

Dx5: Disorders of fluid electrolyte and acid-base balance
HITF Potassium Chloride (0.49); Magnesium Sulfate (0.17); Metoprolol (0.12); Calcium Gluconate (0.05); Potassium Phosphate (0.05).

CP-APR Potassium Chloride (0.03); Acetaminophen (0.03); Heparin (0.03); Insulin (0.03); Magnesium Sulfate (0.02).
Marble Acetaminophen (0.03); Potassium Chloride (0.03); Heparin (0.03); Insulin (0.03); Sodium Chloride 0.9% Flush (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Sodium Chloride 0.9% Flush (0.02).

Granite Acetaminophen (0.01); Potassium Chloride (0.01); Magnesium Sulfate (0.01); Sodium Chloride 0.9% Flush (0.01); Insulin (0.01).

Dx6: Bacterial infection in conditions classified elsewhere and of unspecified site
HITF Vancomycin (0.67); Piperacillin-Tazobactam Na (0.15); Gentamicin (0.08); Heparin Flush CVL (0.08); Miconazole Powder 2% (0.02).

CP-APR Acetaminophen (0.03); Potassium Chloride (0.03); Insulin (0.02); Magnesium Sulfate (0.02); Heparin (0.02).
Marble Potassium Chloride (0.03); Acetaminophen (0.03); Magnesium Sulfate (0.02); Heparin (0.02); Insulin (0.02).
Rubik Potassium Chloride (0.03); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Sodium Chloride 0.9% Flush (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Magnesium Sulfate (0.01); Sodium Chloride 0.9% Flush (0.01); Insulin (0.01).

Dx7: Iron deficiency anemias
HITF Pantoprazole Sodium (0.33); Sodium Chloride 0.9% Flush (0.27); Pantoprazole (0.21); Acetaminophen (0.09); Heparin (0.03).

CP-APR Acetaminophen (0.03); Potassium Chloride (0.03); Insulin (0.02); Magnesium Sulfate (0.02); Heparin (0.02).
Marble Acetaminophen (0.03); Potassium Chloride (0.03); Heparin (0.02); Sodium Chloride 0.9% Flush (0.02); Insulin (0.02).
Rubik Acetaminophen (0.02); Potassium Chloride (0.02); Insulin (0.02); Sodium Chloride 0.9% Flush (0.02); Magnesium Sulfate (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Insulin (0.01); Magnesium Sulfate (0.01); Sodium Chloride 0.9% Flush (0.01).

Dx8: Chronic bronchitis
HITF PredniSONE (0.76); MethylPREDNISolone Sodium Succ (0.22); Pantoprazole (0.01).

CP-APR Heparin (0.03); Potassium Chloride (0.03); Insulin (0.03); Acetaminophen (0.03); Sodium Chloride 0.9% Flush (0.03).
Marble Heparin (0.03); Acetaminophen (0.03); Insulin (0.03); Sodium Chloride 0.9% Flush (0.03); Potassium Chloride (0.03).
Rubik Acetaminophen (0.02); Potassium Chloride (0.02); Insulin (0.02); Heparin (0.02); Sodium Chloride 0.9% Flush (0.02).

Granite Acetaminophen (0.02); Potassium Chloride (0.01); Magnesium Sulfate (0.01); Insulin (0.01); Furosemide (0.01).

Dx9: Arterial embolism and thrombosis
HITF Sodium Bicarb (0.36); Enoxaparin Sodium (0.33); Isosorbide Mononitrate (0.22); Tacrolimus (0.03); Mycophenolate Mofetil (0.01).

CP-APR Potassium Chloride (0.03); Magnesium Sulfate (0.03); Acetaminophen (0.02); Insulin (0.02); Heparin (0.02).
Marble Potassium Chloride (0.03); Magnesium Sulfate (0.03); Insulin (0.02); Acetaminophen (0.02); Pantoprazole Sodium (0.02).
Rubik Potassium Chloride (0.02); Acetaminophen (0.02); Insulin (0.02); Magnesium Sulfate (0.02); Furosemide (0.02).

Granite Potassium Chloride (0.01); Acetaminophen (0.01); Magnesium Sulfate (0.01); Insulin (0.01); Furosemide (0.01).

Dx10: Symptoms involving nervous and musculoskeletal systems
HITF Dexamethasone (0.27); Bisacodyl (0.18); Senna (0.13); Docusate Sodium (0.12); Sodium Chloride 0.9% Flush (0.11).

CP-APR Acetaminophen (0.03); Insulin (0.03); Potassium Chloride (0.03); Sodium Chloride 0.9% Flush (0.03); Magnesium Sulfate (0.03).
Marble Potassium Chloride (0.03); Insulin (0.03); Acetaminophen (0.03); Magnesium Sulfate (0.03); Heparin (0.03).
Rubik Potassium Chloride (0.03); Acetaminophen (0.03); Insulin (0.02); Magnesium Sulfate (0.02); Heparin (0.02).

Granite Acetaminophen (0.01); Insulin (0.01); Potassium Chloride (0.01); Sodium Chloride 0.9% Flush (0.01); Magnesium Sulfate (0.01).
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TABLE A5
The Diagnosis-Lab-Test Correspondence Inferred by HITF and the Baselines.

Dx1: Cardiac dysrhythmias
HITF PT [B] (0.19); Hematocrit [B] (0.16); Red Blood Cells [B] (0.12); Hemoglobin [B] (0.12); Urea Nitrogen [B] (0.07).

CP-APR Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); PT [B] (0.03).
Marble Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); PT [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); PT [B] (0.03).

Granite Hemoglobin [B] (0.01); Glucose [B] (0.01); Calcium, Total [B] (0.01); Red Blood Cells [B] (0.01); Hematocrit [B] (0.01).

Dx2: Heart failure
HITF PT [B] (0.16); Hematocrit [B] (0.14); Hemoglobin [B] (0.13); Red Blood Cells [B] (0.13); Urea Nitrogen [B] (0.11).

CP-APR Glucose [B] (0.03); Hemoglobin [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Urea Nitrogen [B] (0.03).
Marble Glucose [B] (0.03); Hemoglobin [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Urea Nitrogen [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); Urea Nitrogen [B] (0.03).

Granite Hemoglobin [B] (0.01); Glucose [B] (0.01); Chloride [B] (0.01); Calcium, Total [B] (0.01); Red Blood Cells [B] (0.01).

Dx3: Other forms of chronic ischemic heart disease
HITF pO2 [B] (0.24); Glucose [B] (0.15); Hematocrit [B] (0.10); pH [B] (0.09); Hemoglobin [B] (0.09).

CP-APR Hemoglobin [B] (0.04); Hematocrit [B] (0.04); Red Blood Cells [B] (0.04); Glucose [B] (0.04); PT [B] (0.03).
Marble Red Blood Cells [B] (0.04); Hematocrit [B] (0.04); Hemoglobin [B] (0.04); Glucose [B] (0.04); PT [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); PT [B] (0.03).

Granite Hemoglobin [B] (0.01); Hematocrit [B] (0.01); Glucose [B] (0.01); White Blood Cells [B] (0.01); Urea Nitrogen [B] (0.01).

Dx4: Diabetes mellitus
HITF Glucose [B] (0.21); Urea Nitrogen [B] (0.16); Hemoglobin [B] (0.09); Creatinine [B] (0.08); Red Blood Cells [B] (0.08).

CP-APR Glucose [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Red Blood Cells [B] (0.03); Urea Nitrogen [B] (0.03).
Marble Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Urea Nitrogen [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); White Blood Cells [B] (0.03).

Granite Glucose [B] (0.01); pO2 [B] (0.01); Hemoglobin [B] (0.01); Calcium, Total [B] (0.01); Chloride [B] (0.01).

Dx5: Disorders of fluid electrolyte and acid-base balance
HITF Sodium [B] (0.14); Calcium, Total [B] (0.11); White Blood Cells [B] (0.10); Chloride [B] (0.09); Phosphate [B] (0.08).

CP-APR Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Phosphate [B] (0.03).
Marble Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Phosphate [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); Urea Nitrogen [B] (0.02).

Granite Glucose [B] (0.01); Chloride [B] (0.01); pO2 [B] (0.01); Hemoglobin [B] (0.01); Calcium, Total [B] (0.01).

Dx6: Bacterial infection in conditions classified elsewhere and of unspecified site
HITF Vancomycin [B] (0.37); Hemoglobin [B] (0.13); Red Blood Cells [B] (0.13); Hematocrit [B] (0.12); Urea Nitrogen [B] (0.06).

CP-APR Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Phosphate [B] (0.03).
Marble Hematocrit [B] (0.03); Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hemoglobin [B] (0.03); Phosphate [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); White Blood Cells [B] (0.03).

Granite PT [B] (0.01); Glucose [B] (0.01); Hemoglobin [B] (0.01); Phosphate [B] (0.01); Hematocrit [B] (0.01).

Dx7: Iron deficiency anemias
HITF Transferrin [B] (0.26); Total Iron Binding Capacity [B] (0.25); Iron [B] (0.19); Ferritin [B] (0.17); Vitamin B12 [B] (0.04)

CP-APR Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Glucose [B] (0.03); Red Blood Cells [B] (0.03); Urea Nitrogen [B] (0.03).
Marble Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Red Blood Cells [B] (0.03); Glucose [B] (0.03); Urea Nitrogen [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Glucose [B] (0.03); White Blood Cells [B] (0.03).

Granite Calcium, Total [B] (0.01); Chloride [B] (0.01); Glucose [B] (0.01); Hemoglobin [B] (0.01); Hematocrit [B] (0.01).

Dx8: Chronic bronchitis
HITF Neutrophils [B] (0.32); Lymphocytes [B] (0.30); Calculated Total CO2 [B] (0.14); pCO2 [B] (0.07); Eosinophils [B] (0.07).

CP-APR Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); White Blood Cells [B] (0.03).
Marble Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); White Blood Cells [B] (0.03).
Rubik Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Urea Nitrogen [B] (0.03).

Granite Glucose [B] (0.01); Chloride [B] (0.01); pO2 [B] (0.01); Hemoglobin [B] (0.01); Urea Nitrogen [B] (0.01).

Dx9: Arterial embolism and thrombosis
HITF PT [B] (0.77); Sodium, Whole Blood [B] (0.06); Lactate [B] (0.05); Chloride, Whole Blood [B] (0.03); Vancomycin [B] (0.03)

CP-APR Hemoglobin [B] (0.03); Hematocrit [B] (0.03); Red Blood Cells [B] (0.03); Glucose [B] (0.03); Urea Nitrogen [B] (0.03).
Marble Hematocrit [B] (0.02); Red Blood Cells [B] (0.02); Hemoglobin [B] (0.02); Glucose [B] (0.02); PT [B] (0.02).
Rubik Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Glucose [B] (0.03); PT [B] (0.03).

Granite Chloride [B] (0.01); Glucose [B] (0.01); Hemoglobin [B] (0.01); pO2 [B] (0.01); Calcium, Total [B] (0.01).

Dx10: Symptoms involving nervous and musculoskeletal systems
HITF MCH [B] (0.39); Neutrophils [B] (0.25); Lymphocytes [B] (0.24); Eosinophils [B] (0.05); Monocytes [B] (0.04).

CP-APR Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); White Blood Cells [B] (0.03).
Marble Glucose [B] (0.03); Red Blood Cells [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); PT [B] (0.03).
Rubik Red Blood Cells [B] (0.03); Glucose [B] (0.03); Hematocrit [B] (0.03); Hemoglobin [B] (0.03); Phosphate [B] (0.02).

Granite Glucose [B] (0.01); Chloride [B] (0.01); Hemoglobin [B] (0.01); Hematocrit [B] (0.01); pO2 [B] (0.01).
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TABLE A6
Examples of the phenotypes inferred by cHITF that are clinically relevant.

Phenotype 4
Dx Other diseases of endocardium (0.775); Acute pulmonary heart disease (0.049); Other venous embolism and thrombosis (0.049); ...
Rx Heparin Sodium (0.561); Warfarin (0.428); Enoxaparin Sodium (0.011).
Lab PTT [Blood] (0.695); PT [Blood] (0.305); Thrombin [Blood] (0.001).

Phenotype 5
Dx Diseases of pancreas (0.963); Cholelithiasis (0.030); Other disorders of biliary tract (0.005); ...
Rx Pantoprazole Sodium (0.140); Metoprolol (0.132); Piperacillin-Tazobactam Na (0.086).
Lab Lipase [Blood] (0.291); Amylase [Blood] (0.252); Asparate Aminotransferase (AST) [Blood] (0.095); ...

Phenotype 6
Dx Other disorders of urethra and urinary tract (1.000).
Rx Lansoprazole Oral Suspension (1.000).
Lab Bicarbonate [Blood] (0.263); Urea Nitrogen [Blood] (0.210); Chloride [Blood] (0.168); ...

Phenotype 7
Dx Iron deficiency anemias (0.300); Gastrointestinal hemorrhage (0.284); Intestinal infections due to other organisms (0.211); ...
Rx MetRONIDAZOLE (FLagyl) (0.208); Ferrous Sulfate (0.192); Vancomycin Oral Liquid (0.110); ...
Lab Transferrin [Blood] (0.260); Iron Binding Capacity, Total [Blood] (0.255); Iron [Blood] (0.193); ...

Phenotype 8
Dx Asthma (0.254); Overweight, obesity and other hyperalimentation (0.115); Chronic bronchitis (0.112); ...
Rx PredniSONE (0.337); Albuterol 0.083% Neb Soln (0.151); Ipratropium Bromide Neb (0.115); ...
Lab Bicarbonate [Blood] (0.197); Neutrophils [Blood] (0.163); Lymphocytes [Blood] (0.137); ...

Phenotype 9
Dx Hypotension (0.505); Old myocardial infarction (0.190); Conduction disorders (0.088); ...
Rx Aspirin (0.238); Heparin (0.160); Sodium Chloride 0.9% Flush (0.130); ...
Lab Creatine Kinase (CK) [Blood] (0.613); Troponin T [Blood] (0.286); Creatine Kinase, MB Isoenzyme [Blood] (0.102).

Phenotype 10
Dx Acute kidney failure (1.000).
Rx Sodium Bicarbonate (0.246); Furosemide (0.164); Insulin (0.082); ...
Lab Creatinine [Blood] (0.409); Urea Nitrogen [Blood] (0.234); Glucose [Blood] (0.056); ...

Phenotype 11
Dx Coagulation defects (0.431); Acute and subacute necrosis of liver (0.431); Other disorders of biliary tract (0.074); ...
Rx Phytonadione (0.203); Piperacillin-Tazobactam Na (0.143); Potassium Chloride (0.142); ...
Lab Alanine Aminotransferase (ALT) [Blood] (0.246); Asparate Aminotransferase (AST) [Blood] (0.214);

Alkaline Phosphatase [Blood] (0.175); ...

Phenotype 12
Dx Diabetes mellitus (0.982); Inflammatory and toxic neuropathy (0.008); Other retinal disorders (0.005); ...
Rx Insulin (0.626); Insulin Human Regular (0.035); Potassium Chloride (0.026); ...
Lab Glucose [Blood] (0.292); Urea Nitrogen [Blood] (0.105); Creatinine [Blood] (0.078); ...

Phenotype 13
Dx Purpura and other hemorrhagic conditions (1.000).
Rx Acetaminophen (0.094); Phytonadione (0.082); Furosemide (0.077); ...
Lab Platelet Count [Blood] (0.295); Hematocrit [Blood] (0.108); Red Blood Cells [Blood] (0.095); ...

Phenotype 14
Dx Persistent mental disorders due to conditions classified elsewhere (0.208);

Transient mental disorders due to conditions classified elsewhere (0.142); Episodic mood disorders (0.121); ...
Rx Haloperidol (0.649); Quetiapine Fumarate (0.113); Olanzapine (Disintegrating Tablet) (0.111); ...
Lab Hemoglobin [Blood] (0.219); Phosphate [Blood] (0.217); RBC (Urine) (0.142); ...

Phenotype 15
Dx Hypertensive chronic kidney disease (0.499); Chronic kidney disease (ckd) (0.498);

Nephritis and nephropathy not specified as acute or chronic (0.003); ...
Rx Heparin (0.070); Metoprolol Tartrate (0.064); Sodium Chloride 0.9% Flush (0.054); ...
Lab Creatinine [Blood] (0.247); RDW [Blood] (0.167); Urea Nitrogen [Blood] (0.108); ...

Phenotype 16
Dx Chronic liver disease and cirrhosis (0.409); Liver abscess and sequelae of chronic liver disease (0.382);

Other symptoms involving abdomen and pelvis (0.085); ...
Rx Albumin 25% (12.5g / 50mL) (0.122); Lactulose (0.118); Furosemide (0.105); ...
Lab RDW [Blood] (0.133); PTT [Blood] (0.102); PT [Blood] (0.100); ...

Phenotype 17
Dx Disorders of fluid electrolyte and acid-base balance (0.995); Disorders of the pituitary gland and its hypothalamic control (0.005).
Rx None
Lab Sodium [Blood] (0.645); Chloride [Blood] (0.327); Sodium, Whole Blood [Blood] (0.015); ...

Phenotype 18
Dx Essential hypertension (0.202); Cardiac dysrhythmias (0.202); Other forms of chronic ischemic heart disease (0.202); ...
Rx None
Lab Platelet Count [Blood] (1.000).
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