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Abstract

Many models have been proposed to preserve data privacy for different data

publishing scenarios. Among these models, ε-differential privacy has drawn

increasing attention in recent years due to its rigorous privacy guarantees. While

many existing solutions using ε-differential privacy deal with relational data

and set-valued data separately, most of the real-life data, such as electronic

health records, are in heterogeneous form. Privacy protection on heterogeneous

data has not been widely studied. Furthermore, many existing works in privacy

protection consider preserving the utility for the tasks of frequent itemset mining

or classification analysis, but few works have focused on data publication for

cluster analysis. In this paper, we propose the first differentially-private solution

to release heterogeneous data for cluster analysis. The challenge facing us is how

to mask raw data without any explicit guidance. Our approach addresses this

challenge by converting a clustering problem to a classification problem, in which

class labels can be used to encode the cluster structure of the raw data and assist

the masking process. The approach generalizes the raw data probabilistically

and adds noise to them for satisfying ε-differential privacy. Through extensive

experiments on real-life datasets, we validate the performance of our approach.

Keywords: data publishing, heterogeneous data, differential privacy, cluster

Email addresses: wangrong.kiko@qq.com (Rong Wang), ben.fung@mcgill.ca (Benjamin
C. M. Fung), yzhu@swjtu.edu.cn (Yan Zhu)

The first author conducted the research during the visit at McGill University.

Preprint submitted to Knowledge-Based Systems May 16, 2020



analysis

1. Introduction

As information becomes a kind of strategic resource in the era of big data,

many organizations, such as government agencies and hospitals, release their

data (e.g., census data or medical records) to third parties in order to reveal

the hidden value of the data [1, 2]. However, directly releasing raw data may

unavoidably leak data privacy and may even violate privacy laws [3, 4]. To

address this problem, privacy-preserving data publishing (PPDP) [5] has been

studied extensively, with the goal of protecting private information by distorting

the raw data before publication while preserving as much utility of the perturbed

data as possible for subsequent data analysis.

Because of its strong privacy guarantee, ε-differential privacy [6, 7] has re-

ceived increasing attention in the literature. As the structure of the collected

data becomes much richer, many differentially-private approaches [8, 9, 10, 11]

that handle relational data or set-valued data individually are non-effective.

Relational data refer to the data in which records have a single value for each

attribute, and set-valued data refer to the data in which records have one or

more values for each attribute. Many real-life data are typically composed of

relational data and set-valued data, and they are called heterogeneous data. For

example, a patient who goes to the hospital for the first time may be asked to

fill out a form that requires his/her gender (relational), age (relational), medi-

cal history (set-valued), etc. The information is stored as a heterogeneous data

record in the hospital’s database to assist physicians in diagnosing and treating.

For heterogeneous data publishing, one naive approach is to vertically divide the

raw data into different subsets such that each subset has only one type of data

structure, and then to apply existing approaches on these subsets independently.

However, most data publishing scenarios require that the entire data be released

together so that the associations among different data types can be retained. On

the other hand, many privacy-preserving works consider preserving the utility
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for frequent itemset mining [12, 13, 14] or classification analysis [15, 16, 17], but

a very limited number of works have focused on privacy protection for cluster

analysis. Thus, we cover these gaps with a differentially-private approach to

release heterogeneous data for cluster analysis.

Consider our data release scenario as follows. The data owner wants to

release heterogeneous data (e.g., Table 1) to the data recipient for clustering.

If the data owner releases the raw data directly, the individual privacy of the

data may be leaked. Thus, private information should be masked before be-

ing released. Note that the data owner wants to release data records to the

data recipient, instead of clustering results, because unlike association rules and

classifiers, releasing the clustering results (e.g., clusters with their centroids and

sizes) may not provide enough information for further analysis. For example,

the data recipient may browse into the clustered records to find their inherent

relationship. Releasing data records not only satisfies the demand for cluster-

ing, but also gives the data recipient greater flexibility in conducting his specific

data analysis.

Table 1. Patients’ heterogeneous data (Each row of the table corresponds to a patient. The

attributes Age, Sex, and ICD codes are numerical, categorical, and set-valued, respectively.)

ID Age Sex ICD codes Class

1 21 M 21 0

2 44 M 11, 12 0

3 72 F 12 1

4 25 M 11 0

5 19 F 11, 21 0

6 36 F 21, 22 1

7 32 M 12, 21, 22 1

8 45 F 22 1

9 63 M 12, 21 1

10 28 F 11, 21, 22 1
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In this paper, we present a differentially-private algorithm to protect individ-

ual privacy while preserving as much information as possible for cluster analysis.

To tackle the challenge of lacking proper guidance for the masking process, our

approach converts the clustering problem into a classification problem. That is,

it groups the raw data into clusters and utilizes cluster/class labels to encode

the cluster structure of the data. It then generalizes the raw data iteratively

while preserving the cluster structure. At each iteration, the approach selects a

general value in a probabilistic manner and specializes the value to a more spe-

cific one. The process is repeated until certain conditions are reached. Finally,

noise is added to further guarantee ε-differential privacy. The contributions of

this paper are summarized as follows:

• We formally define the problem of differentially-private heterogeneous data

release for cluster analysis. This paper is the first work that tackles this

problem and addresses the challenges of heterogeneity and lack of guidance

in the anonymization process for cluster analysis.

• We propose a customizable approach to heterogeneous data anonymiza-

tion for cluster analysis. Users can choose different clustering algorithms

and algorithmic parameters to get their desired results. Also, a distance

metric that considers both relational and set-valued attributes is tailored

for heterogeneous data clustering.

• To satisfy the differential privacy principle, we propose an algorithm to si-

multaneously handle relational and set-valued data in a non-deterministic

fashion. Data of different types are anonymized in a similar way, which is

computationally efficient.

• We extensively evaluate the performance of the proposed cluster-oriented

approach on real-life datasets. The results suggest that our approach can

generate anonymous data of better utility compared to the general method

that does not consider the task of cluster analysis during anonymization.

The rest of the paper is organized as follows. Related work is discussed
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in Section 2. Preliminaries including the problem statement are presented in

Section 3. The proposed approach is described in Section 4, and experimental

results are presented in Section 5. A discussion of the approach is given in

Section 6. Section 7 concludes the paper.

2. Related Work

2.1. Anonymization of Different Types of Data

Relational Data Anonymization. Many privacy models had been proposed

to anonymize relational data, such as k-anonymity [18, 19], l-diversity [20], and

t-closeness [21]. Recently, researchers extend these models to provide stricter

privacy protections. Amiri et al. [22] hide the correlations between identifying

attributes and sensitive attributes and generate k-anonymous β-likeness data to

prevent identity and attribute disclosures. Agarwal et al. [23] propose a privacy

model called (P , U)-sensitive k-anonymity to protect sensitive records instead of

sensitive attributes. Zhu et al. [24] present an independent l-diversity principle

to prevent corruption attacks even if adversaries have known the correspond-

ing data publishing strategy. Soria-Comas et al. [25] propose two cluster-based

algorithms using microaggregation to attain anonymized data that satisfy t-

closeness. Wang et al. [26] also focus on the t-closeness principle and protect

the privacy of multiple sensitive attributes. Instead of employing such syntac-

tic privacy models, we adopt differential privacy [6] in this paper because it

is independent of any adversary’s knowledge and can provide a provable pri-

vacy guarantee. Mohammed et al. [27] show that differentially-private data can

be published via the addition of uncertainty during the generalization process.

Inspired by [27], we extend our research scope from relational data to heteroge-

neous data and combine the generalization technique with differential privacy.

Set-Valued Data Anonymization. Terrovitis et al. [28] propose a km-anonymity

model for set-valued data. They limit the maximum knowledge of the adver-

saries and guarantee that any set of m or less items corresponds to at least k

records that contain the set in the released data. Bewong et al. [29] present a
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clustering method based on a distance function that considers both the similar-

ity and the disclosure risk of transaction records. They prove that when the total

distance of inter-clusters is minimized, data anonymization can be achieved with

minimal utility loss. For privacy-preserving set-valued data publishing, Zhang

et al. [30] use a data partition technique to break associations among identi-

fying attributes and add noise to the final query results. Gunawan et al. [31]

propose an approach to prevent set-valued data from identity linkage attacks

while maintaining data utility and data property. Their approach consists of

two steps, i.e., grouping records based on adversaries’ knowledge and selecting

surrogate items to replace the items in the adversaries’ knowledge. We refer

to [32] for a broad review of the anonymization of relational data and set-valued

data.

Heterogeneous Data Anonymization. Poulis et al. [33] propose a (k, km)-

anonymity to prevent an adversary, who knows an individual’s information in-

cluding relational attributes and at most m items of the set-valued attribute,

from linking any individual to the corresponding record in the released data.

However, (k, km)-anonymity cannot protect the privacy of individuals with

more than m items in the set-valued attribute. To address the drawback of (k,

km)-anonymity, Wang et al. [34] introduce a (k, ρ)-anonymity model by differ-

entiating sensitive and non-sensitive items in the set-valued attribute. Their

proposed model prevents attribute disclosures by satisfying the diversity con-

straint. Wang et al. [35] propose a graph-based multifold model to anonymize

data with relational attributes and a set-valued attribute. They protect the

associations between two objects in the raw data by masking sensitive rela-

tional attributes and modeling association rules as an uncertain graph. Gong et

al. [36] propose a privacy model called (k, l)-diversity to address the disclosure

risk of the raw data in which an individual may correspond to multiple records.

The data they processed can be converted into heterogeneous data including

relational and set-valued attributes. Other works focusing on heterogeneous

data can be found in [37, 38]. However, none of these privacy-preserving works

consider the problem of cluster analysis on heterogeneous data, which is the
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primary contribution of this paper.

2.2. Data Mining with Differential Privacy

Many data mining problems with differential privacy have been studied.

Maruseac et al. [14] combine the exponential mechanism of differential pri-

vacy with reservoir sampling to mine high-confidence association rules privately.

Gong et al. [39] present a differentially-private regression analysis model. They

transform the objective function into the form of polynomial and add noise to

the coefficients of the polynomial representation. Sun et al. [15] combine differ-

ential privacy with a decision tree to provide privacy preservation of classifiers.

They also use the differentially-private mini-batch gradient descent algorithm

to protect the privacy of training data. Zhang et al. [17] propose a differential

privacy support vector machine (SVM) based on dual variable perturbation.

Their algorithm solves the dual problem of SVM first and adds Laplace random

noise to the corresponding dual variables of each support vector to be released.

Su et al. [40] address the problem of differentially-private k-means clustering.

They propose a non-interactive approach that can output a synopsis of the input

dataset for k-means. Their approach divides the input dataset into equal-size

cells and adds Laplace noise to the size of each cell. Nguyen [41] also develops

a non-interactive differentially-private approach for the cluster analysis. Com-

pared to [40], his approach focuses on the k-modes algorithm and adds geometric

noise to the final cluster centroids. Other works [16, 42, 43] also consider the

problem of data mining with differential privacy. While these works are specific

to certain data mining algorithms, our approach can be applied with different

clustering algorithms.

3. Preliminaries

Table 2 summarizes some notations used in the following.
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Table 2. Notations

Notations Explanation Notations Explanation

R universe r record

D dataset n size of dataset

D̂ neighbor dataset d number of attributes

D∗ labeled dataset dnum number of numerical attributes

D′ anonymized dataset h number of specializations

A set of attributes ε privacy budget

M mechanism f , u function

U cluster structure ∆f , ∆u global sensitivity

T cluster structure Ti ith cluster in T

P cluster structure Pj jth cluster in P

C1, C2 cluster structure x, p, c attribute value

3.1. Differential Privacy

Let R represent a finite data universe and r represent a record with d at-

tributes. A dataset D is a set of n records sampled from universe R. Two

datasets D and D̂ are defined as neighboring datasets if and only if either

D̂ = D + r or D = D̂ + r, where D + r (or D̂ + r) denotes the dataset resulted

from adding the record r to the dataset D (or D̂). The definition of differential

privacy is as follows.

Definition 1 (ε-Differential Privacy [6]). A randomized mechanism M is dif-

ferentially private if for any pair of neighboring datasets D and D̂, and for any

set of possible sanitized outputs Ω,

Pr[M (D) ∈ Ω] ≤ exp(ε)× Pr[M (D̂) ∈ Ω]. (1)

The parameter ε, called privacy budget, is used to control the level of privacy

guarantees achieved by mechanism M . A smaller ε means a stronger privacy

level. ε defaults to a positive number and its value is usually small, such as 0.1,

0.5, and 0.8 [44].
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The magnitude of added noise depends not only on the privacy budget ε but

on the global sensitivity of a randomized function. Global sensitivity reflects

the maximum difference of outputs of a function on two neighboring datasets.

Definition 2 (Global Sensitivity [6]). Given a randomized function f : D → R,

the global sensitivity of f is

∆f = max‖f(D)− f(D̂)‖1, (2)

for any pair of neighboring datasets D and D̂.

Laplace mechanism and exponential mechanism are two common principal

mechanisms to achieve differential privacy.

Definition 3 (Laplace Mechanism [45]). Given a dataset D, privacy budget

ε, and a randomized function f : D → R, which global sensitivity is ∆f , a

mechanism M (D) = f(D) + Lap(∆f/ε) satisfies ε-differential privacy.

Definition 4 (Exponential Mechanism [46]). Given a dataset D, output range

T , privacy budget ε, and a utility function u : (D,T )→ R, a mechanism M that

selects an output t ∈ T with probability proportional to exp( εu(D,t)
2∆u ) satisfies

ε-differential privacy.

There are two important properties of differential privacy. They play a vital

role in judging whether a mechanism satisfies differential privacy.

Property 1 (Sequential Composition [47]). Let M = {M1,M2, · · · ,Mm} be a

set of privacy mechanisms. If each Mi provides εi-differential privacy and M is

sequentially performed on a dataset, M will provide (
∑m
i εi)-differential privacy.

The sequential composition suggests that the privacy budget and noise ac-

cumulate linearly when a series of differential privacy is applied to the same

dataset.

Property 2 (Parallel Composition [47]). Let M = {M1,M2, · · · ,Mm} be a set

of privacy mechanisms. If each Mi provides εi-differential privacy on a disjointed

subset of a dataset, M will provide (max{ε1, ε2, · · · , εm})-differential privacy.
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The parallel composition suggests that the degree of privacy protection de-

pends upon the maximum value of εi when a series of differential privacy is

applied to different subsets of a dataset.

3.2. Problem Statement

Suppose that the data owner wants to release person-specific data (e.g., Ta-

ble 1) to the data recipient for cluster analysis. The raw data can be defined as

a set of records D = {r1, r2, · · · , rn}, where each record ri (1 ≤ i ≤ n) repre-

sents the information of an individual with d attributes A = {A1, A2, · · · , Ad}.

We assume that each attribute Aj (1 ≤ j ≤ d) can be categorical, numerical or

set-valued and that a taxonomy tree is given for each categorical or set-valued

attribute. Note that explicit identifiers, such as name and driver’s license num-

ber, should be removed before publication and are not discussed in the following.

In this paper, we focus on differentially-private heterogeneous data release

for cluster analysis. The task of cluster analysis is to divide objects into groups

such that similar objects are in the same group and dissimilar objects are in

different groups. The clustering result can be represented by a cluster structure.

Definition 5 (Cluster Structure). Let g be the number of clusters. The cluster

structure of a dataset D = {r1, r2, · · · , rn} is defined as a matrix Un×g, where

each element ei,j ∈ {1, 0} (1 ≤ i ≤ n, 1 ≤ j ≤ g) denotes the clustering

assignment of record ri to the jth cluster; that is, record ri belongs to the jth

cluster while ei,j is equal to 1, and do not while ei,j is equal to 0.

Based on the above assumptions, our problem statement can be defined as:

Definition 6 (Differentially-Private Heterogeneous Data Release for Cluster

Analysis). Given a dataset D = {r1, r2, · · · , rn} and privacy budget ε, the prob-

lem of anonymization on heterogeneous data for cluster analysis is to anonymize

D on attributes of different types such that the anonymized dataset D′ =

{r′1, r′2, · · · } (1) satisfies ε-differential privacy and (2) maintains the similarity

of the cluster structure of D as much as possible.
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Fig. 1. Overview of the proposed approach

Metrics of the similarity of two cluster structures will be discussed in Sec-

tion 5.3.

4. Proposed Approach

In this section, we first present an overview of our approach to the problem

of heterogeneous data anonymization for cluster analysis. We then elaborate

details of the proposed differentially-private algorithm. Finally, we analyze the

privacy guarantee and the time complexity of the algorithm.

4.1. Overview

Fig. 1 gives an overview of the proposed approach. In step 1©, the data

owner employs a clustering algorithm on the raw dataset D to obtain the initial

cluster structure. Records in the same cluster are assigned the same cluster

label. Compared with D, the labeled dataset D∗ has d + 1 attributes A∗ =

{A1, A2, · · · , Ad, Class}, where Class denotes the Class attribute; namely, in

addition to the d original attributes from D, each record ri in D∗ has a clus-

ter/class label. Therefore, preserving the cluster structure of D means preserv-

ing the ability to identify these class labels during anonymization. In step 2©,

the proposed differentially-private algorithm is executed on D∗ to obtain the

anonymized dataset D′. If the utility of D′ is unsatisfactory, the data owner

can return to the first step and tune algorithmic parameters, such as taxonomy

trees, choice of clustering algorithms, and the number of clusters (see step 3©).

Repeat steps 1©- 3© until D′ with the desired utility is obtained. In step 4©, the

data owner releases D′ to a data recipient.
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Fig. 2. Example of a partition tree

4.2. Proposed Differentially-Private Generalization Algorithm

We propose a differentially-private generalization algorithm called DPHeter

for heterogeneous data, which is significantly modified based on the top-down

specialization (TDS) technique [48] due to its efficiency. The specialization

starts with the most general state and goes down iteratively by replacing some

values with more specific values until reaching the predefined number of spe-

cializations. A specialization, denoted by p → Children(p), replaces a par-

ent value p with its directly connected child values Children(p) according to

the corresponding taxonomy tree. For example, in Fig. 3 Children([19, 75)) =

{[19, 45), [45, 75)}, Children(ANY SEX) = {M,F}, and Children(∗∗) = {1∗, 2∗}.

We use the terms “child nodes” and “child values” interchangeably. We also

refer the parent value that can be replaced with its directly connected child

values to as “cut” in the following.

Example 1. Fig. 2 shows a process of the TDS technique on the data of Table 1.

At first, each value is generalized to the topmost value of its corresponding

taxonomy tree shown in Fig. 3, and the initial ∪Cut is {[19, 75), ANY SEX, ∗∗}.

Suppose that the ANY SEX cut is selected to split downwards. Then the

root of the partition tree in Fig. 2 will have two new child nodes because of

ANY SEX → M,F , and the current ∪Cut is updated to {[19, 75),M, F, ∗∗}.

�

To ensure that the specialization process satisfies ε-differential privacy, the

key is to make sure every step in the anonymization process is differentially-
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Fig. 3. Taxonomy trees of the attributes Age, Sex, and ICD codes

private. The essential steps include cut selection and record partition.

4.2.1. Selection of Cuts

We choose the exponential mechanism (Definition 4) to select cuts because

the mechanism is designed for discrete alternatives. According to Definition 4,

a utility function is required. In this paper, we adopt the information gain

between attributes and class labels as our utility function. This is because

each specialization on a cut tends to increase information by producing specific

attribute values and the information gain has the ability to make the class labels

“more predictable” based on these values.

The entropy of an attribute value x in a dataset D is calculated as:

Hx(D) = −
∑

cls∈Ω(Class)

|Dcls
x |
|Dx|

× log2
|Dcls

x |
|Dx|

, (3)

where Ω(Class) is the domain of the Class attribute in D, Dx is the set of data

records in D whose attribute values can be generalized to x, Dcls
x is the set

of data records in Dx that contain the class label cls, and | · | is the size of a

dataset.

The utility function/score of an attribute value p that is generalized to its

child values is defined as:

u(p) = Hp(D)−
∑

c∈Children(p)

|Dc|
|Dp|

Hc(D). (4)

where Children(p) is the child values of p, and Dp =
∑
c∈Children(p)Dc.
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The global sensitivity (Definition 2) of u(p) is log2|Ω(Class)|, where |Ω(Class)|

is the domain size of the Class attribute. This is because Hp(D) is in the range of

[0, log2|Ω(Class)|], and
∑
c∈Children(p)

|Dc|
|Dp|Hc(D) is in the range of [0, Hp(D)].

Thus, the change of u(p) is not greater than log2|Ω(Class)| no matter whether

adding or removing any record.

In each round of specialization, we first compute the utility score of each

cut candidate according to (4), and then probabilistically choose a cut to split

downwards according to the exponential mechanism.

Example 2. Continue to consider the data of Table 1 and taxonomy trees in

Fig. 3. Children(ANY SEX) = {M,F}. According to (4), the utility score of

ANY SEX is calculated as:

HANY SEX(D) = −(
4

10
× log2

4

10
+

6

10
× log2

6

10
) = 0.9709

HM (D) = −(
3

5
× log2

3

5
+

2

5
× log2

2

5
) = 0.9709

HF (D) = −(
4

5
× log2

4

5
+

1

5
× log2

1

5
) = 0.7219

u(ANY SEX) = HANY SEX(D)− [
5

10
×HM (D) +

5

10
×HF (D)] = 0.1245

Similar to the above calculation, u([19, 75)) = 0.2812, and u(∗∗) = 0.0954.

According to the exponential mechanism, the possibility of [19, 75), ANY SEX,

or ∗∗ being selected as the current cut is 56.12%( 0.2812
0.2812+0.1245+0.0954 ≈ 0.5612),

24.85%( 0.1245
0.2812+0.1245+0.0954 ≈ 0.2485), or 19.04%( 0.0954

0.2812+0.1245+0.0954 ≈ 0.1904),

respectively. �

4.2.2. Partition of Records

After a cut is selected, the raw records are divided into different groups. The

partition strategy for categorical attributes is fixed because of their predefined

taxonomy trees, so the global sensitivity of the partition function of categorical

attributes is 1. Thus, the step of record partitioning satisfies differential pri-

vacy, according to the currently selected categorical cut and the corresponding

taxonomy tree.

Compared with categorical attributes, the difference in the specialization on

set-valued attributes is the existence of the combination of child nodes. Suppose
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a set-valued cut p is selected and it has t child nodes in its corresponding taxon-

omy tree. The specialization on p will produce a total of (2t − 1) child groups.

To improve the efficiency of DPHeter, empty child groups should be pruned

as early as possible. Because of the indeterminacy required by differential pri-

vacy, we treat a child group as “non-empty” by verifying whether its noisy size

(generated by the Laplace mechanism) is greater than a threshold. That is, if

the noisy size of a sub-partition is greater than a threshold, the sub-partition

is preserved; otherwise, it is treated as “empty” and should be pruned. The

threshold can be controlled by the data owner.

As mentioned in [48], there is no need to provide taxonomy trees for numeri-

cal attributes. If a numerical cut is selected to split downwards, its correspond-

ing taxonomy tree will be dynamically generated or expanded when searching

for a split value of the cut. A split value should not be randomly selected for a

cut because the probability of choosing the same value from a dataset not con-

taining this value is 0. This means the selection on a split value for a numerical

attribute is probabilistic. We again use the exponential mechanism. The utility

score of each attribute value in the range of the numerical cut is computed, and

the exponential mechanism is used to select an attribute value as the split value

for the numerical cut. The probability of selecting an attribute value c as the

split value for a numerical cut p is defined as:

Pr[split value← c] =
exp( ε

2∆uu(c))∑
xi∈I(p) exp(

ε
2∆uu(xi))

, (5)

where ε is the privacy budget assigned for this selection, ∆u is the global sensi-

tivity of Equation (4), u(c) (or u(xi)) is the utility score of c (or xi), and I(p)

is the set of attribute values in the range of cut p.

Example 3. The Age attribute in Table 1 is initially generalized to the [19,

75) cut. If the [19, 75) cut is selected to split, we calculate the utility score of

each attribute value located in the range of [19, 75) and probabilistically select

a value as the split value of the [19, 75) cut. Consider the first value 21 and the

Class attribute in Table 1; then, based on Equation (4), u(21) is calculated as

15



follows:

H21(D) = −(
4

10
× log2

4

10
+

6

10
× log2

6

10
) = 0.9709

H[19,21)(D) = −(
1

1
× log2

1

1
+

0

1
× log2

0

1
) = 0

H[21,75)(D) = −(
3

9
× log2

3

9
+

6

9
× log2

6

9
) = 0.9182

u(21) = H21(D)− [
1

10
×H[19,21)(D) +

9

10
×H[21,75)(D)] = 0.1445

After all u(·) are calculated, Equation (5) is used to calculate the probability

for each value to be selected as the real split value. Suppose 45 is selected as the

real split value of the [19, 75) cut, then the taxonomy tree of the Age attribute

will be expanded as the one shown in Fig. 3. �

4.2.3. Implementation

DPHeter is depicted in Algorithm 1. First, split values are initialized for

dnum numerical attributes, where dnum is the number of numerical attributes

(Line 4). Then, for each round of specialization, a cut is probabilistically se-

lected (Line 7). If the cut is set-valued, its non-empty child nodes should be

verified to determine whether they are really “non-empty” (Lines 8-10); if the

cut is numerical, a split value is chosen for it (Lines 12-13). Note that the two

situations are mutually exclusive. The exact number of records in each leaf par-

tition node cannot be directly published because for different data, the number

may be different. This difference can be masked by adding noise to the number

of records in each node (Lines 16-18). For example, the dotted arrows in Fig. 2

describe this step. We use ε
2 to guide the partition process and the rest ε

2 to

obtain the noisy size of leaf partition nodes. ε
2 is distributed evenly to all steps

of the partition process, so the privacy budgets assigned for these steps is set to

ε
2(dnum+2h) (Line 3).

4.2.4. Analysis of the Privacy

Theorem 1. DPHeter satisfies ε-differential privacy.

Proof. In Line 5, DPHeter initializes a split value for each of dnum numerical

attributes by the exponential mechanism. The privacy budget cost by each
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Algorithm 1: DPHeter
Input: D: raw dataset

ε: privacy budget

h: number of specializations

Output: D′: anonymized dataset

1 initialize each value in D to the root value of its corresponding taxonomy tree;

2 ∪Cut0 = {all root values};

3 ε′ = ε
2(dnum+2h)

;

4 choose a split value for each numerical attribute with the probability calculated by (5);

5 compute the utility score of each candidate ∀v ∈ ∪Cut0 according to (4);

6 for i=1 to h do

7 select p ∈ ∪Cuti−1 with the probability proportional to exp( ε′
2∆uu(v));

8 if p is set-valued then

9 compute a noisy size for each of its non-empty child nodes using the Laplace

mechanism with ε′;

10 the non-empty child nodes of noisy sizes > 1/ε′ are determined “true non-empty”;

11 specialize p on D and update ∪Cuti;

12 if p is numerical then

13 choose its split value with the probability calculated by (5);

14 update the utility score for each new Cut added to ∪Cuti according to (4);

15 D′ = ∅;

16 for ∀node ∈ {leaf nodes of the partition tree} do

17 add noise to the number of records in node using the Laplace mechanism with ε
2 ;

18 D′ = D′ ∪ {records in node};

19 return D′;

17



exponential mechanism is ε′, so Line 5 guarantees ε′ × dnum-differential pri-

vacy according to the sequential composition property (Property 1). In Line 7,

DPHeter selects a cut to split using the exponential mechanism, and this step

satisfies ε′-differential privacy. In Lines 8-10, the set-valued cut produces “non-

empty” partition nodes by the Laplace mechanism with ε′ privacy budget. In

Lines 12-13, DPHeter probabilistically selects a split value for a new numerical

cut by the exponential mechanism. Thus, if the cut is categorical, set-valued, or

numerical, the required privacy budget cost by one specialization (Lines 6-14)

will be ε′, 2ε′, or 2ε′, respectively. The algorithm finally returns the fuzzy num-

ber of records in each group in Lines 16-18 by the Laplace mechanism. These

steps guarantee ε
2 -differential privacy.

Each non-deterministic step of DPHeter is differentially-private, and the

total privacy budget is not greater than ε. Therefore, DPHeter satisfies ε-

differential privacy due to the sequential composition property.

4.2.5. Analysis of the Time Complexity

Theorem 2. The time complexity of DPHeter is bounded by O(h× nlogn2 ).

Proof. In Algorithm 1, choosing a split value for a numerical attribute requires

O(nlogn2 ), where n is the size of the input dataset. Line 4 determines split values

for dnum numerical attributes, which takes O(dnum × nlogn2 ). Line 5 is done by

scanning the input dataset with d attributes, which takes O(d × nlogn2 ). Then

instead of scanning all data records, DPHeter calculates utility scores based

on some information maintained for candidates in ∪Cuti; thus, Line 14 only

requires O(n). According to Definition 4, the cost of the exponential mecha-

nism is proportional to the number of discrete cuts, from which the mechanism

chooses a cut; thus, the cost of Line 7 is O(| ∪ Cuti|), where | ∪ Cuti| is the

size of ∪Cuti. Lines 12-13 selects a split value for a numerical attribute and

requires O(nlogn2 ). Usually | ∪ Cuti| is much smaller than n. Thus, the cost of

Lines 6-14 is O(h× nlogn2 ).

Other lines of Algorithm 1 can be done in constant O(1) time. Hence, the

total runtime of DPHeter is O(h× nlogn2 ).
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5. Experimental Evaluation

In this section, we evaluate the performance of our approach. First, we study

the quality of the clusters by satisfying different differential privacies. Second,

we evaluate the quality of the clusters of the anonymized dataset generated

by our approach and those generated by a general method without focusing

on cluster analysis during anonymization. Third, we investigate the impact of

using different clustering algorithms before and after anonymization. Fourth,

we evaluate the scalability of our approach.

All experiments were performed on a PC with a 3.4 GHz @Intel core i7 CPU

and 16 GB of RAM running Windows 10 (64-bit). Each result presented below

is the average over 5 runs.

5.1. Datasets

Two publicly available datasets, i.e., Adult and MIMIC -III, were used in

our experiments. The Adult3 dataset contains census records, and the litera-

ture indicates that it has been used extensively for testing anonymization ap-

proaches [24, 8, 22, 42, 16, 26]. In our experiments, we removed the class label

and used this dataset for cluster analysis. In order to synthesize a heterogeneous

dataset, we assumed an individual can have multiple occupations, and then we

combined records with the same attribute values, with the exception of occupa-

tion, into one record, thereby making the occupation attribute as set-valued. For

the synthesis processing, we abandoned three numerical attributes (i.e., fnlwg,

capital-gain, and capital-loss) because they could result in fewer heterogeneous

records. Thus, we retained 28,308 records with seven categorical attributes, six

numerical attributes, and one set-valued attribute. For simplicity, we also called

the synthesized dataset Adult.

The second dataset, MIMIC -III [49], is an important public source for

healthcare research. It consists of some tables of clinical notes, including nursing

3https://archive.ics.uci.edu/ml/datasets/adult
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records and discharge summaries. Specifically, we joined three tables, i.e., AD-

MISSIONS, PATIENTS, and DIAGNOSES ICD, together based on the subject id

column they shared. Then, we combined multiple ICD-9 codes of the same

subject id into one row. We retrieved 48,612 records and selected seven cat-

egorical attributes (i.e., gender, marital status, religion, ethnicity, admission

type, insurance method, and admission source) and one set-valued attribute (i.e.,

ICD-9 codes). MIMIC is the abbreviated form of MIMIC -III in the following.

5.2. Clustering Algorithms

We chose k-means [50] and bisecting k-means [51] to get clusters in steps 1©

and 3© in Fig. 1 because they contain only one algorithmic parameter, i.e., the

number of clusters, k. Rather than considering different combinations of cluster-

ing parameters, we focus on the evaluation of the performance of our approach.

Any clustering algorithm requires certain method of measuring the distance or

the similarity between objects. We here introduce a semantic distance metric

of two heterogeneous records. If we let x1, x2 denote two attribute values from

the same domain, the distance between x1 and x2 is calculated as:

dist(x1, x2) =
path(x1, x2)

2H
, (6)

where path(x1, x2) is the length of the shortest path between x1 and x2, and H is

the height of the corresponding taxonomy tree. The advantage of the normalized

definition is that all leaf nodes of the taxonomy tree can have different depths.

The distance between two heterogeneous records, i.e., r1 and r2, is defined as:

dist(r1, r2) =

d∑
i=1

wi × dist(xi1, xi2), (7)

where d is the number of attributes, and wi (0 < wi < 1) is the weight for the ith

attribute for flexibility. In our experiments, we set all wi (1 ≤ i ≤ d,
∑d
i=1 wi =

1) as equal.

5.3. Metrics

The goal of PPDP is to protect the private information of the raw dataset

while preserving considerable data utility. We measured the data utility by
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the similarity of the cluster structures before and after anonymization. That

is, the more similar the cluster structures before and after anonymization are,

the higher the utility of the anonymized dataset is. In our experiments, two

metrics, i.e., F-Measure and MatchPoint, were used to measure the similarity

of two cluster structures.

5.3.1. F-Measure

F-Measure [52] is used extensively to evaluate the similarity of two cluster

structures. Consider two cluster structures T and P, and treat each cluster Ti

in T as a “true cluster”, and treat each cluster Pj in P as a “prediction cluster”.

Let numij denote the number of records contained in both Ti and Pj , and let | · |

denote the number of objects in a cluster. The Precision, Recall, and F-Measure

of Ti and Pj are calculated as:

Precision(Ti, Pj) =
numij

|Pj |
, (8)

which is the ratio of true relevant records in the prediction cluster divided by

all records in the prediction cluster,

Recall(Ti, Pj) =
numij

|Ti|
, (9)

which is the ratio of true relevant records in the prediction cluster divided by

all records in the true cluster, and

F (Ti, Pj) = 2× Precision(Ti, Pj)×Recall(Ti, Pj)
Precision(Ti, Pj) +Recall(Ti, Pj)

, (10)

which measures the accuracy of the prediction of cluster Pj , which describes the

true cluster Ti based on Precision and Recall.

The successful prediction of a true cluster Ti is measured by the “best”

prediction cluster Pj for Ti, i.e., Pj maximizes F (Ti, Pj). Thus, the sum of the

weighted maximum F-Measures is used to evaluate the quality of P, and the

overall F-Measures of P are calculated as:

F-Measures(P) =
∑
Ti∈T

|Ti|
|D|

max
Pj∈P

F (Ti, Pj), (11)
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where |D| is the number of records in the raw dataset, D. F-Measures(P) is in

the range of [0, 1]. The larger the value of F-Measures(P) is, the more similar

are the two cluster structures that are compared.

5.3.2. MatchPoint

Two cluster structures C1 and C2 are treated as similar if (1) two records

that stay in the same cluster in C1 are kept together in C2, and (2) two records

that stay in different clusters in C1 are divided into different clusters in C2 [53].

For each cluster structure, a square matrix Matrix(·) is generated to represent

the relationship between each pair of records. That is, the (i, j)th element in

Matrix(·) is equal to 1 if the ith record and the jth record are in the same

cluster; otherwise it is equal to 0. Then, MatchPoint is defined to represent the

percentage of the same values appearing in Matrix(C1) and Matrix(C2):

MatchPoint(Matrix(C1),Matrix(C2)) =

∑
1≤i,j≤|D|

mij

|D|2
, (12)

where mij is equal to 1 if the values of the (i, j)th element in Matrix(C1) and

Matrix(C2) are the same; otherwise, mij is equal to 0, and |D| is the number of

records in the raw dataset, D. MatchPoint is in the range of [0, 1]. The larger

the value of MatchPoint is, the more similar are the two cluster structures that

are compared.

5.4. Analysis of the Results

5.4.1. Data Utility and Privacy

In this experiment, we varied the privacy budget ε, the number of specializa-

tions h, and the number of clusters k, to observe F-Measure and MatchPoint.

Figs. 4-7 show the results on Adult. Among these results, Fig. 5a shows that the

minimum F-Measure was 0.5408 when ε = 0.1 and h = 4. Fig. 5a also shows

that the maximum F-Measure was 0.7840 when ε = 1 and h = 16. Compared

with the F-Measure, the spans of the MatchPoint values for different values of

ε and h were smaller, roughly in the range of [0.7270, 0.9314]. There was an
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obvious trend that indicated that the values of F-Measure increased as ε in-

creased since a higher ε resulted in less perturbation and less noise. In addition,

F-Measure and MatchPoint also increased as h increased because more detailed

information was preserved in the anonymized dataset for clustering. However,

starting from a certain level of h, F-Measure and MatchPoint remained the same

or decreased as h increased further. This is because a higher value of h corre-

sponded to more leaf nodes in the partition tree, and the greater the number of

leaf nodes became, the more noise was produced from the Laplace mechanism

that was acting on the number of records in these leaf nodes. Figs. 8-11 show

the similar trends of the F-Measure and MatchPoint values for MIMIC, with

the only difference being in the case of the values of ε and h when getting the

best performance. These results demonstrate that DPHeter can keep a simi-

lar cluster structure of the raw dataset after anonymization even for different

anonymity requirements.

(a) F-Measure (b) MatchPoint

Fig. 4. Data utility of the anonymized Adult over 3-means
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(a) F-Measure (b) MatchPoint

Fig. 5. Data utility of the anonymized Adult over 5-means

(a) F-Measure (b) MatchPoint

Fig. 6. Data utility of the anonymized Adult over bisecting 3-means

(a) F-Measure (b) MatchPoint

Fig. 7. Data utility of the anonymized Adult over bisecting 5-means
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(a) F-Measure (b) MatchPoint

Fig. 8. Data utility of the anonymized MIMIC over 3-means

(a) F-Measure (b) MatchPoint

Fig. 9. Data utility of the anonymized MIMIC over 5-means

(a) F-Measure (b) MatchPoint

Fig. 10. Data utility of the anonymized MIMIC over bisecting 3-means
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(a) F-Measure (b) MatchPoint

Fig. 11. Data utility of the anonymized MIMIC over bisecting 5-means

5.4.2. Data Utility over Different Anonymization Algorithms

To verify whether the cluster quality of our cluster-oriented algorithm is

better than that of a generally differentially-private method without such focus,

we compared our algorithm with the (ε, δ)-differential privacy [54] in the ARX

tool [55]. The (ε, δ)-differential privacy is a relaxation version of ε-differential

privacy since the former allows an error probability bounded by δ. Because only

relational data can be input to ARX, we first converted heterogeneous Adult and

MIMIC into relational data. Specifically, a binary attribute would be created

for each value of set-valued attributes. For example, if an attribute is set-valued

and has 2 values, i.e., x1 and x2, then the pattern for records will be “0 1”, “1

0”, or “1 1”. Such conversion is only executed for ARX, not for DPHeter. We

set δ = 1E-5 and δ = 1E-11 for (ε, δ)-differential privacy because the two values

are the maximal and minimal acceptable values, respectively, in the case of the

tool. We fixed h = 16 for DPHeter.

Figs. 12-15 show the results. These figures suggest that the values of F-

Measure of DPHeter clearly were better than those of (ε, δ)-differential privacy

over every privacy budget. For example, in Figs. 12a and 14a, even when ε =

0.1, our F-Measure for Adult was 0.6331, and the one for MIMIC was 0.6428,

while the F-Measures of (ε, δ)-differential privacy for Adult and MIMIC were

only 0.2015 and 0.3328 respectively when δ = 1E-5. However, the differences

between the MatchPoint values were smaller. This is because the cases in which
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two records stayed in different clusters before and after anonymization also

contributed to the value of MatchPoint.

We also conducted a series of one-tailed t-tests on pairs of test cases when

0.1 ≤ ε ≤ 1 to evaluate the improvement of DPHeter over the (ε, 1E-5)-

differential privacy in the ARX tool. The results shown in Table 3 demonstrate

that the improvement of DPHeter was statistically significant at α = 5%. From

these results, it can be claimed that our approach outperformed the general

anonymization method in terms of cluster quality. In addition, the improve-

ment was unlikely to have happened by accident.

(a) F-Measure (b) MatchPoint

Fig. 12. Different anonymization algorithms on Adult using 5-means

(a) F-Measure (b) MatchPoint

Fig. 13. Different anonymization algorithms on Adult using bisecting 5-means
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(a) F-Measure (b) MatchPoint

Fig. 14. Different anonymization algorithms on MIMIC using 5-means

(a) F-Measure (b) MatchPoint

Fig. 15. Different anonymization algorithms on MIMIC using bisecting 5-means

Table 3. The p-values for one-tailed t-tests on F-Measure and MatchPoint

5-means bisecting 5-means

F-Measure MatchPoint F-Measure MatchPoint

Adult 7.47E-8 2.21E-5 8.26E-9 6.94E-5

MIMIC 3.93E-8 9.13E-6 8.03E-8 7.23E-5

5.4.3. Data Utility over Different Clustering Algorithms

In this experiment, we studied the data utility in the case that the data

recipient applies a different clustering algorithm from the one used by the data

owner. That is, different clustering algorithms were used in steps 1© and 3©

in Fig. 2. We applied 5-means and bisecting 5-means in two different orders,
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denoted by (bisecting 5-means→ 5-means) and (5-means→ bisecting 5-means).

Figs. 16-17 show the data utility of the anonymized Adult and MIMIC, respec-

tively. Except for the cases of ε = 0.25 and h = 4 in Fig. 17c, all values

of F-Measure were higher than 0.5. Specifically, the largest F-Measure values

were 0.7660 and 0.7577 for Adult and MIMIC in Figs. 16a and 17a, respectively.

All values of MatchPoint were higher than 0.7206, and the average MatchPoint

values were 0.8127 and 0.8401 for Adult and MIMIC, respectively. These results

suggest that DPHeter can obtain good data utility even using different clus-

tering algorithms. Note that the distance metric between records used in these

different clustering algorithms should remain the same or be similar. Otherwise,

the cluster structures produced by different clustering algorithms may be totally

different.

Compared with the experimental results in subsection 5.4.2, the data utility

over different clustering algorithms may not be very stable. For example, in

Fig. 17c the average value of F-Measure at h = 20 was only 0.5719, which was

smaller than the average values at h = 12 and h = 16. It can be concluded that

the cluster structure produced by one clustering algorithm may be different

from the structure produced by another clustering algorithm because of their

different search criteria.
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(a) F-Measure (5-means → bisecting 5-means) (b) MatchPoint (5-means → bisecting 5-means)

(c) F-Measure (bisecting 5-means → 5-means) (d) MatchPoint (bisecting 5-means → 5-means)

Fig. 16. Different clustering algorithms on Adult
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(a) F-Measure (5-means → bisecting 5-means) (b) MatchPoint (5-means → bisecting 5-means)

(c) F-Measure (bisecting 5-means → 5-means) (d) MatchPoint (bisecting 5-means → 5-means)

Fig. 17. Different clustering algorithms on MIMIC

5.4.4. Scalability

DPHeter was compared with the (ε, δ)-differential privacy in ARX in terms

of scalability. Similar to the experiments in Section 5.4.2, we set δ = 1E-5 and

δ = 1E-11 for (ε, δ)-differential privacy and h = 16 for DPHeter. We also fixed

ε = 1 and did 5-means clustering. We generated multiple versions of Adult and

MIMIC by randomly duplicating their records. For comparison, Fig. 18 shows

the results of DPHeter and ARX on Adult and MIMIC with 200,000 to 1000,000

data records. This figure shows that ARX is more efficient than DPHeter in

terms of runtime because ARX does not consider data analysis tasks. When

searching for split values for the numerical attributes, DPHeter calculates the

utility scores of all possible numerical values in the current value range. When

splitting set-valued attributes, DPHeter considers a combination of child nodes

of the current parent node according to the taxonomy tree. We accelerated the

running speed of DPHeter by maintaining and updating information, which was
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required by each utility score calculation, instead of repeatedly scanning all data

records. Also, it was evident that the time spent on MIMIC was more than that

the time spent on Adult. This is because there are thousands of ICD-9 codes in

MIMIC, and the corresponding taxonomy tree is much larger than that of the

occupation attribute in Adult, which means more calculation time is required

when the ICD-9 code attribute is selected to split.

(a) Adult (b) MIMIC

Fig. 18. Scalability on Adult and MIMIC

6. Discussion

Adaptability of DPHeter. Although only k-means and bisecting k-means

were used in Section 5 to evaluate the performance of DPHeter, other clustering

algorithms, such as DBSCAN [56], can be integrated into our approach; namely,

other clustering algorithms can be applied to steps 1© and 3© in Fig. 1. Our

proposed approach provides a flexible framework in which the clustering algo-

rithms can be viewed as “plug-in” components. DPHeter utilizes the clustering

results to anonymize the raw data, not the clustering algorithms. However, it is

worth noting that the distance metric used for clustering before and after data

anonymization should remain the same, or at least be similar, for better data

utility. Otherwise, the cluster structures produced by different clustering strate-

gies may be totally different. We also emphasize that the focus of DPHeter is

on preserving the similarity of cluster structures before and after data publi-

cation. If the raw data are not suitable for cluster analysis or produce a poor
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clustering result by some clustering algorithm, DPHeter cannot help the data

or their anonymous version yield a better one.

Optimality of DPHeter. DPHeter produces a sub-optimal solution rather

than the optimal solution. This is because it utilizes the exponential mechanism

to probabilistically select split values for numerical attributes and cuts to be spe-

cialized, which means different selections might provide better anonymization.

However, this also is an inherent limitation of differential privacy techniques.

7. Conclusions and Future Work

In this paper, we introduced an approach to release heterogeneous data for

cluster analysis. The proposed approach utilizes cluster labels to encode the

cluster structure and combines the generalization technique with output per-

turbation to mask raw data. The experimental results showed that the utility

of the anonymized data produced by our cluster-oriented approach was signifi-

cantly better than that of the anonymized data produced by the method without

initially considering cluster analysis.

We have planned some directions for our future work. First, we will extend

our differentially-private centralized algorithm to the scenario of distributed

data publications for cluster analysis. Secure protocols must be studied to

exchange information among different parties. Second, the generalization tech-

nique is context-dependent and cannot handle high-dimensional data. Other

anonymization techniques combined with differential privacy are worth consid-

ering.
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