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Abstract We present an approach of limiting the confidence of inferring sensitive
properties to protect against the threats caused by data mining abilities. The prob-
lem has dual goals: preserve the information for a wanted data analysis request and
limit the usefulness of unwanted sensitive inferences that may be derived from the
release of data. Sensitive inferences are specified by a set of “privacy templates”.
Each template specifies the sensitive property to be protected, the attributes iden-
tifying a group of individuals, and a maximum threshold for the confidence of
inferring the sensitive property given the identifying attributes. We show that sup-
pressing the domain values monotonically decreases the maximum confidence of
such sensitive inferences. Hence, we propose a data transformation that minimally
suppresses the domain values in the data to satisfy the set of privacy templates.
The transformed data is free of sensitive inferences even in the presence of data
mining algorithms. The prior k-anonymizationfocuses on personal identities. This
work focuses on the association between personal identities and sensitive proper-
ties.

Keywords Privacy protection · k-anonymity · Sensitive inference · Data mining ·
Classification · Data sharing

1 Introduction

Knowledge Discovery in Databases (KDD) or data mining aims at finding out new
knowledge about an application domain using collected data on the domain, typ-
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Table 1 The initial table

Job Country Child Bankruptcy Rating No. of records

Cook US No Current 0G/4B 4
Artist France No Current 1G/3B 4
Doctor US Yes Never 4G/2B 6
Trader UK No Discharged 4G/0B 4
Trader UK No Never 1G/0B 1
Trader Canada No Never 1G/0B 1
Clerk Canada No Never 3G/0B 3
Clerk Canada No Discharged 1G/0B 1
Total 24

ically data on individual entities like persons, companies, transactions. Naturally,
the general concerns over data security and individual privacy are relevant for data
mining. The first concern relates to the input of data mining methods due to data
access. Many techniques have been proposed [4, 6, 8, 9, 11, 17, 21] to address
this problem while preserving the benefits of data mining. The second concern is
related to the output of data mining methods. Although the output of data min-
ing methods are aggregate patterns, not intended to identify single individuals,
they can be used to infer sensitive properties about individuals. In this paper, we
consider the privacy threats caused by such “data mining abilities”. Let us first
consider an example.

Example 1 (Running Example) Table 1 contains records about bank customers.
After removing irrelevant attributes, each row represents the duplicate records and
the count. The class attribute Rating contains the class frequency of credit rating.
For example, 0G/4B represents 0 Good and 4 Bad. Suppose that the bank (the data
owner) wants to release the data to a data mining firm for classification analysis
on Rating, but does not want the data mining firm to infer the bankruptcy state
Discharged using the attributes Job and Country. For example, out of the five
individuals with Job = Trader and Country = U K , four has the Discharged
status. Therefore, the rule {Trader, UK} → Discharged has support 5 and con-
fidence 80%. If the data owner tolerates no more than 75% confidence for this
inference, the data is not safe for release. In general, currently bankrupted cus-
tomers have a bad rating and simply removing the Bankruptcy column loses too
much information for the classification analysis.

The private information illustrated in this example has the form “if x then y”,
where x identifies a group of individuals and y is a sensitive property. We con-
sider this inference “private” if its confidence is high, in which case an individual
in the group identified by x tends to be linked to y. The higher the confidence,
the stronger the linking. In the context of data mining, association or classifica-
tion rules [1, 15] are used to capture general patterns of large populations for
summarization and prediction, where a low support means the lack of statistical
significance. In the context of privacy protection, however, inference rules are used
to infer sensitive properties about the existing individuals, and it is important to
eliminate sensitive inferences of any support, large or small. In fact, a sensitive
inference in a small group could present even more threats than in a large group
because individuals in a small group are more identifiable [16].
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The problem considered in this paper can be described as follow. The data
owner wants to release a version of data in the format

T (M1, . . . , Mm, �1, . . . , �n, �)

to achieve two goals. The privacy goal is to limit the ability of data mining tools to
derive inferences about sensitive attributes �1, . . . , �n . This requirement is spec-
ified using one or more templates of the form, 〈QID → π, h〉, where π is a “value”
or “property” from some �i , quasi-identifier QID is a set of “attributes” not con-
taining �i , and h is a threshold on confidence. Each value over QID identifies a
group of individuals. The data satisfies 〈QID → π, h〉 if every inference matching
the template has a confidence no more than h. The privacy goal is achieved by sup-
pressing some values on masking attributes M1, . . . , Mm . The data analysis goal
is to preserve as much information as possible for a specified data analysis task.
To measure the “information” in a concrete way, we primarily consider the task of
modeling some class attribute � in the data. Other notions of information utility
can be captured by replacing the information component of our metric, therefore,
require little modification to our approach. We assume that attributes �1, . . . , �n
and M1, . . . , Mm are important, thus, simply removing them fails to address the
classification goal. We are interested in a suppression of values for M1, . . . , Mm
that achieves both goals.

Example 2 In Example 1, the inference {Trader, UK} → Discharged violates the
template

〈{Job, Country} → Discharged, 75%〉.
To eliminate this inference, we can suppress Trader and Clerk to a special value
⊥Job, and suppress UK and Canada to a special value ⊥Country, see Table 2. Now,
the new inference {⊥Job,⊥Country} → Discharged has confidence 50%, less than
the specified 75%. No information is lost since Rating does not depend on the
distinction of the suppressed values Trader and Clerk, UK and Canada.

Several points are worth noting.
First, the use of privacy templates is a flexibility, not a restriction. The data

owner can selectively protect certain sensitive properties π while not protecting
other properties, specify a different threshold h for a different template QID → π ,
specify multiple quasi-identifiers QID (even for the same π), specify templates
for multiple sensitive attributes �. These flexibilities provide not only a powerful
representation of privacy requirements, but also a way to focus on the problem
area in the data to minimize unnecessary information loss. In the case that the

Table 2 The suppressed table

Job Country Child Bankruptcy Rating No. of records

Cook US No Current 0G/4B 4
Artist France No Current 1G/3B 4
Doctor US Yes Never 4G/2B 6
⊥Job ⊥Country No Never 5G/0B 5
⊥Job ⊥Country No Discharged 5G/0B 5
Total 24
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inferences through all QIDs are to be limited, the data owner only needs to specify
the “most restrictive” QID containing all the attributes that occur in any QID (more
details in Sect. 3.1).

Second, this work differs from the prior work on k-anonymity [16] in a major
way. The k-anonymity prevents linking personally identifying attributes to sensi-
tive properties by requiring that at least k records share each description of the
identifying attributes. The focus is on anonymizing the identifying attributes that
define groups. However, if all or most individuals in a group are associated with
the same sensitive property, the sensitive property for the group can be inferred
with little uncertainty. Machanavajjhala et al. [13] address this problem by requir-
ing “diversity” of the sensitive property in each group. In particular, their “entropy
l-diversity”, which ensures that sensitive properties are “well-represented” in a
group, could be used to limit the confidence of attacks. A larger entropy means a
more uniform distribution of sensitive properties in a group, therefore, less associ-
ation with a particular sensitive property. For example, for a group of 100 records
associated with two different diseases, if 90 records are associated with HIV and
the other 10 records are associated with Flu, then this group is entropy 1.4-diverse.
A major limitation of this approach is that entropy is not a “user-intuitive” measure
of risk. In particular, the entropy 1.4-diverse does not convey that inferring HIV
has 90% probability of success. Therefore, the data holder may find it difficult to
specify her risk tolerance in terms of the confidence of attacks. In the case that
HIV occurs less frequently but is more sensitive, their method allows the user to
incorporate “background knowledge” to specify different protection for HIV and
Flu. Our approach incorporates the background knowledge by allowing the data
holder to specify different maximum confidence for different sensitive properties,
based on prior knowledge such as the sensitivity and frequency of such properties.

Third, releasing a classifier, instead of the data, could be an option if the data
owner knows exactly how the data recipient may analyze the data. Often, how-
ever, this information, even the data recipient in such cases as web publishing,
is unknown. For example, in visual data mining the data recipient needs to vi-
sualize data records in order to produce a classifier that makes sense, and in the
k-nearest neighbor classification the data itself is the classifier; in such cases re-
leasing data records is essential. In other cases, some classifiers are preferred for
accuracy, some for precision/recall, some for interpretability, and yet some for cer-
tain domain-specific properties. The data owner (such as a hospital) does not have
the expertise to make such decisions for the data recipient (such as biomedical
researchers) due to the lack of domain knowledge and sophisticated data min-
ing techniques. For this reason, we consider the data release for the classification
problem, not for individual classifiers or algorithms.

The contributions of this work can be summarized as follows. First, we for-
mulate a template-based privacy preservation problem. Second, we show that sup-
pression is an effective way to eliminate sensitive inferences. However, finding an
optimal suppression is a hard problem since it requires optimization over all possi-
ble suppressions. For a table with a total of q distinct values on masking attributes,
there are 2q possible suppressed tables. We present an approximate solution based
on a search that iteratively improves the solution and prunes the search whenever
no better solution is possible. In particular, we iteratively disclose domain values
in a top-down manner by first suppressing all domain values. In each iteration,
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we disclose the suppressed domain value to maximize some criterion taking into
account both information gained and privacy lost. We evaluate this method on
real-life data sets. Several features make this approach practically useful:

– No taxonomy required. Suppression replaces a domain value with ⊥ without
requiring a taxonomy of values. This is a useful feature because most data
do not have an associated taxonomy, though taxonomies may exist in certain
specialized domains.

– Preserving the truthfulness of values. The special value ⊥ represents the
“union”, a less precise but truthful representation, of suppressed domain val-
ues. This truthfulness is useful for reasoning and explaining the classification
model.

– Subjective notion of privacy. The data owner has the flexibility to define her
own notion of privacy using templates for sensitive inferences.

– Efficient computation. It operates on simple but effective data structures to
reduce the need for accessing raw data records.

– Anytime solution. At any time, the user can terminate the computation and
have a table satisfying the privacy goal.

– Extendibility. Though we focus on categorical attributes and classification
analysis, this work can be easily extended to continuous attributes and other
information utility criteria. This extension will be elaborated in Sect. 6.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 defines the inference limiting problem. Section 4 presents our suppres-
sion approach. Section 5 evaluates the effectiveness of the proposed approach.
Section 6 discusses several extensions. Section 7 concludes the paper.

2 Related work

Most works on privacy preservation address the concern related to the input of data
mining where sensitive properties are revealed directly by inspection of the data
without sophisticated analysis [4, 6, 8, 9, 11, 17, 21]. Our work is more related to
the concern over the output of data mining in terms of what data mining tools can
discover. We focus on this group of works.

Kloesgen [12] pointed out the problem of group discrimination where the dis-
covered group behavior is attached to all members in a group, which is a form
of inferences. Clifton [3] suggested to eliminate sensitive inferences by limiting
the data size. Recently, Kantarcioglu et al. [10] defined an evaluation method to
measure the loss of privacy due to releasing data mining results. However, they
did not propose a solution to prevent the attacker from getting data mining results
that violate privacy.

Verykios et al. [19] proposed several algorithms for hiding association rules
in a transaction database with minimal modification to the data. The general idea
is to hide one rule at a time by either decreasing its support or its confidence,
achieved by removing items from transactions. They need to assume that frequent
itemsets of rules are disjoint in order to avoid high time complexity. We eliminate
all sensitive inferences including those with a low support. We can efficiently
handle overlapping inference rules. Our approach handles the information lose for
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classification analysis as well as the general notion of data distortion in a uniform
manner.

Suppression and generalization of domain values were employed in [2, 8, 9,
16, 21] for achieving k-anonymity. In a k-anonymized database, if one record is
linked to some external sensitive property, so are at least k − 1 other records. In
other words, at least k records are indistinguishable to the linking algorithm. How-
ever, if all or most of these records are associated with similar sensitive property,
this indistinguishability becomes irrelevant in that the attacker can reliably infer
the sensitive property. In the preliminary work [20], we proposed the confidence
of inference as a way to measure this threat. Recently, Machanavajjhala et al. [13]
proposed the diversity of sensitive property as a way to make inferring a particu-
lar sensitive property uncertain. However, as explained earlier, it is more natural
and intuitive for the data holder to measure the risk in terms of the probability of
success of attacks.

In database security, Farkas and Jajodia [7] conducted a survey on inference
control. In multilevel secure databases, the focus is detecting and removing quasi-
identifiers by combining meta-data with data. Many of these methods operate at
the schema-level and consider only precise inferences that always hold. If there
is a security problem, the database is redesigned. Yip and Levitt [22] extended
the work to the data-level by monitoring queries using functional dependencies.
For example, it is possible for a user to use a series of unsuspicious queries to
infer sensitive properties in the database. Yip and Levitt [22] proposed a method
to detect such queries using functional dependencies. This type of inferences is
different from ours.

In statistical databases, the focus is limiting the ability of inferring confidential
information by correlating different statistics. For example, Cox [5] proposed the
k%-dominance rule which suppresses a sensitive cell if the attribute values of two
or three entities in the cell contribute more than k% of the corresponding SUM
statistic. Such “cell suppression” suppresses the count or other statistics stored in
a cell of a statistical table, which is very different from the “value suppression”
considered in our work.

3 The problem

Let v be a single value, V be a set of values, and R be a set of records. att (v)
denotes the attribute of a value v. |R| denotes the number of records in R. R[v]
denotes the set of records in R that contain v. s(V ) denotes the number of records
containing the values in V . f (R, V ) denotes the number of records in R that con-
tain the values in V . Sometimes, we simply list the values in V , i.e, s(v1, . . . , vk)
and f (R, v1, . . . , vk), where v j is either a single value or a set of values.

Consider a table T (M1, . . . , Mm,�1, . . . , �n, �). M j are called masking at-
tributes. �i are called sensitive attributes. � is called the class attribute. All at-
tributes have a categorical domain. For each M j , we add the special value ⊥ j to
its domain. M j and �i are disjoint.

Suppose that the data owner wants to release the table T to the public for mod-
eling the class attribute �, but wants to limit the ability of making inference about
sensitive attributes �i . An inference about sensitive property y has the form of
“if x then y”. Such inferences are “probabilistic”, not “precise”, and are easily ob-
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tained from the released data by applying today’s data mining tools. If an inference
is highly confident (i.e., accurate), there is little difficulty to infer sensitive prop-
erty y about an individual matching the description x . One way to eliminate such
threats is to limit the confidence of inferences. Below, we formalize this notion of
privacy requirement into a set of privacy templates.

3.1 Privacy templates

The data owner specifies sensitive inferences using templates. A template has the
form 〈QID → π, h〉. π is a sensitive property or value from some �i . QID, called
an quasi-identifier, is some set of attributes not containing �i . h is a confidence
threshold. An inference for 〈QID → π, h〉 has the form qid → π , where qid
contains values from the attributes in QID. The confidence of qid → π , written
conf (qid → π), is the percentage of the records that contain π among those that
contain the values in qid, that is, s(qid, π)/s(qid). Conf (QID → π) denotes the
maximum conf (qid → π) for all qid over QID.

Definition 3.1 (Privacy Templates) T satisfies a template 〈QID → π, h〉 if
Conf (QID → π) ≤ h. T satisfies a set of templates if T satisfies every template
in the set.

A privacy template places an upper limit on the confidence of the specified
inferences, including those involving ⊥ j . For convenience, all templates 〈QID →
π i , h〉 that only differ in π i can be abbreviated as 〈QID → {π1, . . . , πk}, h〉. This
is only a notational abbreviation, not a new kind of inferences.

Some template may be “redundant” once we have some other template. Theo-
rem 3.1 considers one such case, which can be used to remove “redundant” tem-
plates.

Theorem 3.1 Consider two templates

〈QID → π, h〉 and 〈QID′ → π ′, h′〉.
If π = π ′, h ≥ h′, and QID ⊆ QID′, then

1. Conf (QID′ → π ′) ≥ Conf (QID → π), and
2. If T satisfies 〈QID′ → π ′, h′〉, T satisfies 〈QID → π, h〉, and
3. 〈QID → π, h〉 can be removed in the presence of 〈QID′ → π ′, h′〉.
Proof (1) Let X = QID′ − QID. Assume that X 
= ∅. Consider an inference
qid → π for QID → π . Let {qid, x1} → π, . . . , {qid, xk} → π be the infer-
ences for QID′ → π involving qid. s(qid) = ∑k

i=1 s(qid, xi ) and s(qid, π) =
∑k

i=1 s(qid, xi , π). Without loss of generality, we assume, for 2 ≤ i ≤ k,

conf (qid, x1 → π) ≥ conf (qid, xi → π).

We prove that conf (qid, x1 → π) ≥ conf (qid → π); it then follows that
Conf (QID′ → π ′) ≥ Conf (QID → π) because π ′ = π . The intuition of the
proof is similar to that of max{avg(M), avg(F)} ≥ avg(G), where a group G of
people is divided into the male group M and the female group F , and avg(x)
computes the average age of a group x .

First, we rewrite conf (qid, x1 → π) ≥ conf (qid, xi → π) into
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s(qid, x1, π)s(qid, xi ) ≥ s(qid, xi , π)s(qid, x1).

Recall that s(qid) = ∑k
i=1 s(qid, xi ) and s(qid, π) = ∑k

i=1 s(qid, xi , π). Then,
we have the following rewriting

conf (qid, x1 → π) = s(qid, x1, π)

s(qid, x1)

= s(qid, x1, π)
∑k

i=1 s(qid, xi )

s(qid, x1)s(qid)

= s(qid, x1, π)

s(qid)
+

k∑

i=2

s(qid, x1, π)s(qid, xi )

s(qid, x1)s(qid)

≥ s(qid, x1, π)

s(qid)
+

k∑

i=2

s(qid, xi , π)s(qid, x1)

s(qid, x1)s(qid)

= s(qid, x1, π)

s(qid)
+

k∑

i=2

s(qid, xi , π)

s(qid)

= s(qid, π)

s(qid)
= con f (qid → π)

(2) follows from (1) and h ≥ h′.
(3) follows from (2). �

The following corollary follows from Theorem 3.1. It states that only the
“maximal” templates need to be specified among those having the same sensitive
property π and confidence threshold h.

Corollary 3.1 T satisfies 〈QID → π, h〉 if and only if T satisfies {〈QID′ →
π, h〉 | QID′ ⊆ QID}.

3.2 Suppression

If T violates the set of templates, we can suppress some values on masking at-
tributes M j to make it satisfy the templates (under certain conditions). Suppres-
sion of a value on M j means replacing all occurrences of the value with the special
value ⊥ j . In the classification modeling, ⊥ j is treated as a new domain value in
M j .

An interesting question is what makes us believe that suppression of values
can reduce the confidence of sensitive inference. Indeed, if suppression could in-
crease the confidence, we are not getting any closer to the privacy goal but losing
information. Below, we show that suppression never increases Conf (QID → π).

Consider suppressing a value v in M j to ⊥ j . The suppression affects only
the records that contain v or ⊥ j before the suppression. Let ⊥ j and ⊥′

j denote
⊥ j before and after the suppression. The difference is that ⊥′

j covers v but ⊥ j

does not. After the suppression, two inferences {qid, v} → π and {qid, ⊥ j } → π
become one inference {qid,⊥′

j } → π .
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Theorem 3.2 max{con f (qid, v → π), con f (qid, ⊥ j → π)} ≥
con f (qid, ⊥′

j → π).

The proof is similar to Theorem 3.1, except that {qid, x1} → π , . . . ,
{qid, xk} → π are replaced with {qid, v} → π and {qid, ⊥ j } → π , and qid → π
is replaced with {qid,⊥′

j } → π . In words, Theorem 3.2 says that, by suppressing
a value, Conf (QID → π) does not go up. This property provides the basis for
employing suppression to reduce Conf (QID → π).

Corollary 3.2 Conf (QID → π) is non-increasing with respect to suppression.

3.3 The problem statement

Given a table T and a set of privacy templates {〈QID1 → π1, h1〉, . . . , 〈QIDk →
πk, hk〉}, we are interested in finding a suppressed table T that satisfies the set
of templates and is useful for modeling the class attribute. The first question is
whether it is always possible to satisfy the set of templates by suppressing T . The
answer is no if for some 〈QIDi → π i , hi 〉, the minimum Conf (QIDi → π i )
among all suppressed T is above hi . From Corollary 3.2, the most suppressed
T , where all values for M j are suppressed to ⊥ j for every M j in ∪QIDi , has
the minimum Conf (QIDi → π i ). If this table does not satisfy the templates, no
suppressed T does.

Theorem 3.3 Given a set of privacy templates, there exists a suppressed table
T that satisfies the templates if and only if the most suppressed T satisfies the
templates.

In Table 1, Conf ({Job, Country} → Discharged) for the most suppressed T
is 5/24. Therefore, for any h < 5/24, this template is not satisfiable by suppress-
ing T .

Definition 3.2 (Inference Problem) Given a table T and a set of templates, the
inference problem is to (1) decide whether there exists a suppressed T that sat-
isfies the set of templates, and if yes, (2) produce a satisfying suppressed T that
preserves as much information as possible for modeling the class attribute.

We can first apply Theorem 3.3 to determine if the set of privacy templates is
satisfiable by suppressing T . If not, we inform the data owner and provide the ac-
tual Conf (QID → π) where 〈QID → π, h〉 is violated. With this information, the
data owner could adjust the templates, such as reconsidering whether the thresh-
old h is reasonable. In the subsequent sections, we assume that the given set of
privacy templates is satisfiable by suppressing T .

4 The algorithm

Given a table T (in which all values are disclosed) and a set of templates
{〈QID → π, h〉}, there are two approaches to suppress T . One is iteratively
suppressing domain values in M j in ∪QID, called bottom-up suppression, and
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the other is first suppressing all domain values in M j in ∪QID and then it-
eratively disclosing the suppressed domain values, called top-down disclosure.
We take the second approach. At any time in the top-down disclosure, we
have a set of suppressed values, denoted Sup j for M j , and a set of suppressed
records, with duplicates being collapsed into a single record with a count. In
each iteration, we disclose one value v chosen from some Sup j by doing ex-
actly the opposite of suppressing v, i.e., replacing ⊥ j with v in all suppressed
records that currently contain ⊥ j and originally contain v in the input table.
This process repeats until no disclosure is possible without violating the set of
templates.

The top-down disclosure approach has several nice features. First, any table
produced by a sequence of disclosures can be produced by a sequence of suppres-
sions. In fact, Sup j on the termination of the algorithm tells exactly the suppres-
sions on M j needed to produce the suppressed table. Second, Conf (QID → π)
is nondecreasing with respect to disclosures (Corollary 3.2). Therefore, any fur-
ther disclosure beyond the termination leads to no solution. Third, compared
to the bottom-up suppression starting from domain values, the top-down dis-
closure can handle restrictive privacy templates with a smaller number of it-
erations starting from the most suppressed table. In fact, by walking from a
more suppressed table towards a less suppressed table, we always deal with
a small number of satisfying inferences and never examine the large number
of violating inferences in a less suppressed table. Finally, the user can termi-
nate the disclosure process at any time and have a table satisfying the privacy
templates.

Algorithm 4.1. Top-Down Disclosure (TDD)
Input: a table T (M1, . . . , Mm , �1, . . . , �n, �) and a set of privacy templates
Output: a suppressed table satisfying the given privacy templates
1: suppress every value of M j to ⊥ j where M j ∈ ∪QID;
2: every Sup j contains all domain values of M j ∈ ∪QID;
3: while there is a valid/beneficial candidate in ∪Sup j do
4: find the winner w of highest Score(w) from ∪Sup j ;
5: disclose w on T and remove w from ∪Sup j ;
6: update Score(x) and the valid/beneficial status for every x in ∪Sup j ;
7: end while
8: output the suppressed T and ∪Sup j ;

Our algorithm, called top-down disclosure (TDD), is presented in
Algorithm 4.1. At each iteration, if some Sup j contains a “valid” and “benefi-
cial” candidate for disclosure, the algorithm chooses the winner candidate w that
maximizes the score function denoted Score. A disclosure is valid if it leads to a
table satisfying the set of templates. A disclosure from Sup j is beneficial if more
than one class is involved in the records containing ⊥ j . Next, the algorithm dis-
closes w, and updates the Score and status of every affected candidate. Below, we
focus on the three key steps (Lines 4–6):
Line 4: Find the winner candidate w. This step finds the valid and beneficial
candidate w from ∪Sup j that has the highest Score. We discuss the computation
of Score in Sect. 4.1.
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Line 5: Disclose the winner candidate w. This step discloses w in T and re-
moves w from Sup j . We discuss an efficient method for performing a disclosure in
Sect. 4.2.
Line 6: Update the score and status for candidates. This step updates Score(x)
and valid/beneficial status for the candidates x in ∪Sup j to reflect the impact of
w. We discuss an efficient update in Sect. 4.3.

Example 3 Consider the templates:
〈{Job, Country} → Discharged, 50%〉,
〈{Job, Child} → Discharged, 50%〉.

Initially, the values of Job, Country and Child in Table 1 are suppressed to ⊥Job,
⊥Country and ⊥Child, and ∪Sup j contains all domain values in Job, Country, and
Child. This is the most suppressed, or the least disclosed, state.

4.1 Find the winner (Line 4)

The winner w is a valid and beneficial candidate from ∪Sup j that has the highest
Score. Since disclosing a value v gains information and loses privacy, Score(v)
measures the information gain, denoted InfoGain(v), per unit of privacy loss, de-
noted PrivLoss(v), due to the disclosure of v:

Score(v) = InfoGain(v)

PrivLoss(v) + 1
. (1)

Consider the set of suppressed records that currently contain ⊥ j , denoted
T [⊥ j ]. Disclosing v from Sup j means replacing ⊥ j with v in all records in T [⊥ j ]
that originally contain v. Let Tv denote the set of such records, and let T [v] denote
Tv after replacing ⊥ j with v. The disclosure of v is to replace T [⊥ j ] with T [v]
and T [⊥ j ] − Tv .

InfoGain(v): One way to measure InfoGain(v) for the classification of the
specified class attribute is the standard entropy-based information gain [15],

E(T [⊥ j ]) − |T [v]|
|T [⊥ j ]| E(T [v]) − |T [⊥ j ] − Tv|

|T [⊥ j ]| E(T [⊥ j ] − Tv). (2)

E(R) measures the entropy or impurity of a set of records R wrt the specified class
attribute and InfoGain(v) measures the reduction of entropy after the disclosure
of v. (See Quinlan [15] for the definition of E(R).) The important point is that
InfoGain(v) depends only on the class frequency and count statistics of the single
attribute att (v) in T [⊥ j ], T [v] and T [⊥ j ] − Tv .

PrivLoss(v): This measures the privacy loss caused by the disclosure of v,
defined as the average increase of Conf (QID → π) over all affected QID → π ,
i.e., those QID such that att (v) is contained in QID,

avg{Conf v(QID → π) − Conf (QID → π) | att (v) ∈ QID}, (3)

where Conf and Conf v represent the confidence before and after disclosing v. 1 is
added to PrivLoss(v) to avoid division by zero.

Computing Conf v efficiently is a challenge because it involves count statistics
on combinations of attributes. It is inefficient to actually perform the disclosure
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of v just to compute Conf v because performing disclosures involves record scans.
The key to the scalability of our algorithm is incrementally updating Score(v) in
each iteration using the statistics collected during performing the winner disclo-
sure w. We will present this update algorithm in Sect. 4.3.

4.2 Disclose the winner (Line 5)

To disclose the winner w, we replace ⊥ j with w in the suppressed records in
T [⊥ j ] that originally contain w. So, we need to access the raw records that origi-
nally contain w. The following data structure facilitates the direct access to all the
raw records affected by this disclosure. The general idea is to partition raw records
according to their suppressed records on the set of attributes ∪QID.

Definition 4.1 (VIP) Value Indexed Partitions (VIP) contains the set of sup-
pressed records over ∪QID. Each suppressed record represents the set of raw
records from which it comes, called a partition. Each raw record is in exactly one
partition. For each disclosed value x (including ⊥) on an attribute in ∪QID, P[x]
denotes a partition represented by a suppressed record containing x. Link[x]
links up all partitions P[x]s, with the head stored with the value x.

Link[x] provides a direct access to all raw records that those suppressed
records contain the value x . Let ⊥w denote the special value ⊥ for the attribute of
the winner w. To disclose w, we follow Link[⊥w] and find all suppressed records
that contain ⊥w, and through these suppressed records, access the represented raw
records. So, we do not have to scan unaffected data records.

Disclose w in VIP: For each partition P[⊥w] on Link[⊥w] and its suppressed
record r , create a new suppressed record r ′ as a copy of r except that ⊥w is re-
placed with w, create the partition P[w] for r ′ to contains all raw records in P[⊥w]
that contain w, and remove such records from P[⊥w]. Link all new P[w]s by the
new Link[w], and relink them to the links to which P[⊥w] is currently linked,
except for Link[⊥w]. Finally, remove w from Sup j .

Since one “relinking” operation is required for each masking attribute M j and
each new partition, there are at most m ×|Link[⊥w]| “relinking” operations in to-
tal for disclosing w, where m is the number of masking attributes and |Link[⊥w]|
is the length of Link[⊥w]. This overhead of maintaining Link[x] is negligible.
The following example illustrates the procedure of disclosing w in VIP.

Example 4 Consider the templates in Example 3. In Fig. 1, the left-most VIP has
the most suppressed record 〈⊥Job, ⊥Country, ⊥Child〉 on three links:

Link[⊥Job], Link[⊥Country], Link[⊥Child].
The shaded fields “Total” and “π” contain the number of raw records suppressed
(i.e., |P|) and the number of those records containing Discharged.

Suppose the winner is Clerk. We create a new suppressed record 〈Clerk,
⊥Country, ⊥Child〉, as shown in the middle VIP, to represent four raw records.
We add this new suppressed record to Link[⊥Country], Link[⊥Child], and to the
new Link[Clerk]. Finally, we remove Clerk from Sup j . The next winner, Canada,
refines the two partitions on Link[⊥Country], resulting in the right-most VIP. The
overhead of maintaining these links is proportional to the length of Link[⊥w] and
is negligible.
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Fig. 1 Evolution of VIP (π = Discharged)

Count statistics in VIP: To update Score(x) efficiently, we maintain the fol-
lowing count statistics for each partition P in the VIP: for every class θ and sensi-
tive property π , (1) |P|, f (P, θ) and f (P, π), (2) for each masking attribute M j
on which P has the value ⊥ j , for every suppressed value x in Sup j , f (P, x),
f (P, {x, θ}) and f (P, {x, π}). These count statistics are stored together with
the partition P and, on disclosing w, are updated as we scan the partitions on
Link[⊥w].

We should mention that this step (Line 5) is the only time that raw records
are accessed in our algorithm. Subsequently, updating Score(x) makes use of the
count statistics in the VIP without accessing raw records.

4.3 Update score and status (Line 6)

This step updates Score(x) and the valid/beneficial status for candidates x in
∪Sup j . Score(x) is defined by InfoGain(x) and PrivLoss(x). InfoGain(x) is af-
fected only if x and w are from the same attribute, in other words, x ∈ Supw,
where Supw denotes Sup j for the attribute of w. To update InfoGain(x), we com-
pute

s(x) =
∑

f (P, x),

s(x, θ) =
∑

f (P, {x, θ}),
s(⊥w) =

∑
|P|,

s(⊥w, θ) =
∑

f (P, θ),

over the partitions P on Link[⊥w]. These information can be computed in the
same scan as collecting the count statistics in the previous step. Mark x as “bene-
ficial” if there is more than one class in these partitions.

To update PrivLoss(x), for every QID → π , we first update Conf (QID → π)
using Conf w(QID → π) that was computed in the previous iteration. Next, we
update Conf x (QID → π) for x in ∪Sup j . We need to update Conf x (QID → π)
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only if both att (x) and att (w) are contained in QID. We propose the following
QID-tree structure to maintain Conf (QID → π).

Definition 4.2 (QID-trees) For each QID = {A1, . . . , Au}, the QID-tree is a tree
of u levels, where level i > 0 represents the values for A j . A root-to-leaf path
represents an existing qid on QID in the suppressed T , with s(qid) and s(qid, π)
stored at the leaf node.

Recall that con f (qid → π) = s(qid, π)/s(qid) and that Conf (QID → π) is
max{con f (qid → π)} for all qid in the QID-tree. If several templates 〈QID →
π, h〉 have the same QID, they can share a single QID-tree by keeping s(qid, π)
separately for different π .

Update QID-trees: On disclosing w, we update all the QID-trees such that
att (w) ∈ QID to reflect the move of records from Link[⊥w] to Link[w]. First,
for each leaf node representing {qid, ⊥w}, we create a new root-to-leaf node rep-
resenting the new {qid, w}. Then, for each partition P on Link[w], if {qid, w} is
the value on QID, update the QID-tree as follows:

s(qid, w) = s(qid, w) + |P|
s(qid, ⊥w) = s(qid, ⊥w) − |P|

s(qid, w, π) = s(qid, w, π) + f (P, π)

s(qid, ⊥w, π) = s(qid, ⊥w, π) − f (P, π).

This involves one scan of the link Link[w] because |P| and f (P, π) are kept with
the Ps on this link. Here is an example.

Example 5 Figure 2 shows the initial QID1-tree and QID2-tree on the left, where
QID1 = {Job, Country} and QID2 = {Job, Child}. On disclosing Clerk,
{Clerk, ⊥Country} and {Clerk, ⊥Child} are created in QID1-tree and QID2-tree.
Next, on disclosing Canada, {Clerk, ⊥Country} is refined into {Clerk, Canada}
in QID1-tree, and a new {⊥Job, Canada} is split from {⊥Job, ⊥Country}. For ex-
ample, to compute s(qid) and s(qid, π) for the new qid = (⊥Job, Canada), we
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access all partitions P[Canada] in one scan of Link[Canada]:
s(⊥Job, Canada) = 1,

s(⊥Job, Canada, π) = 0,

s(⊥Job, ⊥Country) = 20 − 1 = 19,

s(⊥Job, ⊥Country, π) = 4 − 0 = 4.

The resulting counts are shown on the right most QID-trees.

Update Conf x (QID → π): On disclosing w, for x ∈ ∪Sup j , we update
Conf x (QID → π) only if both att (x) and att (w) are in QID. Recall that
Conf x (QID → π) is the maximum con f (qid → π) after disclosing x . There-
fore, we can treat x as if it were disclosed, and computing s(qid, x), s(qid, x, π),
s(qid, ⊥x ) and s(qid, ⊥x , π) as we did for w. We now follow Link[⊥x ] instead
of Link[w]. Since we just compute Conf x (QID → π), not performing the disclo-
sure of x , we do not update the VIP for x , but just make use of the count statistics
in category (2) to compute s(qid, x), s(qid, x, π), s(qid, ⊥x ) and s(qid, ⊥x , π).
The computation is on a copy of the QID-trees because we do not actually disclose
x on the QID-trees. Conf x (QID → π) is the new maximum con f (qid → π) in
the copy QID-tree. If Conf x (QID → π) ≤ h, mark x as “valid”.

4.4 Cost analysis

The cost at each iteration can be summarized as two operations. The first oper-
ation scans the partitions on Link[⊥w] for disclosing the winner w in VIP and
maintaining some count statistics. The second operation simply makes use of the
count statistics to update the score and status of every affected candidate without
accessing data records. Thus, each iteration accesses only the records suppressed
to ⊥w. The number of iterations is bounded by the number of distinct values in
the masking attributes.

5 Experimental evaluation

We evaluated how well the proposed method can preserve the usefulness for clas-
sification for some highly restrictive privacy templates. We also evaluated the
efficiency of this method. We adopted three widely used benchmarks: Japanese
Credit Screening and Adult were obtained from the UCI repository [14]. German
Credit Data was obtained from Silicon Graphics, Inc.1 We removed all continuous
attributes since our current implementation focuses on categorical attributes. We
used the C4.5 classifier [15] for classification modeling. Other classifiers, such
as SVM [18], may produce lower classification error than the C4.5 does; how-
ever, our focus is not on comparing different classifiers. All experiments were
conducted on an Intel Pentium IV 3GHz PC with 1GB RAM.

Templates. For each data set, we conducted two sets of experiments, which
differ in the choice of sensitive attributes �1, . . . , �N and masking attributes
M1, . . . , Mm .

1 http://www.sgi.com/tech/mlc/db/
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– TopN: We chose the “best” N attributes, denoted TopN, as sensitive attributes
�1, . . . , �N . The top most attribute is the attribute at the top of the C4.5 de-
cision tree. Then we removed this attribute and repeated this process to deter-
mine the rank of other attributes. Simply removing �1, . . . , �N will compro-
mise the classification. The remaining attributes were chosen as the masking
attributes M1, . . . , Mm . For each �i , we choose the 50% least frequent values
as sensitive properties. The rationale is that less frequent properties are more
vulnerable to inference attacks. Let {π1, . . . , πk} denote the union of such
properties for all �i . The set of templates is {〈QID → πi , h〉 | 1 ≤ i ≤ k},
or written simply as 〈QID → π1, . . . , πk, h〉, where QID contains all masking
attributes. From Theorem 3.1, this set of templates is more restrictive than a
set of templates with each being a subset of QID (for the same threshold h).

– RanN: In this experiment, we randomly selected N attributes, denoted RanN,
as sensitive attributes �1, . . . ,�N , and selected all remaining attributes as
masking attributes. Once �1, . . . , �N are selected, the template 〈QID →
{π1, . . . , πk}, h〉 is constructed as explained above. We report the average re-
sult for 30 privacy templates generated this way.

Errors to measure. The base error (BE) refers to the error for the original
data without suppression. The suppression error (SE) refers to the error for the
data suppressed by our method. The suppression was performed before splitting
the data into the training set and the testing set. SE − BE measures the quality
loss due to suppression, the smaller the better. We also compared with the error
caused by simply removing all sensitive attributes, which is denoted by removal
error (RE). RE −SE measures the benefit of suppression over this simple method,
and the larger the better. Finally, RE − BE measures the importance of sensitive
attributes on classification. SE and RE depend on the privacy template, whereas
BE does not. All errors are collected on the testing set.

5.1 Japanese credit screening

The Japanese Credit Screening data set, also known as CRX, is based on credit
card application. There are nine categorical attributes and a binary class attribute
representing the application status succeeded or failed. After removing records
with missing values, there are 465 and 188 records for the pre-split training and
testing respectively. In the UCI repository, all values and attribute names in CRX
have been changed to meaningless symbols, e.g., A1 · · · A15. We used all the nine
categorical attributes.

We consider the four template requirements: Top1, Top2, Top3 and Top4.
Top4 attributes are A9, A10, A7, A6 in that order. BE = 15.4%. Table 3 shows the

Table 3 Number of inferences above h

Threshold h 10% 30% 50% 70% 90%

CRX (Top4) 40 27 15 8 6
Adult (Top4) 1333 786 365 324 318
German (Top6) 496 337 174 162 161
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number of inferences above different confidence thresholds h in the original data.
For example, the number of inferences that have a confidence larger than 90% is
6 in CRX for Top4.

Figure 3a depicts SE and RE for TopN averaged over h = 50%, 70%, 90%.
The dashed line represents BE. We summarize the results as follows:

1. Small SE − BE. SE spans narrowly between 15.4% and 16.5% across different
TopN. SE−BE is less than 1.1% for all sets of templates considered. These re-
sults support that inference limiting and accurate classification can coexist. For
example, from Table 3, 15 inferences with a confidence higher than 50% were
eliminated for Top4. Often, different QIDs share some common values, and
suppressing a few common values simultaneously eliminates multiple infer-
ences. Our method biases to suppress such common values because PrivLoss
in Score function minimizes the average increase of Conf on all templates.

2. Large RE − SE. The minimum RE − SE is 10.1% for Top1, and the maximum
RE − SE is 31.3% for Top4. These large gaps show a significant benefit of
suppression over the removal of sensitive attributes.

3. Small variance of SE. For all templates tested, the variance of SE is less than
0.6%, suggesting that suppression is robust. It also suggests that protecting
more sensitive attributes (i.e., a larger N in TopN) or having a lower threshold
h does not necessarily compromise the classification quality. In fact, as N
increases, more suppression is performed on the masking attributes, but at the
same time, more sensitive attributes can be used for classification.

4. Larger benefits for larger N. Having more sensitive attributes (i.e., a larger N
in TopN) implies that the removal of these attributes has a larger impact to
classification. This is reflected by the increasing RE in Fig. 3a.

Let us take a closer look at the suppressed data for Top4 with h = 70%. Some
values of attributes A4 and A5 are suppressed, and the entire A13 is suppressed.
Despite such vigorous suppression, SE = 15.4% is equal to BE. In fact, there exist
multiple classification structures in the data. When suppression eliminates some
of them, other structures emerge to take over the classification. Our method makes
use of such “rooms” to eliminate sensitive inferences while preserving the quality
of classification.

Figure 3b depicts SE on 30 sets of RanN, averaged over the same h as in the
previous experiment. Again, SE spans narrowly between 15.4% and 16.5%, i.e.,
no more than 1.1% above BE. RE for RanN is lower than RE for TopN because
some randomly selected sensitive attributes are not important and their removal
has less impact on classification.

The algorithm took less than 2 s, including disk I/O operations, for all the
above experiments.

5.2 Adult

The Adult data set is a census data previously used in [2, 8, 9, 21]. There are eight
categorical attributes and a binary class attribute representing the income levels
≤50 K or >50 K. There are 30,162 and 15,060 records without missing values for
the pre-split training and testing respectively. Table 4 describes each categorical
attribute. Top4 attributes are M, Re, E, S in that order. BE = 17.6%.
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Table 4 Attributes for the Adult data set

Attribute No. of values Attribute No. of values

Education (E) 16 Marital-status (M) 7
Occupation (O) 14 Native-country (Nc) 40
Race (Ra) 5 Relationship (Re) 6
Sex (S) 2 Work-class (W ) 8

Figure 3c shows the errors for TopN, averaged over h = 10%, 30%, 50%,
70%, 90%. We summarize the results as follows:

1. SE − BE is less than 0.8% in all cases. This is amazing considering that hun-
dreds of inferences were eliminated according to Table 3.

2. The largest RE − SE is approximately 6% for Top4.
3. The difference between maximum and minimum SE is less than 1%.
4. For Top1, RE is slightly lower than SE, implying that removing the top at-

tribute does not affect the classification. However, as more sensitive attributes
were removed (i.e., Top2, Top3 and Top4), RE picked up.

Figure 3d depicts a similar result for the 30 sets of RanN, but with lower REs.
The experiments on both TopN and RanN strongly suggest that the suppression
approach preserves the quality of classification consistently for various privacy
templates. Our algorithm spent at most 14 s for all experiments on Adult, of which
approximately 10 s were spent on suppressing the 45,222 data records.

5.3 German credit data

The German Credit Data, or simply German, has 13 categorical attributes and a
binary class attribute representing the good or bad credit risks. There are 666 and
334 records, without missing values, for the pre-split training and testing respec-
tively. Table 5 describes each categorical attribute. The Top6 attributes in German
are A, Ch, Sa, I, Lp, D in that order. B E = 28.8%. Like the Adult data, German
also has many sensitive inferences as shown in Table 3.

Figure 3e shows the SE and RE averaged over h = 30%, 50%, 70%, 90%. The
benefit RE − SE is approximately 4.3% on average. Interestingly, RE almost stays
flat at 36% for Top1 to Top6. To explain this, we looked into the data set and
found that the Top2 attributes, i.e., A and Ch, play a dominant role in modeling

Table 5 Attributes for the German data set

Attribute No. of values Attribute No. of values

Account-status (A) 4 Property (Pr ) 4
Credit-history (Ch) 5 Installments (I ) 3
Loan-purpose (Lp) 11 Housing (H ) 3
Savings-account (Sa) 5 Job (J ) 4
Employment (Em) 5 Telephone (T ) 2
Personal-status (Ps) 5 Foreign (F) 2
Debtors (D) 3
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the class attribute. Removing any one (or both) of them increases the error by
approximately 7% comparing with BE. Thus, after removing the top one attribute,
removing the next top five attributes does not degrade the classification quality
much.

SE stays close to RE for Top1 and then drops to approximately 31% for Top2
to Top6. This 5% drop of SE from Top1 to Top2 is due to the fact that many
values of the second top attribute Ch are suppressed in Top1, but the top two
attributes A and Ch are not suppressed in Top2.

Figure 3f depicts the results for 30 sets of RanN. Unlike the TopN case, RE
increases gradually with respect to the number N of sensitive attributes. This is
because the importance of A and Ch has been averaged out in these 30 randomly
constructed templates. Our algorithm spent less than 3 s for all experiments con-
ducted on German.

5.4 Scalability

The key to scalability of our method is maintaining count statistics instead of scan-
ning raw data records. The purpose of this experiment is to see how scalable our
method is for large data sets. We evaluated the scalability on an expanded version
of Adult. We first combined the training and testing sets, giving 45,222 records.
Then for each original record r in the combined set, we created α − 1 “variations”
of r , where α > 1 is the expansion scale. For each variation of r , we randomly
and uniformly selected y attributes from ∪QID, selected some random values for
these y attributes, and inherited the values of r on the remaining attributes, includ-
ing the class and sensitive attributes. Together with original records, the expanded
data set has α × 45, 222 records.

Figure 4a depicts the runtime of our suppression method for 200 K to 1 M
data records based on the templates 〈QID → {π1, . . . , πk}, 90%〉, where the
set of sensitive properties {π1, . . . , πk} is the set of 50% least frequent values
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in the Top1 attribute M , and QID contains the other seven attributes. This is
one of the most time consuming settings in the case of single QID because of
the largest number of disclosure candidates to consider at each iteration, and a
larger h requires more iterations to reach a solution. Our method spent 192 s to
suppress 1 M records, of which 150 s were spent on suppression, and the rest
was spent on disk I/O operations. We also tried h = 100%. Our method took
a total of 296 s to disclose all values due to the increased number of partitions
and number of QIDs. However, this is not a typical case because typically we
want to eliminate inferences with a confidence higher than some h that is below
100%.

We further extended the scalability experiment to privacy templates that have
multiple QIDs. The number of different QIDs determines the number of QID-
trees, and more QIDs means more maintenance cost of QID-trees. We determined
the number of QIDs by uniformly and randomly drawing a number between 3 and
6, and the length of QID between 2 and 5. For each QID, we randomly selected the
attributes from the seven remaining attributes, and discarded the repeating ones.
All QIDs in the same set of privacy templates have the same length and same
threshold h = 90%. For example, a set of privacy templates having three QIDs of
length 2 is

{〈{E, Nc} → {π1, . . . , πk}, 90%〉,
〈{E, O} → {π1, . . . , πk}, 90%〉,

〈{Ra, W } → {π1, . . . , πk}, 90%〉}.

{π1, . . . , πk} is the same as above.
Figure 4b depicts the average runtime over 30 sets of privacy templates gen-

erated as described above. Our method spent 318 s to suppress 1 M records. Out
of the 318 s, 276 s were spent on suppression. With h = 100%, our method spent
412 s on suppression. Compared to the case of a single QID, more time was re-
quired for a requirement with multiple QIDs because it has to maintain one QID-
tree for each distinct QID.

6 Extensions

To bring out the main ideas, our current implementation has assumed that the
table fits in memory. Often, this assumption is valid because the table can be
first compressed by removing irrelevant attributes and collapsing duplicates (as
in Table 1). If the table does not fit in memory, we can keep the VIP in the
memory but store the data partitions on disk. We can also use the memory
to keep those partitions smaller than the page size to avoid page fragmenta-
tion. In addition, partitions that cannot be further refined can be discarded and
only some statistics for them need to be kept. This likely applies to the small
partitions kept in memory, therefore, the memory demand is unlikely to build
up.

So far, we have considered only categorical attributes. Our approach can be
extended to suppress continuous values by the means of discretization. For exam-
ple, we can replace specific age values from 51 to 55 with a less specific interval
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[51–55]. This method does not require a priori discretized taxonomy for a con-
tinuous attribute, but dynamically obtains one in the top-down disclosure process.
Initially, all domain values of a continuous attribute are represented by a single
interval v covering the whole range, and Sup j contains v. At each iteration, a dis-
closure for an interval v refers to splitting the interval into two sub-intervals v1 and
v2, with the splitting point being chosen to maximize InfoGain. Next, v is replaced
by v1 and v2 in Sup j forming a new set of candidates for the next disclosure. The
criterion for choosing the interval for splitting is exactly same as that for choos-
ing a suppressed value for disclosure. This process repeats until no disclosure is
possible without violating the set of privacy templates. To extend Theorem 3.2
(therefore, Corollary 3.2) to cover QID → π in which QID contains continuous
attributes as well, we can replace the disclosure ⊥′

j → {⊥ j , v} with v → {v1, v2}
in the proof, and the rest requires little changes.

We have considered classification as the use of the released data where the
information gain wrt the class attribute is used as the information utility InfoGain.
Our approach can be extended to other information utility by substituting InfoGain
with a proper measure. For example, if the goal is to minimize the “syntax distor-
tion” to the data [16], we can regard each suppression of a domain value v in a
record as one unit of distortion and define InfoGain(v) to be the number of records
that contain v. The rest of the algorithm requires little changes.

7 Conclusions

We studied the problem of eliminating the sensitive inferences that are made pos-
sible by data mining abilities, while preserving the classification value of the data.
A sensitive inference has a high confidence in linking a group of individuals to
sensitive properties. We eliminated sensitive inferences by letting the user specify
the templates and maximum confidence for such inferences. We used suppression
of domain values as a way to achieve this goal. We presented a top-down dis-
closure algorithm that iteratively searches for a better suppression and prunes the
search whenever no better alternative is possible. Experiments on real-life data
sets showed that the proposed approach preserves the information for classifica-
tion modeling even for very restrictive privacy requirements.
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