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Abstract

Mashup is a web technology that combines information
from more than one source into a single web application.
This technique provides a new platform for different data
providers to flexibly integrate their expertise and deliver
highly customizable services to their customers. Nonethe-
less, combining data from different sources could poten-
tially reveal person-specific sensitive information. In this
paper, we study and resolve a real-life privacy problem in a
data mashup application for the financial industry in Swe-
den. Therefore we propose a service-oriented architecture
for privacy-preserving data mashup together with a multi-
party protocol to securely integrate private data from differ-
ent data providers, whereas the integrated data still retains
the essential information for supporting general data ex-
ploration or a specific data mining task, such as classifica-
tion analysis. Experiments on real-life data suggest that our
proposed method is effective for simultaneously preserving
both privacy and information usefulness.

1 Introduction

Mashup is a web technology which has evolved from
the strong need of integrating data from different sources.
Mashup applications have been developed in recent years
to support sophisticated knowledge representations in the
service-oriented landscape. The idea was first presented
and discussed in an issue of the Business Week [7] of
2005 on the topic of integrating real estate information into
Google Maps. Data mashupis a special type of mashup
application that aims at integrating data from multiple data
providers depending on the user’s service request. A service
request could be a general data exploration or a sophisti-
cated data mining task such as classification analysis. Upon
receiving a service request, the data mashup web applica-
tion (mashup coordinator) dynamically determines the data

providers, collects information from them through their web
service interface (API), and then integrates the collectedin-
formation to fulfill the service request. Further computation
and visualization can be performed at the user’s site (e.g.,
a browser or an applet). This is very different from the tra-
ditional web portal which simply divides a web page or a
website into independent sections for displaying informa-
tion from different sources.

A data mashup application is designed to collect infor-
mation accessible on arbitrary service providers. With the
specification of common points for data integration, the in-
tegrated data can support clients of the mashup application
to discover new knowledge for their purpose. However,
there is a potential privacy risk because of the possibility
of having sensitive information revealed which was impos-
sible or not obvious before the integration. In this paper, we
study the privacy threats caused by data mashup and pro-
pose a service-oriented architecture (SOA) for a privacy-
preserving data mashup system together with a multiparty
protocol, calledPPMashup, to securely and efficiently in-
tegrate person-specific sensitive data from different data
providers, whereas the integrated data still retains the es-
sential information for supporting general data exploration
or a specific data mining task, such as classification analy-
sis. The followingreal-life scenario illustrates the simulta-
neous need of information sharing and privacy preservation
in the financial industry.

This research problem was discovered in a collaborative
project with Nordax Finans AB, which is a provider of un-
secured loans in Sweden. For illustration, we generalize
their problem described as follows. A loan companyA and
a bankB observe different sets of attributes about the same
set of individuals identified by the common key social se-
curity number (SSN), e.g.,TA(SSN,Age,Balance) and
TB(SSN, Job, Salary). These companies want to imple-
ment a data mashup application that integrates their data to
support better decision making such as loan or credit limit
approval, which is basically a data mining task on classi-
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Table 1. Raw tables
Shared Party A Party B

SSN Class Sex ... Job Salary ...
1-3 0Y3N Male Janitor 30K
4-7 0Y4N Male Mover 32K
8-12 2Y3N Male Carpenter 35K
13-16 3Y1N Female Technician 37K
17-22 4Y2N Female Manager 42K
23-25 3Y0N Female Manager 44K
26-28 3Y0N Male Accountant 44K
29-31 3Y0N Female Accountant 44K
32-33 2Y0N Male Lawyer 44K

34 1Y0N Female Lawyer 44K

fication analysis. In addition to companiesA andB, their
partnered credit card companyC also has access to the data
mashup application, so all three companiesA, B, andC are
data recipients of the final integrated data. CompaniesA

andB have two privacy concerns. First, simply joiningTA

andTB would reveal the sensitive information to the other
party. Second, even ifTA andTB individually do not con-
tain person-specific or sensitive information, the integrated
data can increase the possibility of identifying the recordof
an individual.

Example 1 Consider the data in Table 1 and taxonomy
trees in Figure 1. Party A (the loan company) and
Party B (the bank) ownTA(SSN,Sex, . . . , Class) and
TB(SSN, Job, Salary, . . . , Class), respectively. Each
row represents one or more raw records andClass con-
tains the distribution of class labels Y and N, representing
whether or not the loan has been approved. After integrat-
ing the two tables (by matching the SSN field), the female
lawyer on(Sex, Job) becomes unique, therefore, vulnera-
ble to be linked to sensitive information such asSalary.
To prevent such linking, we can generalizeAccountantand
Lawyerto Professionalso that this individual becomes one
of many female professionals. No information is lost as far
as classification is concerned becauseClass does not de-
pend on the distinction ofAccountantandLawyer.

This private data mashupproblem can be described as
follows. Given multiple private tables for the same set of
records on different sets of attributes (i.e., vertically parti-
tioned tables), we want to efficiently produce an integrated
table on all attributes for releasing it to different parties. The
integrated table must satisfy both the following privacy and
information requirements described as follows.

Privacy Requirement: The integrated table has to sat-
isfy k-anonymity [15, 16] as follows. A data tableT satis-
fiesk-anonymity if every combination of values on aquasi-
identifierQID is shared by at leastk records inT , where the
QID is a set of attributes inT that could potentially identify
an individual inT , andk is a user-specified threshold.k-
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Figure 1. Taxonomy trees and QIDs

anonymity can be satisfied by generalizing domain values
into higher level concepts. In addition, at any time in the
procedure of generalization, no party should learn more de-
tailed information about the other party other than those in
the final integrated table. For example,Lawyer is more
detailed thanProfessional.

Information Requirement: The generalized data is
as useful as possible to classification analysis. Generally
speaking, the privacy goal requires masking information
that arespecificenough to identify individuals, whereas the
classification goal requires extracting trends and patterns
that aregeneralenough to predict new cases. If generaliza-
tion iscarefullyperformed, it is possible to mask identifying
information while preserving useful classification patterns.

Our contributions can be summarized as follows. First,
we identify a new privacy problem through a collaboration
with the financial industry and generalize their requirements
to formulate the private data mashup problem (Section 3
and Section 4). The goal is to allow data sharing and inte-
gration for classification analysis in the presence of privacy
concern. Second, we propose a service-oriented architec-
ture and a privacy-preserving protocol for multiparty data
mashup (Section 5). Finally, we implement the proposed ar-
chitecture and algorithm for the financial industry and eval-
uate its performance (Section 6). Experimental results on
real-life data suggest that the method can effectively achieve
a privacy requirement without compromising the useful data
for classification, and the method is scalable to handle large
data set.

2 Related Work

Information integration has been an active area of
database research [18]. This literature typically assumes
that all information in each database can be freely shared
[1]. Secure multiparty computation (SMC), on the other
hand, allows sharing of the computed result (e.g., a classi-
fier), but completely prohibits sharing of data [20], which is
a primary goal of our studied problem. An example is the
secure multiparty computation of classifiers [2, 3, 19].

Yang et al. [19] developed a cryptographic approach to
learn classification rules from a large number of data own-
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ers while their sensitive attributes are protected. The prob-
lem can be viewed as a horizontally partitioned data table in
which each transaction is owned by a different data owner.
The model studied in this paper can be viewed as a verti-
cally partitioned data table, which is completely different
from [19]. More importantly, the output of their method is
a classifier, but the output of our method is an integrated
anonymous data that supports classification analysis.

The notion ofk-anonymity was proposed in [15], and
generalization was used to achievek-anonymity in Datafly
system [16] andµ-Argus system [8]. Preservingk-
anonymity for classification was studied in [6, 11]. The
research works [4, 17] studied the privacy threats caused
by publishing multiple releases. All these works considered
a single data source, therefore, data integration is not an is-
sue. In the case of multiple private databases, joining all
private databases and applying a single table method would
violate the privacy requirement. Furthermore, these works
did not consider classification or a specific use of data, and
used very simple heuristics to guide generalization.

Jiang and Clifton [9, 10] proposed a cryptographic ap-
proach to securely integrate two distributed data tables toa
k-anonymous table without considering a data mining task.

3 Problem Definition

We first definek-anonymity on a single table and then
extend it for private data mashup for multiple parties.

3.1 The k-Anonymity

Consider a person-specific tableT (ID,D1, . . . ,Dm,

Class). ID is record identifier, such asSSN , that will
be further discussed later. EachDi is either a categorical or
a continuous attribute. TheClass attribute contains class
labels. Letatt(v) denote the attribute of a valuev. The
data provider wants to protect against linking an individual
to a record inT through some subset of attributes in QID. A
sensitive linking occurs if some value of the QID is shared
by only asmallnumber of records inT . This requirement
is defined below.

Definition 3.1 (Anonymity Requirement) Consider p

quasi-identifiersQID1, . . . , QIDp on T . a(qidj) denotes
the number of records inT that share the valueqidj on
QIDj . The anonymity ofQIDj , denotedA(QIDj), is
the smallesta(qidj) for any valueqidj on QIDj . A table
T satisfies the anonymity requirement{〈QID1, k1〉, . . . ,
〈QIDp, kp〉} if A(QIDj) ≥ kj for 1 ≤ j ≤ p, wherekj is
the anonymity threshold onQIDj .

Definition 3.1 generalizes the traditionalk-anonymity by
allowing the data provider to specify multiple QIDs. More
details on the motivation and specification of multiple QIDs

can be found in [5]. Note that ifQIDj is a subset ofQIDi,
wherei 6= j, and ifkj ≤ ki, then〈QIDj , kj〉 is redundant
because if a tableT satisfies〈QIDj , kj〉, then it must also
satisfy〈QIDj , kj〉. 〈QIDj , kj〉 can be removed from the
anonymity requirement.

3.2 Private Data Mashup

Considern data providers{Party1, . . . ,Partyn}, where
each Partyy owns a private tableTy(ID,Attribsy, Class)
over the same set of records.ID and Class are shared
attributes among all data providers.Attribsy is a set of
disjoint, private attributes. For any two data providers
y 6= z, Attribsy ∩ Attribsz = ∅. These data providers
agree to release “minimal information” to form an in-
tegrated tableT (by matching the ID) for conducting a
joint classification analysis. The notion of minimal in-
formation is specified by thejoint anonymity require-
ment{〈QID1, k1〉, . . . , 〈QIDp, kp〉} on the integrated ta-
ble. QIDj is local if it contains only attributes from one
party, andglobal otherwise.

Definition 3.2 (Private Data Mashup) Given multiple
private tablesT1, . . . , Tn, a joint anonymity requirement
{〈QID1, k1〉, . . . , 〈QIDp, kp〉}, and a taxonomy tree
for each categorical attribute in∪QIDj , the problem of
private data mashupis to efficiently produce a general-
ized integrated tableT such that (1)T satisfies the joint
anonymity requirement, (2)T contains as much informa-
tion as possible for classification, (3) each party learns
nothing about the other party more specific than what is in
the final generalizedT . We assume that the data providers
are semi-honest, meaning that they will follow the protocol
but may attempt to derive sensitive information from the
received data.

There are two obvious yet incorrect approaches. The first
one is “integrate-then-generalize” which will first integrate
the two tables and then generalize the integrated table us-
ing some single table anonymization methods [5, 11]. Un-
fortunately, this approach does not preserve privacy in the
studied scenario because any party holding the integrated
table will immediately know all private information of both
parties. The second approach is “generalize-then-integrate”
which will first generalize each table locally and then inte-
grate the generalized tables. This approach does not work
for a quasi-identifier that spans multiple tables. Referring
to the Example 1, thek-anonymity on (Sex,Job) cannot be
achieved by thek-anonymity on each ofSex andJob sep-
arately.

4 Specialization Criteria

To generalizeT , a taxonomy treeis specified for each
categorical attribute in∪QIDj . A leaf node represents a
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Figure 2. A solution cut for QID1 = {Sex, Job}
indicating the most specific attribute values
to use for Sex and Job to not violate the
anonymity requirement.

domain value and a parent node represents a less specific
value. For a continuous attribute in∪QIDj , a taxonomy
tree can be grown at runtime, where each node represents
an interval, and each non-leaf node has two child nodes
representing some optimal binary split of the parent inter-
val. Figure 1 shows a dynamically grown taxonomy tree for
Salary. We generalize a tableT by a sequence of specializa-
tions starting from the top most general state in which each
attribute has the top most value of its taxonomy tree. Aspe-
cialization, written v → child(v), wherechild(v) denotes
the set of child values ofv, replaces the parent valuev with
the child value that generalizes the domain value in a record.
A specialization isvalid if the specialization results in a ta-
ble satisfying the anonymity requirement after the special-
ization. A specialization isbeneficialif more than one class
are involved in the records containingv. A specialization is
performed only if it is both valid and beneficial.

The specialization process can be viewed as pushing the
“cut” of each taxonomy tree downwards. Acutof the taxon-
omy tree for an attributeDi, denotedCuti, contains exactly
one value on each root-to-leaf path. Figure 2 shows a solu-
tion cut indicated by the dashed curve. Each specialization
tends to increase information and decrease anonymity be-
cause records are more distinguishable by specific values.
The key is selecting a specialization at each step with both
impacts considered.

One core step of this approach is computingScore,
which measures the goodness of a specialization with re-
spect to privacy preservation and information preservation.
The effect of a specializationv → child(v) can be sum-
marized by information gain, denotedInfoGain(v), and
anonymity loss, denotedAnonyLoss(v), due to the spe-
cialization. Our selection criterion is to favor the special-
izationv that has the maximum information gain per unit of
anonymity loss:

Score(v) =
InfoGain(v)

AnonyLoss(v) + 1
. (1)

We add 1 toAnonyLoss(v) to avoid division by zero.
InfoGain(v) : Let T [x] denote the set of records inT

generalized to the valuex. Let freq(T [x], cls) denote the
number of records inT [x] having the classcls. Note that

|T [v]| =
∑

c |T [c]|, wherec ∈ child(v). We have

InfoGain(v) = I(T [v]) −
∑

c

|T [c]|

|T [v]|
I(T [c]), (2)

whereI(T [x]) is theentropyof T [x] [14]:

I(T [x]) = −
∑

cls

freq(T [x], cls)

|T [x]|
× log2

freq(T [x], cls)

|T [x]|
,

(3)
Intuitively, I(T [x]) measures the mix of classes for the
records inT [x], andInfoGain(v) is the reduction of the
mix by specializingv.

AnonyLoss(v): This is the average loss of anonymity by
specializingv over allQIDj that contain the attribute ofv:

AnonyLoss(v) = avg{A(QIDj) − Av(QIDj)}, (4)

whereA(QIDj) andAv(QIDj) represents the anonymity
before and after specializingv. Note thatAnonyLoss(v)
not just depends on the attribute ofv; it depends
on all QIDj that contain the attribute ofv. Hence,
avg{A(QIDj) − Av(QIDj)} is the average loss of all
QIDj that contain the attribute ofv.

For a continuous attribute, the specialization of an inter-
val refers to the optimal binary split that maximizes infor-
mation gain. We use information gain, instead ofScore,
to determine the split of an interval because anonymity is
irrelevant to finding a split suitable for classification.

5 Proposed Architecture and Protocol

In this section, we first describe the proposed techni-
cal architecture shown in Figure 3 with the communication
paths of all participating parties, and then followed by a
privacy-preserving data mashup protocol. Referring to the
architecture, themashup coordinatorplays the central role
in initializing the protocol execution and presenting the final
integrated dataset to the user. The architecture doesnot re-
quire that the mashup coordinator to be a trusted entity. This
makes our architecture practical because a trusted party is
often not available in real-life scenarios.

As the coordinator of the communication protocol, the
mashup coordinator separates the architecture into two
phases. In Phase I, the mashup coordinator receives re-
quests from users, establishes connections with the data
providers who contributes their data in a privacy-preserving
manner. In Phase II, the mashup coordinator manages the
privacy-preserving protocol among the data providers for a
particular client request.

5.1 Phase I: Session Establishment

The objective of Phase I is to establish a common session
context among the contributing data providers and the user.
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Figure 3. Service-Oriented Architecture for
Privacy-Preserving Data Mashup

An operational context is successfully established by pro-
ceeding through the steps ofuser authentication, contribut-
ing data providers identification, session initialization, and
common requirements negotiation.

Authenticate user: The mashup coordinator first authen-
ticates a user to the requested service, generates a session
token for the current user interaction, and then identifies the
data providersaccessibleby the user. Some data providers
are public and are accessible by any users.

Identify contributing data providers: Next, the mashup
coordinator queries the data schema of the accessible data
providers to identify the data providers that can contribute
data for the requested service. To facilitate more effi-
cient queries, the mashup coordinator could pre-fetch data
schema from the data providers (i.e., the pull model), or the
data providers could update their data schema periodically
(i.e., the push model).

Initializing session context: Then, the mashup coordina-
tor notifies all contributing data providers with the session
identifier. All prospective data providers share a common
session context, which represents a stateful presentation
of information related to a specific execution of privacy-
preserving mashup protocol calledPPMashup, which will
be discussed in Section 5.2. Due to the fact that mul-
tiple parties are involved and the flow of multiple proto-
col messages is needed in order to fulfill the data mashup,
we propose the use of Web Service Resource Framework
(WSRF) to keep stateful information along an initial service
request. An established session context stored as a single

web service resource contains several attributes to identify
a PPMashup process, which are an unique session identifier
(making use of end-point reference (EPR), which is built
from service address and identifiers of the resource in use),
the client address, the data provider addresses and their cer-
tificates, an authentication token (containing the user cer-
tificate), as well as additional status information.

Negotiating privacy and information requirements: The
mashup coordinator is responsible to communicate the ne-
gotiation of privacy and information requirements among
the data providers and the user. Specifically, this step in-
volves negotiating the price, the anonymity requirement in
Definition 3.1, and the expected information quality. For
example, in the case of classification analysis, information
quality can be estimated by classification error on some test-
ing data.

5.2 Phase II: Privacy-Preserving Protocol

After a common session has been established among the
data providers, the mashup coordinator initiates the privacy-
preserving data mashup protocol (PPMashup) and stays
back. Upon the completion of the protocol, the mashup co-
ordinator will receive an integrated table that satisfies both,
the information and anonymity requirements. There are two
advantages that the mashup coordinator does not have to
participate in the PPMashup protocol. First, the architec-
ture does not require the mashup coordinator to be a trusted
entity. The mashup coordinator only has access to the final
integratedk-anonymous data. Second, this setup removes
the computation burden from the mashup coordinator, and
frees up the coordinator to handle other requests.

The rest of this section presents the PPMashup protocol
for achieving both the anonymity and information require-
ments. One major contribution of this paper is to extend
a single party anonymization algorithm, calledtop-down
specialization (TDS)[5], to a multiparty privacy-preserving
data mashup protocol.

The objective of TDS is tok-anonymize a single table
T while preserving its information for classification anal-
ysis. One non-privacy-preserving approach to the problem
of data mashup is to first join the multiple private tables
into a single tableT and then generalizeT to satisfy ak-
anonymity requirement using TDS. Though this approach
violates the privacy requirement (3) in Definition 3.2 (be-
cause the party that generalizes the joint table knows all the
details of the other parties), the integrated table produced
satisfies requirements (1) and (2). Therefore, it is helpfulto
first have an overview of TDS: Initially, all values are gener-
alized to the top most value in its taxonomy tree, andCuti
contains the top most value for each attributeDi. At each it-
eration, TDS performs the “best” specialization, which has
the highestScore among thecandidatesthat are valid, ben-
eficial specializations in∪Cuti, and then updates theScore
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Algorithm 1 PPMashup for PartyA (same for PartyB)
1: initialize Tg to include one record containing top most values;
2: initialize∪Cuti to include only top most values;
3: while there is some candidate in∪Cuti do
4: find the local candidatex of highestScore(x);
5: communicateScore(x) with PartyB to find the winner;
6: if the winnerw is localthen
7: specializew onTg;
8: instruct PartyB to specialize w;
9: else

10: wait for the instruction from PartyB;
11: specializew onTg using the instruction;
12: end if;
13: replacew with child(w) in the local copy of∪Cuti;
14: updateScore(x), the beneficial/valid status for candidates

x in ∪Cuti;
15: end while;
16: outputTg and∪Cuti;

of the affected candidates. The algorithm terminates when
there is no more valid and beneficial candidate in∪Cuti.
In other words, the algorithm terminates if any further spe-
cialization would violate the anonymity requirement. An
important property of TDS is that the anonymity require-
ment isanti-monotonewith respect to a specialization: If it
is violated before a specialization, it remains violated after
the specialization because a specialization never increases
the anonymity counta(qid). This property guarantees that
the identifiedk-anonymous solution must be local optimal .

Now, we consider the multiparty scenario. To ease the
understanding of the protocol, we start by having two par-
ties (n = 2): PartyA holds private tableTA and PartyB
holds private tableTB , whereTA andTB share a common
key ID. At the end of this section, we generalize the protocol
to multiparty withn > 2. Unlike the single party problem
handled by TDS, this multiparty problem complicates the
problem because specializing on a value of attributeDx in
one party will affect theScore of other values of attribute
Dy in another party, where someQID contains bothDx

andDy. In our proposed PPMashup protocol, each party
keeps a copy of the current∪Cuti and generalizedT , de-
noted byTg, in addition to the privateTA or TB . The nature
of the top-down approach implies thatTg is more general
than the final answer, therefore, does not violate the require-
ment (3) of Definition 3.2. At each iteration, the two parties
cooperate to perform the same specialization as identified
in TDS by communicating certain information in a way that
satisfies the requirement (3) in Definition 3.2.

Algorithm 1 describes the protocol at PartyA (same for
PartyB). For partyi, a local attributerefers to an attribute
in Ti, A local specializationrefers to that of a local attribute.

Lines 4-5: Find winner candidate. PartyA first finds
the local candidatex of highestScore(x), by making use
of computedInfoGain(x), Ax(QIDj) and A(QIDj),

and then communicates with PartyB (using secure mul-
tiparty max algorithm in [20]) to find the winner candidate.
InfoGain(x), Ax(QIDj) andA(QIDj) come from the
update done in the previous iteration or the initialization
prior to the first iteration. This step does not access data
records.

Lines 6-12: Perform winning specialization.Suppose
that the winner candidatew is local at PartyA (otherwise,
replace PartyA with PartyB). For each recordt in Tg con-
tainingw, PartyA accesses the raw records inTA[t] to tell
how to specializet. To facilitate this operation, we represent
Tg by the data structure calledTaxonomy Indexed PartitionS
(TIPS). TIPS is a tree structure. Each node represents a gen-
eralized record over∪QIDj . Each child node represents a
specialization of the parent node on exactly one attribute.
A leaf node represents a generalized recordt in Tg and the
leaf partition containing the raw records generalized tot,
i.e., TA[t]. For a candidatex in ∪Cuti, Px denotes a leaf
partition whose generalized record containsx, andLinkx

links up allPx’s.
With the TIPS, we can efficiently identify all raw records

generalized tox by following Linkx for a candidatex in
∪Cuti. To ensure that each party has only access to its own
raw records, a leaf partition at PartyA contains only raw
records fromTA and a leaf partition at PartyB contains
only raw records fromTB . Initially, the TIPS has only the
root node representing the most generalized record and all
raw records. In each iteration, the two parties cooperate to
perform the specializationw by refining the leaf partitions
Pw onLinkw in their own TIPS.

We summarize the operations for the 2-party scenario,
assuming that the winnerw is local at PartyA.

Party A. Refine each leaf partitionPw on Linkw into
child partitionsPc. Linkc is created to link up the newPc’s
for the samec. Mark c asbeneficialif the records onLinkc

has more than one class. Also, addPc to everyLinkx other
than Linkw to which Pw was previously linked. While
scanning the records inPw, PartyA also collects the fol-
lowing information.

• Instruction for PartyB. If a record inPw is specialized
to a child valuec, collect the pair (id,c), whereid is the
ID of the record. This information will be sent toB to
refine the corresponding leaf partitions there.

• Count statistics. The following information is col-
lected for updatingScore. (1) For each c in
child(w): |TA[c]|, |TA[d]|, freq(TA[c], cls), and
freq(TA[d], cls), whered ∈ child(c) andcls is a class
label. Refer to Section 4 for these notations.|TA[c]|
(similarly |TA[d]|) is computed by

∑
|Pc| for Pc on

Linkc. (2) For eachPc on Linkc: |Pd|, wherePd is a
child partition underPc as if c was specialized.

Party B. On receiving the instruction from PartyA,
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PartyB creates child partitionsPc in its own TIPS.Pc con-
tains raw records fromTB . Pc is obtained by splittingPw

amongPc’s according to the (id, c) pairs received.
Lines 13-14: Update Score and Status.The key to

the scalability of our algorithm is updatingScore(x) using
the count statistics maintained in the previous step with-
out accessing raw records again.Score(x) depends on
InfoGain(x), Ax(QIDj) and A(QIDj). The updated
A(QIDj) is obtained fromAw(QIDj), wherew is the
value specialized. IfAx(QIDj) < k for all QIDj , then
x is invalid and is removed from the∪Cuti.

Analysis: PPMashup is extendable for multiple parties
with minor changes: In Line5, each party should commu-
nicate with all the other parties for determining the winner.
Similarly, in Line8, the party holding the winner candidate
should instruct all the other parties and in Line10, a party
should wait for instruction from the winner party.

We emphasize that updating TIPS is the only opera-
tion that accesses raw records. Subsequently, updating
Score(x) makes use of the count statistics without access-
ing raw records anymore. The TIPS data structure is the key
of efficient anonymization in this protocol. In each iteration,
each party sendsn − 1 messages, wheren is the number of
parties. Then, the winner party (Line8) sends instruction
to other parties. This communication process continues for
at mosts times, wheres is the number of valid specializa-
tions which is bounded by the number of distinct values in
∪QIDj . Hence, for a given data set, the total communica-
tion cost iss{n(n − 1) + (n − 1)} = s(n2 − 1) ≈ O(n2).

6 Experimental Evaluation

To simulate the environment at Nordax Finans AB in
Sweden, we implemented the proposed PPMashup in a dis-
tributed web service environment with 2 data providers and
1 mashup coordinator. To evaluate the benefit of data inte-
gration and the impacts of generalization to data analysis,
we employed a real-life census data set,Adult [13]. The
data set has 6 continuous attributes, 8 categorical attributes,
and a binaryClass column representing the income lev-
els≤50K and>50K. After removing records with missing
values, there are 30,162 and 15,060 records for the pre-split
training and testing, respectively.TA contains 9 attributes
and TB contains 5 attributes. They share a common key
ID. For classification models, we used the well known C4.5
classifier [14]. We tested with a single QID because a single
QID is always more restrictive than breaking it into multiple
QIDs for the same anonymity thresholdk. The single QID
contains the topN attributes ranked by the C4.5 classifier:
the top attribute is the attribute at the top of the C4.5 deci-
sion tree, then we removed this attribute and repeated this
process to determine the rank of other attributes.

We collected several classification errors from the test-
ing set.Base error(BE) is the error on the integrated data
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Figure 4. IE for Top5, Top7, and Top9

without generalization.Upper bound error(UE) is the er-
ror on the integrated data in which all attributes in the QID
are generalized to the top most ANY. This is equivalent to
removing all attributes in the QID.Integration error(IE) is
the error on the integrated data produced by our PPMashup
algorithm. We combined the training set and testing set into
one set, generalized this set to satisfy the given anonymity
requirement, built the classifier using the generalized train-
ing set. The error is measured on the generalized testing
set.Source error(SE) is the error without data integration
at all, i.e., the error of classifiers built from individual raw
private table. Each party has aSE.

Benefits of Integration: Our first goal is evaluating
the benefit of data integration over individual private table,
measured bySE − IE. SE for TA, denoted bySE(A),
is 17.7% and SE for TB , denoted bySE(B), is 17.9%.
Figure 4 depicts theIE for Top5, Top7, andTop9 with
the anonymity thresholdk ranging from 20 to 1000.1 For
example,IE = 14.8% for Top5 for k ≤ 180, suggest-
ing that the benefit of integration,SE − IE, for each party
is approximately3%. For Top9, IE stays at above17.2%
whenk ≥ 80, suggesting that the benefit is less than 1%.
In the data mashup application for Nordax Finans AB, the
anonymity thresholdk was set at between 20 and 50. This
experiment demonstrates the benefit of data integration over
a wide range of anonymity requirements.

Impacts of Generalization: Our second goal is evalu-
ating the impact of generalization on data quality.IE gen-
erally increases as the anonymity thresholdk or the QID
size increases because the anonymity requirement becomes
more stringent.IE − BE measures the cost for achieving
the anonymity requirement on the integrated table, which
is the increase of error due to generalization. For the C4.5
classifier,BE = 14.7%. UE − IE measures the benefit of
our PPMashup algorithm compared to the brute removal of
the attributes in the QID. The ideal result is to have small

1In order to show the behavior for both smallk and largek, the x-axis
is not spaced linearly.
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IE − BE (low cost) and largeUE − IE (high benefit).
We use the result ofTop7 to summarize the analysis.

First, IE − BE is less than 2% for20 ≤ k ≤ 600, and
IE is much lower thanUE = 21.5%. This suggests that
accurate classification and privacy protection can coexist.

Our Architecture: Our third goal is evaluating the ad-
vantages of our proposed architecture. One first focus was
to cleary seperate the requesting consumer of the mashup
application from the backend process. Due to issues of con-
vinience and control and also because a mashup coordinator
represents a static point of connection between clients and
providers with a high rate of availability. A mashup co-
ordinator would also be able to cache frequently requested
data tables during a period where they are valid. Requests
are attached to a session token identifying a kind of con-
tract between a consumer and several data providers and
are maintained by the mashup coordinator, a generic ser-
vice provider. Another benefit is that the mashup provider
is able to handle and unify several service level agreements
among different data providers and queues service requests
according to the workload of single data providers.

7 Conclusions and Lesson Learned

We presented a real-life privacy problem faced by some
financial institutes in Sweden, and generalized their privacy
and information requirements to the problem of private data
mashup for the purpose of joint classification analysis. We
formalized this problem as achieving thek-anonymity on
the integrated data without revealing more detailed informa-
tion in this process, and proposed a privacy-preserving data
mashup architecture, together with a secure protocol, for
integrating private data from multiple data providers. We
evaluated the benefits of data integration and the impacts of
generalization.

We would like to share our experience in collabora-
tion with the financial sector. In general, they prefer sim-
ple privacy requirement. Despite some criticisms onk-
anonymity [12], the financial sector (and probably some
other sectors) finds thatk-anonymity is an ideal privacy re-
quirement due to its intuitiveness. Their primary concern is
whether they can still effectively perform the task of data
analysis on the anonymous data. Therefore, solutions that
solely satisfying some privacy requirement are insufficient
for them. They demand anonymization methods that can
preserve information for various data analysis tasks.
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