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Abstract 

Besides accuracy, fairness has been reported as another performance criterion for data-driven 

building models (DDBMs). To ensure data-driven-based model predictive controllers (MPCs) 

provide optimal control strategies based on fair or unbiased prediction, this study proposes the 

concept of fairness-aware data-driven-based MPC. In the proposed MPC framework, fairness-

aware DDBMs constitute the prediction component that provides predicted building states to the 

objective function in the optimization part. To investigate the effect of improving fairness on the 

control performance, the proposed MPC is implemented in a residential building heated by an 

electrically heated floor (EHF) system, which could be considered as a thermal energy storage 

(TES) system. In the case study, fairness-aware DDBMs are developed to predict energy demand 

and indoor air temperature. Then, the predicted values are used to formulate the objective function 

to optimize the hourly day-ahead set-point temperature with the aim of minimizing the heating 

cost or maximizing peak shifting, while maintaining thermal comfort.  The numerical study results 

show that although considering fairness improvement methods in DDBMs decreases the overall 

predictive accuracy, it provides fair prediction by narrowing the accuracy difference between 

majority conditions and minority conditions. For instance, a fairness-aware energy prediction 

model increases the overall mean absolute error (MAE) from 6.12 kWh to 7.56 kWh but decreases 

the MAE difference between a majority condition and a minority condition from 0.82 kWh to 0.14 

kWh. Although improving predictive fairness comes with a price of overall predictive accuracy, 

fairness-aware data-driven-based MPCs show comparable peak shifting or cost-saving ability with 

the traditional MPC in which fairness is not considered. This study provides a reference for 

stakeholders to design and implement trustworthy MPCs in buildings based on fair and accurate 

prediction. 
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1. Introduction 

1.1. Background 

1.1.1. Data-driven building models (DDBMs) and their application in model predictive 

controllers (MPCs) 

In recent years, modern buildings have been equipped with smart sensors (e.g., temperature 

probes, motion detectors, and power meters), a building automation system (BAS), and/or a 

building management system (BMS) [1]. It enables the dynamic collection of high-quality 

building-related information. The abundant collected data inspires the development of data-driven 

building models (DDBMs) to explore the statistical pattern from these data and to predict indoor 

environmental parameters, e.g., indoor air temperature [2] and indoor air quality [3]), thermal 

load/energy consumption [4,5], device/system (e.g. HVAC system and chillers) operation status 

[6,7]. 

Due to the ability to represent building states, DDBMs could be integrated into model 

predictive controllers (MPCs) to optimize the control strategy for devices/systems in a building in 

a finite horizon with the aim of minimizing energy cost/CO2 emission/thermal discomfort, 

maximizing peak shifting, or achieving demand response (DR), and so on. For instance, Huchuk 

et al. [8] proposed a novel linear model-based MPC to optimize the control signals for smart 

thermostats in residential buildings. It is aimed at simultaneously minimizing the use of 

heating/cooling systems and thermal discomfort. The result found that the data-driven-based MPC 

could effectively reduce the runtime of the heating/cooling system and improve thermal comfort, 

compared to the dead-band control and the model-free reinforcement learning control method. 

Behl et al. [9] proposed a model-based control with a regression tree algorithm (mbCRT) to 

optimize the chiller set-point, zone cooling set-point, and lighting level, with the aim of minimizing 

the energy cost and thermal discomfort. Regressive trees were developed to predict power 

consumption and indoor air temperature. A case study on 8 campus buildings showed that mbCRT 

outperforms the best rule-based controller by ~17% in terms of curtailment during a DR event. 

mailto:Fariborz.Haghighat@concordia.ca
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Khosravi et al.[10] proposed a data-driven-based MPC to achieve visual and thermal comfort for 

occupants in a building. In the proposed MPC, a semi-linear support vector machine model is 

developed to predict visual comfort, while an autoregressive exogenous model predicts the thermal 

dynamics of the building. More studies on data-driven-based MPC in buildings are summarized in 

Table 1. 
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Table 1: Summary of existing studies on data-driven-based MPC in buildings 

Ref. Data-driven 

predictors 

Predicted 

feature(s) 

Predictive 

criteria 

Controlled 

variables 

Control objective(s) Control 

performance 

criteria  

[11]  Artificial neural 

networks 

 Gaussian 

process 

regression 

 Simple linear 

regression 

process models 

 Indoor 

temperature 

 The deviation 

between 

predicted values 

and measured 

values 

 Valve opening of 

a district heating 

network in five 

real-life office 

rooms 

 Minimize energy consumption 

while maintaining thermal 

comfort 

 Energy 

consumption 

 Thermal comfort 

 Computation time 

[12]  seq2seq-LSTM  Ambient 

temperature 

inside the 

building 

 Solar 

radiation 

 Heating load 

 R2 

 The root mean 

squared error 

(RMSE) 

 Mean absolute 

error (MAE) 

 the hourly start-

stop control signal 

for the collector-

side pump 

 The hourly start-

stop control signal 

for the auxiliary 

thermal source  

 The hourly control 

signal for the 

heating end 

variable 

frequency pump 

Minimize the function containing 

the following factors: 

 Indoor thermal fluctuation 

(measured as the difference 

between indoor and design 

temperatures) 

 The total energy consumption of 

the system 

 The total heat collected by the 

heat collection subsystem 

 Thermal comfort 

 Solar heat 

collection 

 Heat loss from the 

heat storage tank 

 System energy 

consumption 

[13]  Multiple linear 

regression 

 Artificial neural 

network 

 Support vector 

regression 

(SVR) 

 Random forest 

(RF) 

 Energy 

consumption 

 Mean absolute 

percentage error 

(MAPE) 

 Supply water 

temperatures of 

chillers and 

cooling towers 

 Indoor 

temperature and 

humidity 

 Minimize the mean value of the 

air conditioning system’s total 

energy consumption during a 

period 

 Optimization 

accuracy 

 Optimization time 

[14]  ANN  Hourly 

indoor air-

 RMSE 

 MAE 

 Set-point 

temperature for 

 Minimize heating energy cost 

 Minimize thermal discomfort 

 Thermal comfort 

penalty 
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Ref. Data-driven 

predictors 

Predicted 

feature(s) 

Predictive 

criteria 

Controlled 

variables 

Control objective(s) Control 

performance 

criteria  

dry bulb 

temperature 

 Hourly 

heating load 

heating  Heating cost 

[15]  Deep neural 

network (DNN) 

 Supply air 

temperature 

of the HVAC 

system 

 Indoor 

temperature 

 Normalized 

mean bias error 

(NMBE) 

 Coefficient of 

variation of the 

root mean square 

error 

(CV(RMSE)) 

 Set-point 

temperature for 

cooling 

 Minimize energy consumption of 

the condensing units while 

maintaining the cooling set-point 

temperature 

 Energy saving rate 

[16]  Gaussian 

processes 

 Room 

temperature 

 The deviation 

between 

predicted values 

and measured 

values 

 Valve opening of 

the chiller system 

 Minimize energy consumption   Energy 

consumption 

 Thermal comfort 

violation 

[17]  Autoregressive 

with exogenous 

inputs (ARX) 

 Indoor 

temperature 

 The goodness of 

fit 

 RMSE 

 Water 

temperature 

setpoint 

 Boiler ON/OFF 

 Minimize the thermal discomfort 

of the occupants in the zone  

 Minimize the boiler energy usage 

 The sum of squared 

comfort violation 

values during 

occupied hours 

 Energy usage 

[18]  Linear 

regression 

 Indoor CO2 

concentration  

 Air 

temperature 

 NMBE 

 The deviation 

between 

predicted values 

and measured 

values 

 Window opening 

during winter 

 Minimize the operable window 

opening area and the change of 

its position 

 Constraint conditions include 

indoor air quality (CO2 

concentration threshold) and 

thermal comfort (indoor air 

temperature threshold and 

threshold for indoor air 

temperature change rate) 

requirements 

 Indoor air 

temperature 

 Energy 

consumption 
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Ref. Data-driven 

predictors 

Predicted 

feature(s) 

Predictive 

criteria 

Controlled 

variables 

Control objective(s) Control 

performance 

criteria  

[19]  Decision Tree 

(DT) 

 RF 

 The 

appropriate 

position of 

roller shades 

 Accuracy  Shading position  Minimize energy consumption  Energy 

consumption 

 Useful daylight 

illuminance 

[20]  Encoder-

decoder 

recurrent neural 

network 

 Room air 

temperature 

 RMSE 

 MAE 

 CV(RMSE) 

 Indoor set-point 

temperature 

 Minimize the deviation between 

room air temperature and set-

point temperature with 

constraints on supply air 

temperature 

 Optimizing building energy 

efficiency and indoor thermal 

comfort simultaneously 

 The time-varying 

indoor temperature 

setpoints 

 Energy 

consumption 

 Discomfort index 

[21]  Attention-based 

neural network 

time series 

multivariate 

prediction 

model 

 Zone 

temperature 

 MAPE 

 RMSE 

 MAE 

 Cooling stage 

 Heating stage 

 Fan ventilation 

stage 

 Minimizes energy consumption, 

peak demand, and discomfort 

during occupied hours 

 Constraint on self-tuned setpoint, 

temperature ramp, and 

equipment cycling 

 Energy 

consumption 

 Power peak 

 Thermal discomfort 



7 
 

 

From Table 1, accuracy measures, such as NMBE, MAE, RMSE, and CV(RMSE), are widely 

used as the predictive performance criteria for DDBMs in MPCs to reflect the closeness of 

predicted values to ground-truth values. This is because a model with higher accuracy could 

represent a more valid prediction of building states [22]. Chen et al. [13] found that DDBMs with 

higher accuracy resulted in better optimization performance of the MPC. Thus, most of the existing 

studies on DDBMs were aimed at improving the predictive accuracy by improving the training 

data quality [23] or selecting proper structure complexity for data-driven models [24]. 

Besides, fairness, which has been reported as a fundamental principle for guiding the 

development and application of AI technologies [25,26], is another evaluation measure that should 

be considered for DDBMs [27]. Two types of fairness measures for DDBMs have been clearly 

summarized in Ref [27]: “Type I. The predictive result is independent of the protected attributes 

(i.e., features that should not be disclosed or features whose conditions should be unbiased). Type 

II. The predictive performance (e.g., accuracy) is comparable between classes/conditions among 

the protected attribute(s).” Achieving Type I fairness enables privacy protection as it could avoid 

the usage of private information [28] or ensure the unpredictability of protected features from the 

remaining features [29]. Besides, improving Type II fairness could ensure uniform predictive 

performance among conditions defined by protected attributes. For instance, if the protected 

feature separates the users into different user groups, improving Type II fairness could let the 

DDBMs provide similar predictive service to users coming from distinct groups; if the protected 

feature is peak/off-peak period, better Type II farness means the DDBMs could provide uniform 

predictive performance no matter what period it is. Furthermore, letting DDBMs in an MPC be 

fair in terms of Type II may enable the MPC to provide an unbiased control strategy for different 

users or periods, so that the MPC would be trustworthy for users [30]. 

Existing studies have worked on proposing data pre-processing methods or model structure 

adaption methods to achieve Type II fairness for DDBMs by improving the predictive accuracy 

similarity between different conditions. For instance, Sun et al. [27] proposed three pre-processing 

methods (i.e., sequential sampling (SS), sequential preferential sampling (SPS), and reversed 

preferential sampling (RPS)) to produce a balanced training dataset for classification problems, 

and applied these methods to develop DDBMs for lighting status prediction. Compared with 

existing pre-processing methods, such as random sampling (RS), the proposed methods could 
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decrease the accuracy difference between the majority condition and the minority condition. Then, 

they further evaluated the generalizability of these methods on buildings with different occupancy 

behavior patterns and lighting demand [31]. Furthermore, Sun et al. [32] proposed four in-

processing methods to improve the predictive fairness for regression models by adding fairness-

related constraints or penalties to the objective function for model training. However, these 

existing studies verify that improving predictive fairness comes with the price of decreasing overall 

predictive accuracy. The decreased predictive accuracy may further affect the control performance 

of an MPC when integrating the fairness-aware DDBMs into it. 

Besides, in recent years, “fairness” has been considered by electrical utility companies to 

provide fair electricity services to customers at a district level. A fair grid tariff model would be 

more acceptable to a majority of consumers and be more effective for green transition [33]. Wang 

et al.[34] proposed a fairness-based real-time electricity pricing framework to motivate users to 

adjust energy consumption patterns based on the price signal. Ren et al. [35] proposed a fairness-

based profit allocation model to maximize the individual benefit of each prosumer in a distributed 

energy network. Danner and Meer [36] proposed a centralized charging capacity allocation policy 

to provide fair charging service to electric vehicles in a low-voltage grid. Jacubowicz et al. [37] 

proposed a fairness-based emergency demand response program for a residential area to improve 

electrical network stability by sending fair curtailment orders to consumers. 

However, as shown in Table 1, a study on fairness-aware dynamic control strategies for 

individual buildings is lacking, although fairness has already been reported as of great importance 

in data-driven systems [38,39]. To fill the research gap, this study will firstly integrate the fairness-

aware DDBMs into MPCs to form the concept of fairness-aware data-driven-based MPCs. Then, 

the effect of improving the fairness of the integrated DDBMs with a price of the overall accuracy 

on the control performance of MPCs will be investigated. 

1.1.2. Thermal energy storage in buildings and its control strategies 

Except for being data-rich, the buildings and building construction sectors have been reported 

as one of the major final energy consumers. For instance, in 2021, buildings accounted for 30% of 

total global final energy consumption [40], while they consumed 43% and 28% of final energy 

consumption in Europe [41] and the U.S. [42], respectively. Besides, building energy demand is 

not static, but changes over time. Due to occupants’ living habits, daily peak load may occur during 
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early morning or late afternoon [43]. This phenomenon further results in increased stress on the 

electricity grid during peak periods. To ease this burden, setting higher electricity prices for peak 

periods than off-peak periods, such as using time-of-use (ToU) tariffs, could be used to encourage 

consumers to shift energy consumption patterns. Another effective solution to pave the grid stress 

resulting from peak load is the usage of an energy storage system by taking advantage of its ability 

to store energy during off-peak periods and release it for later use. 

In recent years, thermal energy storage (TES) systems have been widely used in buildings for 

peak shifting or renewable energy storage. High thermal mass materials in building envelopes may 

provide sufficient thermal energy storage capacity for peak shifting. For instance, Zhu et al. [44] 

found that exterior walls with high thermal mass could shift peak load entirely from daytime to 

night. Olsthoorn et al. [45] pointed out that appropriate system configurations of an electrically 

heated floor (EHF) system in a residential building could shift both morning peaks and evening 

peaks. 

Effective control strategies are crucial to take advantage of the full capacity of TES systems 

in buildings to enlarge the peak shifting and energy cost-saving potential [46]. In recent years, 

data-driven-based MPCs have drawn increasing attention to control TES systems. For instance, 

Lee et al. [47] developed an artificial neural network (ANN) to predict the thermal behavior of a 

TES tank, and then, integrated the ANN model into an MPC to minimize the operation cost of the 

TES system by controlling its charge and discharge rate. The operational cost of TES when 

controlled by the data-driven-based MPC is 9.1%-14.6% less than the cost when controlled by a 

rule-based controller. Tang et al. [48] integrated a data-driven cooling load prediction model into 

the framework of an MPC to minimize the operating cost under a time-of-use tariff for a district 

cooling system equipped with an ice-based TES. The proposed data-driven-based MPC reduced 

the cooling cost over a two-month period by ~8%. Note that although the predictive accuracy of 

models in these MPCs has been validated, the predictive fairness has not been investigated. 

1.2. Objective, contribution, and outline 

The aim of this study is to propose a fairness-aware data-driven-based MPC for buildings 

with TES systems to minimize the electricity cost by shifting the electrical load from peak periods 

to off-peak periods. The effect of integrating fairness-aware DDBMs on the predictive 

performance of MPCs will be investigated. In the proposed MPC, the DDBM provides accurate 
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and fair predictions for building states. Predictive fairness is improved by implementing pre-

processing methods, e.g., random sampling (RS) and reversed preferential sampling (RPS), to 

produce a balanced training dataset. The achievement of predictive fairness is evaluated by the 

predictive accuracy similarity between conditions defined by the protected feature. 

Therefore, the main contribution of this study is to make the data-driven MPC trustworthy by 

providing an optimal control strategy based on fair, uniform, and accurate prediction. Besides, this 

study provides guidance on the applicability of the fairness-aware data-driven-based MPC in 

buildings with TES systems to achieve cost saving and peak shifting. Furthermore, this study 

quantitively investigates the effect of declining accuracy caused by improving fairness on the 

control performance of MPC. 

The outline of this paper is: Section 2 explains the concept of the fairness-aware data-driven-

based MPC, introduces two pre-processing methods for fairness improvement, and presents a 

derivative-free optimization method to solve the optimization problem in the MPC. Section 3 

describes a case study to implement the proposed fairness-aware data-driven-based MPC to control 

the TES in a residential building. The predictive performance of DDBMs in the proposed MPC is 

evaluated in terms of accuracy and fairness in Section 4. This section also analyzes the control 

performance of the proposed MPC in terms of cost saving, peak shifting, and thermal comfort. 

Further discussion is presented in Section 5. Finally, Section 6 summarizes the conclusion of this 

study. 

2. Methodology 

The general schematic of the proposed fairness-aware data-driven-based MPC will be 

presented in Section 2.1, which mainly includes data collection, fairness-aware data-driven model 

development, and optimal control problem construction. Then, a detailed explanation of fairness 

improvement methods for data-driven models used in this study will be given in Section 2.2. 

Section 2.3 introduces the optimization algorithm used to solve the optimization problem in the 

MPC to get the optimal control strategy. 

2.1. Fairness-aware data-driven-based MPC 

The fairness-aware data-driven-based MPC is aimed at obtaining optimal future control 

actions for systems/devices in buildings based on an accurate and fair prediction for future states. 

To ensure accurate and fair prediction, fairness-aware DDBMs act as the prediction components 



11 
 

in the proposed MPC. Fairness improvement methods are implemented when developing DDBMs. 

Accordingly, the simplified schematic of the proposed fairness-aware data-driven MPC is shown 

in Fig. 1. Its general development procedure can be summarized below: 

Step 1. Data collection. Weather information is collected from websites or weather stations, 

while building-related data (such as indoor air temperature, energy consumption, and device 

operation status) is measured by sensors or BMS installed in a real building (when the study is 

based on experimental study) or is simulated by a physical building model (when the study is based 

on numerical study). 

Step 2. Fairness-aware data-driven model training and prediction. In this step, users should 

define the protected feature among which they wish the predictive performance to be uniform. 

When the output feature is discrete labels, pre-processing methods that remove discrimination 

from the training dataset would be used as the fairness improvement method, while in-processing 

methods that add fairness-related constraints or penalties to the objective function of model 

training could be applied to achieve fairness when the output is continuous data. 

Step 3. Construct and solve the optimization problem for MPC to get the optimal future 

control signals. The predicted values from Step 2 will be integrated into the objective function of 

MPC. The objective function could be aimed at getting the optimal control actions for devices in 

a building to achieve the minimum electricity cost or energy usage, or maximum peak shifting 

while maintaining the thermal comfort in a finite horizon of time. 
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Fig. 1: Simplified schematic of fairness-aware data-driven-based MPC 

2.2. Fairness improvement methods 

Fairness improvement methods could be classified into three categories based on the stage 

that the method works on: 1) Pre-processing methods. This kind of method usually produces a 

balanced training dataset to remove discrimination before model training. 2) In-processing 

methods, which add fairness-related components (e.g., penalties or constraints) to the structure or 

objective function of a data-driven model during model training. 3) Post-processing methods that 

modify the predictive result or classification threshold of a model after model training to achieve 

fairness. 

In this study, as the starting point of investigating fairness-aware data-driven-based MPC, 

two pre-processing methods, i.e., random sampling (RS) and reversed preferential sampling (RPS), 

will be introduced in this section. Then, their effect on the predictive result and control 

performance of an MPC will be investigated by a case study presented in Section 3. 

Before explaining RS and RPS, let us assume that these methods will be implemented to 

process a balanced training dataset for an i-class prediction problem with a j-class protected feature. 

There would be i*j conditions defined by the protected feature and the output label, see Table 2. 

The original training dataset is called Xcandidate and its data count is denoted as |𝑋𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒|. The 

training dataset produced by pre-processing methods is called Xdesigned and its designed number of 
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data points is |𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑|. To make Xdesigned balance, the expected number of data points in each 

condition after data pre-processing is, 
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑|. 

Table 2: Conditions defined by an i-class prediction problem with a j-class protected attribute [31] 

 Output label 

Y1 Y2 … Yi 

Protected 

attribute 

S1 S1Y1 S1Y2 … S1Yi 

S2 S2Y1 S2Y2 … S2Yi 

… …  … … 

Sj SjY1 SjY2 … SjYi 
Note that SjYi is the condition in which the data’s protected feature is Sj and the output label is Yi. 

The general procedure of RS and RPS is presented in Fig. 2, while the fundamental of RS 

and RPS is further explained in Section 2.2.1 and Section 2.2.2, respectively.

 

Fig. 2: General procedure of RS and RPS 
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2.2.1. Random sampling (RS) 

Kaviran and Calders [28] proposed random sampling (RS) to randomly sample 
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| 

data points for each condition listed in Table 2 from Xcandidate to Xdesigned. To be more detailed, if a 

condition in Xcandidate contains more than 
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑|  data, RS would randomly sample 

1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| training points from this condition to Xdesigned. Otherwise, if the number of data in a 

condition of Xcandidate is less than  
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑|, RS would randomly duplicate points from this 

condition until the data volume reaches the expected number and then send these data to Xdesigned. 

2.2.2. Reversed preferential sampling (RPS) 

Reversed preferential sampling (RPS) was proposed in Ref [27] to sample data by the order 

of closeness to the decision boundary (the hypersurface separating the data point’s corresponding 

output label from other classes of output labels). If a condition in Xcandidate shows less than 

1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| data, RPS would duplicate its data that are close to the decision boundary until this 

condition in Xdesigned gets  
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| data points, while RPS would remove data furthest from 

the decision boundary for conditions in Xcandidate with more than  
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| data. 

2.3. Optimization method 

Considering the complexity of the optimization problem in an MPC and the ‘black-box’ 

property of most data-driven models integrated into the MPC, derivative-free optimization 

algorithms, such as differential evolution (DE), genetic algorithm (GA), and particle swarm 

optimization (PSO), could be used to solve the optimization problem constructed in the MPC and 

obtain the optimal control signals. Due to the potential to solve constrained complex optimization 

problems [34] and to guarantee global optimal [32], DE is selected as the solver for the 

optimization part of the MPC in this study.  

As a heuristic approach, DE obtains the optimal solution based on an evolutionary process 

that iteratively improves the candidate solution [49]. Its general procedure was summarized in Ref 

[32] and shown in Fig. 3. Here, a brief explanation for this figure is given as follows: 
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Step 1. Population Initialization. This step would initialize a random or user-defined 

population with a set of candidate solutions. 

Step 2. Fitness assignment. Each candidate solution would be evaluated in this step by a 

fitness score calculated by a fitness function, to determine how fit the solution is. 

Step 3. Stop criteria evaluation. Terminate the algorithm if the offspring of the corresponding 

population does not significantly improve the fitness score, or if the time of iterations reaches its 

threshold. Otherwise, if the stop criteria are not met, continue to Step 4. 

Step 4. Selection. A pre-defined selection procedure (such as random selection) would select 

a set of solutions (parents) for the next step: mutation. 

Step 5. Mutation. Mutate a unit vector by adding a scaled differential vector to a target vector. 

Here, the differential vector is the difference between the two or more parents selected from Step 

4, while the target vector is the parent with a prioritized direction of creating the unit vector. 

Step 6. Crossover and go back to Sep 2. Crossover means to generate new offspring for the 

population by crossing over a ‘major’ parent and the unit vector created from Step 5. 

 

Fig. 3: General procedure of a DE [32] 
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3. Case Study 

In the case study, fairness-aware data-driven-based MPCs will be developed to control the 

electrically heated floor (EHF) system in a residential building for the winter of 2021 (January to 

March). The effect of fairness-aware MPCs on heating cost, peak shifting, and thermal comfort 

will be compared with traditional MPCs in which data-driven models do not consider fairness 

improvement. The case study will be done by simulation on a validated TRNSYS model. 

In this section, the experimental building and the electricity price are first introduced in 

Section 3.1. Then, the EHF system in the experimental building and the TRNSYS model of this 

building are presented in Section 3.2. Detailed information for the fairness-aware data-driven-

based MPC development is explained in Section 3.3. It would develop fairness-aware DDBMs for 

heating load prediction and indoor air temperature classification, and then, integrate these models 

into MPCs to get the optimal set-point temperature for EHFs to minimize the heating cost while 

maintaining an acceptable thermal comfort. 

3.1. Experimental building 

The experimental building, as shown in Fig. 4, is a traditional residential building located in 

Montreal, Quebec, Canada. It was built in the year 1960, with a building area of 104 m2. There are 

6 rooms in the basement and 6 rooms in the ground floor.  

 
Fig. 4: Experimental building 

In the city where the experimental building is located, distinct electricity prices for peak 

periods and off-peak periods are implemented to encourage consumers to shift their electricity 

demand and reduce winter grid peaks. The electricity price during peak periods and off-peak 
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periods is listed in Table 3. Besides, it was mentioned that peak periods often occur during the 

early morning and late afternoon. Therefore, in this study, to simplify the model complexity for 

MPCs, the peak periods are assumed as 6 am to 12 pm and 6 pm to 0 am, while the off-peak periods 

include 0 am to 6 am and 12 pm to 6 pm. The duration of peak periods and off-peak periods per 

day is presented in Fig. 5. 

Table 3: Electricity price during winter implemented in Montreal, Canada [6] 

  Periods 

 Condition Peak period Off-peak period 

Electricity price (¢/kWh) < 40 kWh/per day 50 3.98 

Electricity price (¢/kWh) > 40 kWh/per day 50 7.03 

Subscription fee (¢/day) - 40.64 

 

 
Fig. 5: Duration of off-peak periods and peak periods 

3.2. EHF system and TRNSYS model 

The building was originally simulated as a multi-zone TRNSYS (TRaNsient SYStems 

simulation program) model created and validated by Aongya [50]. In this model, occupancy status, 

lighting energy consumption, and appliance energy consumption are modeled with a measured 

schedule. The building was heated by electric baseboards. Then, to investigate the applicability of 

electrically heated floor (EHF) on peak shifting, Thieblemont et al. [51] removed the basement in 

the model and replaced the baseboards with a commonly used EHF system in Quebec, Canada. 

The assembly of EHFs is present in Fig. 6, while the properties of its materials are listed in Table 

4. The simulated one-story building was validated. Then, the building model is further simplified 

into a single-zone model that combines the ground floor as one zone heated by EHFs. To do so, 

the internal envelopes have been eliminated. The schematic of the modified TRNSYS model is 

presented in Fig. 7. Detailed description of these components could be found in previous studies 

[52,53]. The simplified single-zone TRNSYS model was validated by setting the same set-point 

temperature as the multi-zone model and getting comparable indoor air temperature and energy 
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consumption. A detailed validation procedure will not be presented in this paper, as it is not the 

focus of this paper. 

 
Fig. 6: Assembly of EHFs [51]  

Table 4: Thermophysical properties of floor layers [51] 

Material Conductivity 

(W/mk) 

Specific Heat 

(kJ/kgK) 

Density 

(kg/m3) 

Concrete 2.25 0.99 2200 

Insulation (XPS) 0.04 1.5 35 

Floor Covering (plywood) 0.164 1.63 670 

 

 

 
Fig. 7: Schematic of the TRNSYS model 

 

3.3. Fairness-aware data-driven MPC development 

In this section, the fairness-aware data-driven-based MPC will be developed following the 

procedure illustrated in Section 2.1. Detailed explanation for each step is presented below: 

Step 1. Data collection. 
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To collect the training data, the TRNSYS model is simulated based on weather data collected 

from January to March from the weather station located at Montréal-Pierre Elliott Trudeau 

International Airport for the year 2011 to 2021. The time interval is 1 hour. The building is heated 

by the EHF with a random hourly integer set-point within the range of [18 °C, 24 °C]. Data 

obtained from the TRNSYS model include energy consumed by the EHF and indoor air 

temperature. Because DDBMs could be time series prediction, 12 hours’ time lag of set-point 

temperature, energy consumption, and indoor air temperature are added as candidate features. 

Step 2. Fairness-aware data-driven model training and prediction. 

Two DDBMs would be developed to predict the energy consumption and indoor air 

temperature, respectively. The energy prediction would be used to calculate the electricity bill or 

the difference between energy consumed during peak periods and during off-peak periods, while 

the indoor air temperature prediction would be used to constrain the set-point in order to meet 

thermal comfort. 

The energy prediction model (see Equation 1) predicts the energy consumption for a 6-hour 

period (off-peak period or peak period). Here, the prediction is based on a support vector machine 

(SVM) model with a linear kernel. SVM makes predictions by determining a hyperplane that 

maximizes the margin [54] and is a kind of popular machine learning algorithm in building 

engineering. Input features for the energy prediction SVM model include hourly setpoint during 

the corresponding 6-hour period (T𝑠𝑒𝑡,𝑖 ), and hourly outdoor ambient temperature during that 

period (T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖) and previous period (T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖−1). The reason for model selection and feature 

selection is presented in the Supplementary Information. 

𝑄�̂� = f(T𝑠𝑒𝑡,𝑖, T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖, T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖−1)                                                      (1) 

where 𝑄�̂� is the predicted energy consumption during i-th period, kWh; as shown in Fig. 5, i=1 

means the period of 0:00 am to 6:00 am, i=2 means the period of 6:00 am to 12:00 pm, i=3 is the 

period of 12:00 pm to 6:00 pm, and i=4 is the period of 6:00 pm to 0:00 am; T𝑠𝑒𝑡,𝑖 is a list of hourly 

indoor air set-point temperature at i-th period, °C; T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖 is a list of hourly outdoor ambient 

temperature at i-th period, °C. 

The indoor air temperature prediction model (see Equation 2) is actually a classification 

model that determines whether the indoor air temperature is lower than the threshold temperature 

for thermal comfort (such as 21 °C required in Montreal [55]). Here, SVM with a ‘linear’ kernel 
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function is selected as the indoor air temperature prediction model, while T𝑠𝑒𝑡,𝑖, T𝑠𝑒𝑡,𝑖−1, T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖, 

and T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖−1 are input features. The reason for model selection and feature selection is also 

presented in the Supplementary Information. 

T𝑚𝑖𝑛,𝑖
̂ = f(T𝑠𝑒𝑡,𝑖, T𝑠𝑒𝑡,𝑖−1, T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖, T𝑎𝑚𝑏𝑖𝑒𝑛𝑡,𝑖−1)                                    (2) 

where T𝑚𝑖𝑛,𝑖
̂  is the binary label that illustrates if the predicted minimum indoor air temperature 

during i-th period is lower than 21°C, T𝑚𝑖𝑛,𝑖
̂ ∈ [−1,1]. T𝑚𝑖𝑛,𝑖

̂ =-1 means that during the predicted 

period, indoor air temperature is higher than 21°C. 

Before model training, data simulated from the year 2011 to the year 2020 is used as Xcandidate. 

Then, three kinds of Xdesigned are produced for training DDBM by directly using Xcandidate (Reference 

case) or implementing pre-processing methods (RS or RPS). For both the energy prediction model 

and the indoor air temperature prediction model, the protected feature is the peak/off-peak period 

label. The data for the year 2021 is used as the validation dataset. 

Step 3. Construct the MPC and solve the optimal heating strategy. 

The goal of this MPC is to get the hourly heating set-point temperature that could minimize 

the daily electricity bill. The indoor air temperature should be kept higher than 21 °C in the future 

24 hours, while the set-point temperature should be integer and within the range of [18 °C, 24 °C]. 

The objective function of MPC is presented in Equation 3. 

min ∑ 𝑄�̂� ∗ 𝑃𝑟𝑖𝑐𝑒𝑖𝑖=1:4                                                                      (3) 

Subject to  
 T𝑚𝑖𝑛,𝑖

̂ = Negative, ∀𝑖 ∈ [1,4], 

18 °C ≤ T𝑠𝑒𝑡,𝑗𝑖 ≤ 24 °C, ∀𝑖 ∈ [1,4], 𝑗 ∈ [1,6] 

 

In this study, ‘Constant 21’, ‘MPC_ReferenceCase’, ‘MPC_RS’, and ‘MPC_RPS’ are 

developed and compared. Here, ‘MPC_RS’, and ‘MPC_RPS’ are fairness-aware MPCs developed 

based on the training dataset processed by RS or RPS. ‘MPC_ReferenceCase’ is a traditional MPC 

that does not consider fairness, while ‘Constant 21’ is a traditional controller that sets set-point 

temperature at 21 °C. 
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4. Results 

In this section, the effect of considering fairness on the predictive performance of DDBMs, 

such as energy prediction models and indoor air temperature models, is first evaluated in Section 

4.1. Then, in Section 4.2, the control performance of fairness-aware data-driven-based MPCs is 

compared to traditional controllers in terms of peak shifting, heating cost saving, and thermal 

comfort. 

4.1.  Predictive performance of data-driven models 

4.1.1. Predictive result of energy prediction models 

Before analyzing the predictive performance, data distribution should be first summarized. 

Xcandidate distribution on energy consumption is shown in Fig. 8. Most of the time, energy 

consumption during a period is around 16.51 kWh to 33.02 kWh. For energy consumption at 0 

kWh and 8.26 kWh, the off-peak period shows more samples than the peak period, while for 

energy consumption at 16.51 kWh to 33.02 kWh, peak periods have more samples. The number 

of samples is almost similar between peak periods and off-peak periods when the energy 

consumption is 41.28 kWh or 49.53 kWh. Besides, the validation data distribution among energy 

consumption categories are present in Fig. 9. Its pattern is similar to Xcandidate. The difference is 

that energy consumption at 16.51 kWh during the off-peak period has more data than the peak 

period in the validation dataset. 

 
Fig. 8: Xcandidate distribution on energy consumption 
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Fig. 9: Validation data distribution on energy consumption 

 

 

The energy predictive performance under different conditions is summarized in Table 5 in 

terms of mean bias error (MBE, calculated by Equation 4) and mean absolute error (MAE, 

calculated by Equation 5). The reasons for selecting MBE and MAE as the performance criteria 

are that MBE indicates the difference between the average predicted value and the average 

measured value, while MAE calculates the mean value of absolute errors and shows the benefit of 

no error cancellation (the phenomenon that errors caused by overestimated results is omitted by 

errors resulted from underpredicted values). 

Mean Bias Error (MBE) = 
∑ (𝑦�̂�−𝑦𝑖)𝑛

𝑖=1

𝑛
                                                  (4) 

Mean Absolute Error (MAE) = 
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖|

𝑛
𝑖=1                                         (5) 

Table 5 shows that for the condition that contains all types of measured values (named “ALL 

Y”), the reference case shows better predictive accuracy with a lower MAE no matter during model 

training (5.80 kWh) or model validation (6.12 kWh), while RPS usually shows more negative 

effect on the predictive accuracy than RS through having a higher MAE (7.58 kWh and 7.56 kWh 

during model training and model validation, respectively). However, RPS and RS with lower MBE 

during model validation reflect that they could keep the average predicted value closer to the 

average measured value. Another interesting finding is that although in the “ALL Y” condition 

data collected during peak periods are the same as during off-peak periods no matter in the training 

dataset or the validation dataset, RS could narrow the MAE difference between peak periods and 

off-peak periods to 0.18 kWh and 0.14 kWh for training and validation, respectively, while in the 
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reference case the MAE difference is 0.83 kWh and 0.82 kWh for training and validation, 

respectively. 

To analyze the effect of pre-processing methods on the predictive result of conditions with 

different data volumes, predictive performance during model training and validation when the 

measured energy consumption is 0 kWh, 24.77 kWh, and 41.28 kWh are also summarized in Table 

5. The results for conditions “Y=0 kWh” and “Y=41.28 kWh” indicates that increasing samples in 

minority conditions could increase the predictive accuracy: both RS and RPS could decrease the 

absolute value of MAE and MBE compared to the reference case. By contrast, RPS and RS would 

decrease the predictive accuracy of majority conditions: for the condition “Y=24.77 kWh”, the 

MAE has been increased when using RPS and RS to undersample data. Besides, RS and RPS could 

improve the predictive fairness in terms of having smaller MBE difference between majority 

conditions and minority conditions: In the reference case, the overall MBE difference between the 

condition “Y=0 kWh” and “Y=24.77 kWh” is 9.07 kWh and 8.29 kWh during training and 

validation, respectively. RS reduced the difference to 4.37 kWh and 2.93 kWh for training and 

validation, respectively, while RPS further reduced the difference to 4.25 kWh and 1.21 kWh for 

training and validation, respectively. 
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 Table 5: Energy predictive performance under different conditions in terms of MBE and MAE 

      All Y Y=0kWh Y=24.77kWh Y=41.28kWh 

      

MBE 

[kWh] 

MAE 

[kWh] 

MBE 

[kWh] 

MAE 

[kWh] 

MBE 

[kWh] 

MAE 

[kWh] 

MBE 

[kWh] 

MAE 

[kWh] 

Training 

Overall 

Reference 

case -0.05  5.80  -8.80  8.80  0.27  4.73  6.31  6.31  

RS 0.23  6.34  -4.08  4.08  0.29  8.45  -0.07  5.86  

RPS 0.54  7.58  -3.55  3.55  0.70  13.05  1.74  6.94  

Off-peak 

period 

Reference 

case -0.12  6.21  -7.99  7.99  0.65  5.42  5.92  5.92  

RS -0.01  6.43  -4.55  4.55  0.20  8.98  -0.98  5.83  

RPS 0.33  7.55  -4.52  4.52  0.52  12.32  0.88  7.50  

Peak period 

Reference 

case 0.02  5.38  -13.45  13.45  -0.05  4.17  6.72  6.72  

RS 0.47  6.25  -3.60  3.60  0.39  7.93  0.85  5.90  

RPS 0.76  7.60  -2.59  2.59  0.88  13.79  2.59  6.39  

Validation 

Overall 

Reference 

case -1.13  6.12  -9.08  9.08  -1.24  4.75  7.05  7.05  

RS -0.26  7.32  -4.68  4.68  -1.75  8.77  3.83  7.85  

RPS -0.12  7.56  -3.58  3.58  -2.37  8.56  2.21  7.05  

Off-peak 

period 

Reference 

case -1.34  6.53  -7.13  7.13  -1.29  6.45  7.08  7.08  

RS -0.67  7.39  -4.50  4.50  -4.13  10.83  5.50  7.86  

RPS -0.43  7.06  -3.75  3.75  -2.58  8.26  2.36  7.08  

Peak period 

Reference 

case -0.91  5.71  -14.45  14.45  -1.20  3.61  7.02  7.02  

RS 0.14  7.25  -5.16  5.16  -0.17  7.40  2.06  7.84  

RPS 0.19  8.06  -3.10  3.10  -2.24  8.77  2.06  7.02  

Note that the numbers in bold format mean the corresponding pre-processing method (Reference case, RS, or RPS) results in the lowest MAE or MBE under 

the same kind of duration and measured value. 
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4.1.2. Predictive result of air temperature prediction models 

Xcandidate and validation data distribution on air temperature category and peak/off-peak 

periods are summarized in Table 6. In all datasets, the minimum indoor air temperature during a 

period is lower than 21 °C most of the time. Besides, off-peak periods have more data with negative 

air temperature category than peak periods, while peak periods have more data with an air 

temperature that is lower than 21 °C. 

Table 6: Xcandidate and validation data distribution on air temperature category and peak/off-peak periods  
Air 

temperature 

category 

(T𝑚𝑖𝑛) 

Off-peak 

period 

Peak 

period 

Xcandidate 
-1 706 491 

1 1058 1273 

Validation 

dataset 

-1 79 48 

1 93 124 

Note that T𝑚𝑖𝑛= -1 means that the minimum indoor air temperature during the corresponding period is higher than 

21°C. while T𝑚𝑖𝑛= 1 means that the minimum indoor air temperature during that period is lower or equal to 21°C. 

Fig. 10 shows that RPS decreases the overall predictive accuracy from 82.6% to 75.4% during 

model training, while RS could preserve it at 81.8%. However, RPS could ensure the overall 

predictive accuracy to be higher than 79% during model validation, while RS decreases the 

accuracy to 77.3%. RS and RPS do not significantly affect the accuracy difference between the 

off-peak period and the peak period. This is because the number of samples collected during the 

peak period is the same as the off-peak period. 

 
          (a)  Model training                                                             (b) Model validation 

Fig. 10: Predictive accuracy of air temperature category during (a) model training and (b) model validation 

From Fig. 11, RPS and RS decrease the predictive recall, which indicates the proportion of 

correctly predicted samples when their actual temperature category is ‘1’. The effect of RS and 
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the majority condition during model training and validation. By contrast, as shown in Fig. 12, RPS 

and RS could effectively increase the predictive specificity, which refers to the proportion of 

correctly predicted samples when their actual temperature category is ‘-1’. It means that RS and 

RPS could increase the predictive accuracy of the minority condition because of oversampling. 

The difference between recall and specificity is 17.6% during model training and 12.7% during 

model validation in the reference case. RPS could effectively decrease the difference between 

recall and specificity to 2.5% during model training and 7.0% during model validation, while RS 

reduces the difference to 5.5% during model training and 11% during model validation. 

  
          (a)  Model training                                                             (b) Model validation 

Fig. 11: Predictive recall of air temperature category during (a) model training and (b) model validation 

 

  
          (a)  Model training                                                             (b) Model validation 

Fig. 12: Predictive specificity of air temperature category during (a) model training and (b) model validation 

4.2. Control performance comparison 

Fig. 13 compares the effect of MPCs on daily heating costs with a traditional controller that 

constantly sets the set-point at 21 °C. Using MPC could decrease the daily heating cost by ~17.8% 

- ~21.8%. Integrating pre-processing methods into the MPC would not reduce its cost-saving 

ability. In fact, MPC_RS and MPC_RPS save more heating costs than MPC_ReferenceCase. 
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Fig. 13: Daily heating cost of different controllers 

The heating cost saving of MPCs is caused by taking advantage of peak shifting. From Fig. 

14, the effect of MPCs on daily energy consumption is negligible. However, they are effective in 

increasing the average energy consumption during off-peak periods and decreasing the energy 

consumption during peak periods. Integrating fairness-aware data-driven models would not 

decrease the peak shifting ability of MPCs. 

 
Fig. 14: Average energy consumption of different controllers 

Moreover, as shown in Fig. 15, although MPC_RS shows a negative effect on thermal 

comfort in terms of durations with indoor air temperature lower than 21 °C, MPC_ReferenceCase 

and MPC_RPS would improve thermal comfort. However, the thermal comfort still needs to be 

improved, as the indoor air temperature is lower than 21 °C for over 41.6% of simulation times. 

Potential thermal comfort improvement strategies are discussed in the next section. 
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Fig. 15: Number of hours that indoor air temperature is lower than 21 °C 

The hourly set-point temperature of MPC_ReferenceCase, MPC_RS, and MPC_RPS is 

presented in Fig. 16, Fig. 17, and Fig. 18, respectively. These figures illustrate that MPCs, 

especially MPC_RS, usually set higher set-point temperatures for off-peak periods and lower for 

peak periods. They also give a higher set-point temperature at the beginning of each peak period. 

It may be because MPCs try to maintain the indoor air temperature to be higher than 21 °C during 

the remaining time of the peak period. However, this phenomenon would limit their peak shifting 

ability. Reasons behind this limitation include 1) the predictive accuracy of energy predictors still 

needs to be improved to accurately predict future energy consumption, and 2) the optimization 

algorithm should be improved to get the global optimal solution. 

 
Fig. 16: Hourly set-point temperature of MPC_ReferenceCase 
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Fig. 17: Hourly set-point temperature of MPC_RS 

 
Fig. 18: Hourly set-point temperature of MPC_RPS 

 

5. Discussion 

5.1. Effect of increasing the lower bound for set-point temperature 

As illustrated before, even if constraints are added to MPCs to maintain the predicted air 

temperature to be higher than 21 °C, the indoor air temperature simulated based on the optimized 

set-point temperature could still be lower than 21 °C for over 850 hours. To solve this problem, 

increasing the lower bound for set-point temperature from 18 °C to 21 °C would be a good solution. 

As shown in Fig. 19, this solution would effectively reduce the duration of an uncomfortable 

indoor air temperature to less than 300 hours. Fairness-aware MPCs (MPC_RS and MPC_RPS) 

show a slightly worse effect on improving thermal comfort than MPC_ReferenceCase. However, 

they could save a little more heating cost than MPC_ReferenceCase (see Fig. 20). Fig. 21 shows 

that the peak shifting ability of MPCs with 21 °C lower bound set-point temperature is negligible. 
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Fig. 19: Number of hours that indoor air temperature is lower than 21 °C when setting 21°C as the lower bound set-

point temperature in MPCs 

 
Fig. 20: Daily heating cost when setting 21°C as the lower bound set-point temperature in MPCs 

 
Fig. 21: Average energy consumption when setting 21°C as the lower bound set-point temperature in MPCs 
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during off-peak periods and during peak periods. It could be rewritten as minimizing the energy 

consumption difference between the peak period and the off-peak period, as shown in Equation 7. 

max 𝑄1̂ + 𝑄3̂ − 𝑄2̂ − 𝑄4̂                                             (6) 

Subject to  
 T𝑚𝑖𝑛,𝑖

̂ = Negative, ∀𝑖 ∈ [1,4], 

18 °C ≤ T𝑠𝑒𝑡,𝑗𝑖 ≤ 24 °C, ∀𝑖 ∈ [1,4], 𝑗 ∈ [1,6] 

 

min 𝑄2̂ + 𝑄4̂ − 𝑄1̂ − 𝑄3̂                                             (7) 

Subject to  
 T𝑚𝑖𝑛,𝑖

̂ = Negative, ∀𝑖 ∈ [1,4], 

18 °C ≤ T𝑠𝑒𝑡,𝑗𝑖 ≤ 24 °C, ∀𝑖 ∈ [1,4], 𝑗 ∈ [1,6] 

Fig. 22 shows that using maximizing peak shifting as the objective function of MPCs would 

shift ~65% of peak load from peak periods to off-peak periods, compared to the case with a 

constant set-point temperature at 21 °C. This objective function is more powerful in shifting peak 

load than the original one, which is aimed at minimizing the heating cost. 

 
Fig. 22: Average energy consumption when maximizing peak shifting by MPCs 
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when considering segmented electricity prices. Selecting a proper optimization algorithm or 

improving hyperparameters used in the original optimization algorithm (DE) would be potential 

solutions. 

 

Fig. 23: Daily heating cost when maximizing peak shifting by MPCs 

 
Fig. 24: Hourly Set-point temperature of MPC_ReferenceCase using maximizing peak shifting as the objective 

function 

The effect of the setting maximizing the peak shifting ability as the objective function in 

MPCs on thermal comfort is presented in Fig. 25. The trend is in line with original MPCs that are 

aimed at minimizing heating cost: MPC_ReferenceCase works better on preserving the indoor air 

temperature over 21°C than MPC_RS and MPC_RPS. This is because the overall predictive 

accuracy of the air temperature prediction model used in MPC_ReferenceCase is higher than 

MPC_RS and MPC_RPS. 
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Fig. 25: Number of hours that indoor air temperature is lower than 21 °C when maximizing peak shifting by MPCs 

5.3. Software and hardware for real application 

In this study, the proposed fairness-aware data-driven MPC was formulated by Python 3.7. It 

is then utilized to control the simulated experimental building in the TRNSYS model. All study 

cases were run on a computer with Intel Core i5-8400 CPU@ 2.80GHz and 8GB of RAM. In other 

words, the control performances of the proposed fairness-aware data-driven MPC were 

investigated based on numerical study. Therefore, future work could focus on investigating the 

applicability of the proposed MPC in real buildings based on field experiments. 

Existing studies that developed software and hardware configurations for the practical 

application of data-driven MPCs are of great reference significance. For instance, Wang et al. [56] 

proposed a low-cost and feasible hardware configuration to test MPC in a real residential building. 

In this hardware configuration, the smart air conditioner socket acts as a communication gateway 

between the air conditioner in each room and the MPC component in a Python environment on a 

cloud. The infrared bi-directional communication is achieved by an HTTP RESTful application 

programming interface (API). Bird et al. [57] presented a cloud-based hardware/software solution 

to realize the implementation of MPC in real buildings. The bi-directional connection between 

MPC on the cloud platform and the existing building management system (BMS) is achieved 

through a remote gateway and a message broker. 

5.4. Others 

To simplify the investigated problem, this study collected the training dataset by simulating 

the TRNSYS model with a 1-hour time interval. As a result, the energy consumption per period 

(duration of every 6 hours) became multi-class labels, see Fig. 26(a). Therefore, energy predicting 
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was a multi-class classification problem, and pre-processing methods were applied to improve the 

predictive performance of minority conditions. However, pre-processing methods could not 

achieve user-defined quantitively fairness improvement. Besides, energy demand is usually 

continuous data, which means predicting energy demand would require a regression model. 

Furthermore, when the simulation time interval is reduced to 5-min, the classes of energy 

consumption per period would be increased and could be considered as continuous numbers (see 

Fig. 26 (b)). Therefore, integrating in-processing fairness improvement methods into MPCs to 

achieve a user-defined trade-off between predictive fairness and accuracy could be an interesting 

future work. 

  

(a) 1-hour time interval                                           (b) 5-min time interval 

Fig. 26: Energy consumption per period simulated by TRNSYS with (a) 1-hour time interval and (b) 5-min time 

interval 

Besides, one potential way to improve the control performance of MPCs is to improve the 

predictive performance of predictors. For instance, even if the constraints are added to the objective 

function of MPC to require the indoor air temperature to be higher than 21°C, the actual indoor air 

temperature when applying the optimized set-point could still be lower than the comfort bound. 

This is mainly because the predictive recall of air temperature category models is not high enough, 

and the predictor would think the air temperature could be heated to be higher than 21°C when it 

is not the case. Therefore, improving the predictive accuracy of predictors integrated into MPCs is 

worth to be studied. 

Furthermore, this study assumed that the duration of peak periods is the same as off-peak 

periods, so that a data-driven model could be able to predict building states (e.g., energy 

consumption or indoor air temperature) for each period. However, in reality, the revolution of peak 

periods and off-peak periods could be different. Therefore, developing specific data-driven models 
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for distinct periods could be considered. Moreover, decreasing the time interval of prediction to 1-

hour is also a potential solution. 

6. Conclusion 

In this study, to ensure that the optimal signals of MPCs in buildings are obtained based on 

accurate and fair prediction, fairness-aware DDBMs were integrated into MPCs to optimize the 

control strategy for building devices with the aim of cost-saving or peak shifting. One case study 

was designed to implement pre-processing methods to process the training dataset for multi-class 

energy prediction models and two-class air temperature classification models. Then, these fairness-

aware models were integrated into MPCs to get the next day’s optimal hourly set-point temperature 

for EHFs, which is an active thermal energy storage system in a bungalow building. Different 

objective functions were investigated to achieve cost-saving or peak shifting while preserving 

thermal comfort. Conclusions of this case study include: 

• Using RS or RPS to balance the training dataset for DDBMs would decrease the overall 

predictive accuracy and the accuracy for majority conditions. However, they could increase the 

predictive accuracy of minority classes. These fairness improvement methods could let DDBMs 

provide a fair prediction for minority conditions and majority conditions by deceasing the accuracy 

difference between these conditions. 

• Integrating fairness-aware DDBMs into MPCs would not show a negative effect on peak 

shifting or cost saving, but thermal comfort. 

• Selecting different objective functions would highly affect the control performance of 

MPCs, such as peak shifting, cost-saving, thermal comfort, etc. Maximizing the peak shifting 

ability was the most powerful objective function for improving heating cost-saving, peak shifting, 

and thermal comfort. 

In conclusion, fairness-aware data-driven-based MPCs did not show a significant negative 

impact on the control performance, compared to the traditional MPC. In other words, it is feasible 

to achieve fairness without compromising control performance. Although pre-processing fairness 

improvement methods have been implemented in MPCs, the applicability of in-processing fairness 

improvement methods to fairness-aware data-driven-based MPCs was still not studied. Besides, 
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improving the predictive accuracy of fairness-aware DDBMs would be vital to ensure the control 

performance of MPCs. 
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Abbreviations 

ANN Artificial Neural Network 

ARX AutoRegressive with Exogenous Inputs 

BAS Building Automation System 

BMS Building Management System 

CV(RMSE) Coefficient of Variation of the Root Mean Square Error 

DDBM Data-Driven Building Model 

DNN Deep Neural Network 

DE Differential Evolution 

DR Demand Response 

DT Decision Tree 

EHF Electrically Heated Floor 

mbCRT Model Based Control with Regression Tree 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MBE Mean Bias Error 

MPC Model Predictive Controller 

RMSE Root Mean Squared Error 

RF Random Forest 

RS Random Sampling 

RPS Reversed Preferential Sampling 

SLPC Self-Learning Predictive Control 

SPS Sequential Preferential Sampling 
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SS Sequential Sampling 

SVM Support Vector Machine 

SVM Support Vector Regression 

TES Thermal Energy Storage 

ToU Time-of-Use 

 

Nomenclature 

D Unprotected attributes 

𝑷𝒓𝒊𝒄𝒆𝒊  Electricity price during i-th period, CAD/kWh 

𝑸�̂� Predicted energy consumption during i-th period, kWh 

S Protected feature 

𝐓𝒂𝒎𝒃𝒊𝒆𝒏𝒕,𝒊 A list of hourly outdoor ambient temperature at i-th period, °C 

𝐓𝒎𝒊𝒏,𝒊
̂  

The binary label that illustrates if the predicted minimum indoor air 

temperature during i-th period is lower than 21°C 

𝐓𝒔𝒆𝒕,𝒊 A list of hourly indoor air set-point temperature at i-th period, °C 

Xcandidate Original training dataset 

|𝑿𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆| The number of data points in the original training dataset 

Xdesigned Designed training dataset processed by pre-processing methods 

|𝑿𝒅𝒆𝒔𝒊𝒈𝒏𝒆𝒅| The number of data points in the designed training dataset 

Y Output label of a data point 
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