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Abstract 

Building energy prediction plays a vital role in developing a model predictive controller for 
consumers and optimizing energy distribution plan for utilities. Common approaches for energy 
prediction include physical models, data-driven models and hybrid models. Among them, data-
driven approaches have become a popular topic in recent years due to their ability to discover 
statistical patterns without expertise knowledge. To acquire the latest research trends, this study 
first summarizes the limitations of earlier reviews: seldom present comprehensive review for the 
entire data-driven process for building energy prediction and rarely summarize the input updating 
strategies when applying the trained data-driven model to multi-step energy prediction. To 
overcome these gaps, this paper provides a comprehensive review on building energy prediction, 
covering the entire data-driven process that includes feature engineering, potential data-driven 
models and expected outputs. The distribution of 105 papers, which focus on building energy 
prediction by data-driven approaches, are reviewed over data source, feature types, model 
utilization and prediction outputs. Then, in order to implement the trained data-driven models into 
multi-step prediction, input updating strategies are reviewed to deal with the time series property 
of energy related data. Finally, the review concludes with some potential future research directions 
based on discussion of existing research gaps. 
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1. Introduction 

1.1. Motivation for building energy prediction using data-driven approaches 

The buildings and buildings construction sectors consumed 36% of the global final energy 
and nearly 40% of total CO2 emission in 2018 [1]. Moreover, these percentages are expected to 
further rise. To lower the environmental and economic burden caused by the increasing building 
energy demand, improving the energy efficiency of buildings would be an effective solution. The 
energy saving potential of energy conservation measures could be quantified and compared 
through building energy prediction [2], [3]. This indicates that building energy prediction could be 
utilized as a tool for designing and selecting proper energy conservation methods. Besides, multi-
step energy prediction could be integrated into a model predictive controller to predefine an 
optimized HVAC operation schedule in order to achieve peak shifting or energy/cost saving. 
Furthermore, accurate energy demand forecasting makes it possible for utilities to optimize energy 
distribution plan and for governments to formulate standards for energy saving. 

Common approaches to predict building energy performance mainly include physical 
models (“white box”), hybrid methods (“grey box”) and data-driven approaches (“black box”). 
Physical models predict the thermal behavior by numerical equations by considering detailed 
physical properties of building materials and characteristics. Plenty of energy prediction software 
have been developed and implemented, such as EnergyPlus, TRNSYS, DOE-2, eQUEST, DeST, 
etc. A detailed review of these physical models is available in [4]–[6]. The main advantage of 
physical models is the ability to describe heat transfer mechanisms, while their disadvantages 
include: (1) requirement of expertise; (2) difficulties in making proper assumptions; (3) time-
consuming; and (4) inability to adapt to environmental/social-economic vicissitudes. Hybrid 
methods combine physical models and data-driven approaches to simulate building energy. For 
instance, Dong et al. [7] integrated data-driven techniques into a physical model to forecast hour 
and day ahead load for a residential building. Their study shows that the hybrid model improves 
the prediction accuracy and reduces the computational complexity of traditional physical models. 
However, hybrid models still face the issues which usually present in physical models, such as 
improper assumption and requirement of expertise. In contrast, data-driven approaches show the 
ability to overcome above mentioned limitations of physical models and hybrid methods, due to 
their ability of discovering statistical patterns from the available dataset instead of on-site physical 
information. Therefore, recently, data-driven approaches have drawn significant attention in 
building energy prediction. 

1.2. Literature reviews 

As the application of data-driven approach on building energy prediction attracts more 
attention, a variety of review papers have been published in recent years on this topic. To better 
understand the latest research interest, the content of review papers published after 2013 is 
summarized in Table 1. This table is organized in the order of general data-driven modeling 
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procedures: (1) feature engineering which is a process of preparing transforming, constructing, and 
filtering features with the goal of optimizing the performance of a data analysis task. In this part, 
whether potential feature types for building energy prediction and feature extraction methods are 
introduced by these review papers is summarized; (2) data-driven algorithms. The presence of 
reviews about commonly used models, e.g. Linear Regression (LR), AutoRegression-Moving 
Average (ARMA) and AutoRegression Integrated Moving Average (ARIMA), Regression Tree 
(RT), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Ensemble models 
that include boosting and bagging, etc., is listed; and (3) factors considered for expected outputs 
(i.e. temporal granularity, scale, energy type, building type and validation criteria). Clearly 
distinguishing these aspects could give an inspiration to feature engineering as well as data-driven 
model selection. Besides, proper selection and application of validation criteria could ensure the 
prediction accuracy and generalization of trained models for building energy prediction. Therefore, 
whether existing review papers summarize these aspects are shown in Table 1. 

Note that data collection and data cleaning are generally considered as steps needed prior 
to research and are rarely reviewed in previous review papers; thus, these aspects are not included 
in Table 1. 
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Table 1: Review contents in terms of general data-driven procedures 

Reference Year Feature Data-driven algorithms Factors considered for expected outputs 
Type Extraction 

method 
LR ARMA 

and 
ARIMA 

RT SVM ANN Ensemble 
method 

Other Building 
type 

Energy 
type 

Scale Temporal 
granularity 

Criteria 

[6] 2013 × × × × × √ √ × × × × × × × 
[8] 2014 × × × × × √ √ Hybrid × × × × × × 
[9] 2016 × × √ √ × √ √ √ Semi-parametric 

additive models; 
exponential 
smoothing 
models; Fuzzy 
regression 
models 

× × Electric 
utility 

√ × 

[10] 2017 √ × √ √ × √ √ × × × × √ √ × 
[11] 2017 √ √ √ √ √ √ √ × × Commercial √ × × × 
[12] 2017 × × √ √ × √ √ Hybrid × × × × × × 
[13] 2017 √ × √ × × √ √ √ × √ √ × √ × 
[14] 2017 × × × √ × √ √ Hybrid Fuzzy time 

series; moving 
average and 
exponential 
smoothing, k-
Nearest 
Neighbor (kNN) 

× × × × × 

[15] 2018 √ √ √ √ × √ √ × × √ √ × √ √ 
[16] 2018 √ × √ × √ √ √ × Clustering × × × × × 
[17] 2018 × × × √ × √ √ × Clustering × × Urban 

and 
rural 

× × 

[18] 
 

2019 × × × × × × √ × × × √ × × √ 

[19] 2019 √ × √ √ √ √ √ √ kNN × × × × √ 
[20] 2019 × × √ √ × √ √ × Deep learning × × √ √ √ 

Note:  

1. ‘√’ means the literature includes the corresponding contents, while ‘×’ means exclusion. 
2. Hybrid model refers to the integration of two data-driven models, instead of the grey box model. 
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Limitations of existing literature reviews are summarized below: 

(1) Comprehensive review for the entire data-driven process in the field of energy 
prediction was missing. No existing review papers in Table 1 covers all aspects in 
feature engineering, data-driven algorithms and expected outputs. The missing part 
mainly include: 
i. Data utilized by the reviewed studies to predict building energy through data-

driven algorithms are rarely summarized. However, the number of data points 
utilized for model training and validation, number of meters and buildings for 
data collection, as well as accessibility of data would affect the reproducibility 
and generalization of studied techniques. 

ii. The time series property of energy related data was not highlighted. For 
instance, Kuster et al. [10] reviewed the number of papers that utilized the time 
index for different horizon and scale predictions, but they did not consider the 
situation that utilized historical data as one of inputs. 

iii. Systematic review for feature extraction methods was missing. For instance, 
Yildiz et al. [11] introduced several feature selection algorithms, but the 
fundamentals of each method as well as their advantages and disadvantages still 
need to be further summarized. 

iv. Relatively novel technologies were generally not included. For instance, 
autoencoders were not reviewed as feature extraction methods, while deep 
learning and ensemble methods were not well revised when summarizing data-
driven algorithms. 

v. Factors (such as temporal granularity, scale, energy type and building type, 
criteria) reflected from prediction outputs were rarely reviewed at the same 
time. 

vi. For temporal granularity, the difference between time horizon (the length of 
time-ahead energy prediction) and time resolution (duration of a time step) was 
not clearly distinguished. Many existing literature reviews, such as references 
[15] and [13],  focus mainly on time horizon; therefore, the effect of prediction 
steps (i.e. time horizon divided by time resolution) on prediction accuracy could 
not be analyzed. 

 
(2) No review summarized the input updating strategies when applying the trained data-

driven model in realistic multi-step energy prediction. As time series data, historical 
energy consumption would affect the predicted future values. The most recent 
historical energy consumption data lies within the prediction horizon when doing multi-
step energy prediction. Thus, the problem of how to deal with the effect of 
unmeasurable most recent historical data should be solved by proper updating 
strategies. 
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1.3. Objectives, contributions and structure of the review 

To overcome limitations in existing literature, this paper aims to provide a comprehensive 
review of building energy prediction data-driven approaches. To be specific, the objectives of this 
paper include: (1) to give a systematic and comprehensive overview for developing data-driven 
models to predict building energy consumption; (2) to summarize input updating strategies for 
applying the developed data-driven model to achieve realistic energy prediction; (3) to highlight 
future research opportunities in the field of building energy prediction with data-driven 
approaches. 

The main contributions of this paper can be summarized as following: (1) Present a 
comprehensive review for the entire procedure of data-driven energy prediction approaches. 
Potential feature types for energy prediction are listed. Commonly-used and novel feature 
extraction methods and data-driven algorithms are reviewed in terms of principles and their 
strengths and weakness. Besides, factors reflected from the expected outputs are summarized and 
clearly distinguished. Then, the distribution of studies from 2015 to 2019 is reviewed for better 
understanding the recent research interest. (2) Summarize input updating strategies for multi-step 
energy prediction by the developed data-driven models. These strategies could solve the following 
problems: i. Whether to consider the effect of historical energy consumption data; ii. How to 
consider the effect of historical data; iii. How to consider the effect of most recent unmeasurable 
historical data lied in the prediction horizon. 

This paper is organized as follows: Section 2 gives a comprehensive review for the general 
procedure of developing data-driven energy prediction models, which mainly include feature 
engineering, data-driven algorithms and factors reflected from expected outputs. Then, Section 3 
summarizes four input updating strategies for multi-step building energy prediction. Section 4 
presents conclusions and opportunities for future work. 
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2. General data-driven modeling procedure 
Before a data-driven procedure, data is first collected from simulation, 

measurement/survey, or public database. Then, the data should be thoroughly processed to 
remove/correct the missing/incorrect data. This process is called data cleaning. Commonly utilized 
outlier/anomaly detection methods can be found in [21], [22], while approaches to impute/replace 
missing data were presented [23]. 

After data collection and data cleaning, features contributing most to prediction results 
need to be constructed and extracted. Therefore, in Section 2.1, the most commonly used features 
for energy prediction and feature extraction methods are presented. After data preparation, proper 
data-driven algorithms should be selected and trained. A summary for data-driven algorithms is 
shown in Section 2.2. The developed data-driven models could be utilized for building energy 
prediction after validation. Factors reflected from the expected prediction outputs are introduced 
in Section 2.3. 

2.1.Feature engineering 
In this section, potential features types that contribute to building energy consumption are 

firstly introduced in Section 2.1.1. Then, feature extraction methods which select valuable features 
or reconstruct feature vectors are summarized in Section 2.1.2. 

2.1.1. Feature types 
2.1.1.1. Meteorological information 
Meteorological information mainly includes ambient dry bulb temperature, wet bulb 

temperature, dew point temperature, humidity, wind speed, solar radiation, rainfall, air pressure, 
etc. [13]. 

Prior to data-driven model construction, the correlation between weather variables and 
building load (except heating load) has been studied by Cai et al. [24] for three buildings located 
in Alexandria VA, Shirley NY, and Uxbridge MA, respectively. Among these weather variables, 
outdoor temperature was found to be positively correlated to building load, while the relation 
between other variables and building load were insignificant. However, when the ambient 
temperature was lower than 24.4 °C, it was found to be irrelevant to electricity demand of 
residential buildings in Italy [25]. This is because the main heating fuel for homes in Italy is natural 
gas, while electricity is used for cooling systems. Besides ambient temperature, Solar radiation is 
also commonly utilized in building energy prediction, due to its significant effect on thermal 
demand and its accessible from weather forecasting [26]. 

2.1.1.2. Indoor environmental information 
Except for weather information, indoor conditions that include set-point temperature of 

thermostats, indoor temperature, indoor humidity, indoor carbon dioxide concentration, etc. have 
been identified as a priority for residential cooling and heating load calculation [27]. Note that 
unlike constant design values of indoor conditions during design stage, these values are dynamic 
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during reality operation. Therefore, to predict building loads precisely, indoor environmental 
information needs to be considered as a potential feature. 

Chammas et al. [28] considered indoor temperature and humidity when predicting energy 
consumption for a residential house. However, their study did not compare the importance of 
meteorological information, indoor conditions and time indexes (which will be introduced in 
Section 2.1.1.4). Ding et al. [29] presented that interior variables would further improve heating 
load prediction accuracy. However, due to unpredictable interior temperature, the variables could 
not be utilized for 24 hour ahead heating demand prediction. Wei et al. [30] found that indoor 
relative humidity, dry-bulb temperature and carbon dioxide concentration are among the top 10 
important variables for energy consumption prediction of an office building. These three features 
were also included for predicting desk fan usage preferences[31]. Furthermore, indoor temperature 
and humidity have been used as inputs in predicting air conditioning operation[32].  

It is interesting to note that studies with considering set-point temperature as inputs for 
predicting building loads generally aimed at developing demand response control strategy, such 
as in the research by Behl et al. [33]. Otherwise, studies tend to ignore the effect of set-point 
temperature in energy prediction accuracy, even though residents in residential buildings have the 
ability to adjust the set-point temperature to meet their thermal comfort requirement and save 
energy [34]. 

2.1.1.3.Occupancy related data 
Occupancy related data, such as number of occupants and types of occupant activities, 

would affect internal gain and then influence the pattern of energy usage [35], [36]. Therefore, it 
would be a potential feature for building energy prediction.  

The principal component analysis of Wei et al. [30] indicated that the number of occupants 
is even more important than meteorological information for energy  prediction in an office 
building. Wang et al. [37] utilized linear regression to observe the strong linear relation between 
plug load power and occupant count for working days, and then selected it as one of features for 
plug load prediction. Sala-Cardoso et al. [38] predicted the activity indicator through a recurrent 
neural network (RNN) and then integrated it with a power demand prediction model to improve 
the prediction accuracy of HVAC thermal power demand for a research building. 

However, short leave of occupants would not affect the load consumption. Besides, if a 
public building is controlled without taking into account the occupancy status, its energy 
consumption might not be strongly related to occupancy patterns [39]. Furthermore, in most cases, 
the types of occupant activities are not flexible to be collected. 

2.1.1.4.Time index 
Time index means the stamps series for time, which mainly include time of the day, day of 

the week, hour type (peak hour or off-peak hour), day type (weekday or weekends), calendar day, 
etc. The purpose of introducing time index into energy prediction is to indicate the occupancy 
related effect. For instance, occupants tend to do similar activities at the same time on different 
days or at the same day on different weeks. Therefore, time index would be a good option when 
occupancy related data is unavailable. 
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Fan et al. [40] found that due to the similar energy consumption pattern on the same 
weekday, 7-days and 14-days ahead peak power demand and energy consumption were the four 
most important inputs for next-day energy consumption and peak power demand prediction of a 
commercial building. This indicates that day of the week could be selected as one of the input 
features able to represent similar energy consumption patterns during the same weekday. Similar 
justification could be used for selecting time of the day, holiday/workday, peak hour/off-peak hour 
as inputs. 

2.1.1.5.Building characteristic data 
Building characteristic features mainly include relative compactness, surface area, wall 

area, roof area, overall height, orientation, glazing area, heat transfer coefficient of building 
envelopes, absorption coefficient for solar radiation of exterior walls, window-wall ratio, shading 
coefficient etc. [15]. 

Once a building is constructed, these data would remain relatively constant. Therefore, it 
is meaningless to contain this information when using data-driven models to predict dynamic load 
for a specific building. However, when the study object is multiple buildings or when the objective 
is using the known load of an existing building to predict the load of a new building, building 
characteristic features would be beneficial. Seyedzadeh et al. [41] drew feature correlation maps 
for building characteristic and building heating/cooling loads, and utilized these features as input 
for data-driven models to predict building loads. Wei et al. [42] predicted annual heating, cooling 
and electricity intensity for different office buildings based on input factors relevant to building 
form, e.g. aspect ratio, window-wall ratio, number of floors, orientation and building scale. Talebi 
et al. [43] utilized thermal mass as one of input features to predict heating demand of a district. 
Similar studies could also be found in references [44]–[47]. 

2.1.1.6.Socio-economic information 
Socio-economic information shows the socio-economic situation of the studied area [10]. 

It mainly includes income, electricity price, GDP, population, etc. 

These features are commonly utilized to do long term (e.g. months or years) load prediction 
for large scale (e.g. district, region or country) [48]. For instance, He et al. [49]  found that average 
electricity price and number of electricity customers/permanent residents could be important in 
forecasting annual electricity consumption of a city. He et al. [50] identified that historical energy 
consumption, average annual GDP growth rate and total GDP were the key factors for annual 
energy consumption prediction of Anhui province, China. However, GDP was revealed by Beyca 
et al. [51] to be insignificant in natural gas consumption prediction of Istanbul, while price of 
natural gas and population showed a high correlation to the prediction result. 

2.1.1.7.Historical data 
Due to the thermal mass of building envelopes, building loads could be affected by 

historical factors, such as historical values of exogenous features or historical energy consumption. 
For example, Wang et al. [52] found that the historical heating consumption is the leading factor 
for heating demand prediction of district heated apartment buildings. Similarly, Ahmad et al. [53] 
concluded that previous hour’s electricity consumption was more important than meteorological 
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information, time index and occupancy related data for 1-hour-ahead HVAC energy consumption 
prediction of a hotel in Spain. Ding et al. [54] proved that historical cooling capacity data are the 
most important data for cooling load prediction of an office building. Huang et al. [55] proposed 
a historical energy comprehensive variable named EVMA to improve the energy demand 
prediction accuracy for residential buildings based on ensemble methods. Furthermore, He et al. 
[50] found the historical annual energy consumption of Anhui province in China significantly 
affected its future annual energy consumption. Due to the ability to increase the prediction 
accuracy of dynamic loads, the interests in applying historical data as features for data-driven 
models have been increasing in recent years. 

2.1.2. Feature extraction methods 
Properly constructed features could reduce the computation time of a data-driven model 

without sacrificing prediction accuracy [56]. The commonly applied feature extraction methods 
with the ability to select useful features or reconstruct feature vectors are introduced in the 
following sections. 

2.1.2.1.Variable ranking 
The idea of variable ranking is to choose the desired number of features most relevant to 

the output (i.e. building energy consumption/demand) by a scoring function. 

In terms of energy prediction, one popular function for variable ranking is the Pearson 
correlation coefficient (see Equation 1 [57]) for its quick and easy use. This method determines 
the strength and direction of the linear relationship between two variables. To calculate the 
monotonic relationship between two continuous or ordinal variables, Spearman’s rank correlation 
(see Equation 2 [58]) could be utilized. Note that Spearman’s rank correlation between two 
variables equals to the Pearson correlation of rank values of these two variables.  

𝑟𝑟𝑥𝑥𝑥𝑥 = ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑥𝑥𝑖𝑖−𝑥𝑥)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑛𝑛

𝑖𝑖=1

                                                        (1) 

where: 

𝑟𝑟𝑥𝑥𝑥𝑥 is the Pearson correlation coefficient between input feature x and target output y; 

n is sample size; 

𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are the i-th individual sample points; 

𝑥𝑥,  𝑦𝑦 are the mean value of input feature and target output, respectively. 

𝑟𝑟ℎ𝑜𝑜𝑥𝑥𝑥𝑥 = ∑ (𝑥𝑥𝑖𝑖
′−𝑥𝑥′)(𝑥𝑥𝑖𝑖

′−𝑥𝑥′)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖
′−𝑥𝑥′)2𝑛𝑛

𝑖𝑖=1 �∑ (𝑥𝑥𝑖𝑖
′−𝑥𝑥′)2𝑛𝑛

𝑖𝑖=1

                                                        (2) 

where: 

𝑟𝑟ℎ𝑜𝑜𝑥𝑥𝑥𝑥 is the Spearman’s ranking correlation between input feature x and target output y; 

n is sample size; 
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𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑖𝑖′are the ranks of i-th individual sample points; 

𝑥𝑥′,  𝑦𝑦′are the mean rank values of input feature and target output, respectively. 

 

One challenge for variable ranking is to determine the desired number of features, which 
could be considered as a hyperparameter (i.e. a pre-defined parameter which affects the running 
time of feature engineering process and prediction accuracy of the developed data-driven model 
[59]). Another drawback of variable ranking is that it could only calculate the relationship between 
individual variables and output, instead of between subsets of features and output. For instance, 
Aaron et al. [60] utilized standardized association factors to find out that dry bulb temperature, wet 
bulb temperature and enthalpy are most relevant to building electricity use. However, they failed 
to estimate the possible inter-relevance between temperatures and enthalpy. To solve this problem, 
filter and wrapper methods could be utilized to select the best subset. 

2.1.2.2.Filter and Wrapper methods 
Both filter and wrapper methods could be utilized for best-subset selection, which means 

they could consider the interrelationship between features. Among them, filter methods evaluate 
the importance of individual or subset of features through statistical measures. Filter methods have 
two different categories: Rank Based (i.e. variable ranking) and Subset Evaluation Based [61]. The 
filter methods mentioned here refer to the later types, since the former one was described in Section 
2.1.2.1. Unlike filter methods, wrapper methods consider all possible subsets of features and 
measure their performance through supervised learning algorithms. 

Filter methods are more efficient than wrapper techniques in terms of computational 
complexity, while wrapper methods are more stable [61]. Yuan et al. [62] applied partial least 
squares regression (PLSR) and random forests (RF) to rank the top 10 important input features for 
predicting weekly coal consumption for space heating. The reason for employing these two filter 
methods is that they can consider the inter-dependence between input variables. Then, they utilized 
an SVM based wrapper method to evaluate the proper number of features. The prediction accuracy 
based on the selected top 6 features met the requirement of ASHRAE Guidelines 14-2014 [63]. 

2.1.2.3.Embedded method 
Unlike the wrapper method, which selects the best subset with the highest prediction 

performance in a specific learning algorithm, the embedded method integrates feature selection 
into the learning algorithm. For instance, regularization added to data-driven models could be 
considered as an embedded method. Jain et al. [64] employed Lasso, a linear regression model 
which adds an L1 penalty to the squared error loss, to forecast energy consumption of a multi-
family residential building. Their results confirmed that in certain cases, Lasso could outperform 
a Support Vector Regression (SVR) model that did not consider feature selection. 

One challenge of the embedded method is that the selected regularization method should 
adapt the optimization procedure to ensure the existence of optimum solution. Furthermore, this 
method could not present the importance of features. 
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2.1.2.4.Principal component analysis (PCA) 
The idea of traditional PCA is to project features into a lower-dimensional sub-space with 

linearly uncorrelated variables [65], while kernel PCA utilizes a kernel function to map nonlinear 
related original inputs into a new feature space and then perform a linear PCA in this new space 
[66]. 

Li et al. [67] compared the building load prediction accuracy between SVR with PCA, 
SVR with kernel PCA, and SVR without any feature selection techniques. Their results illustrate 
that SVR with PCA increased the cooling load prediction accuracy compared to the SVR model, 
while kernel PCA could further improve prediction performance. 

Furthermore, Yuldiz et al. [11] showed the way to apply PCA to tackle the multi-
collinearity problem in original input variables, and gave a detailed description about how to 
determine the dimension of reduced feature space. A similar application of PCA has been 
introduced by Wei et al. [30]. From these studies, one limitation of PCA has been revealed: the 
dimension of final feature space needs to be manually selected. Besides, when applying kernel, the 
type of kernel function should be determined.  

2.1.2.5.Autoencoder (AE) 
AE is a type of unsupervised artificial neural network (ANN) that can learn a compressed 

nonlinear representation of the input data. As shown in Figure 1, an autoencoder generally consists 
of two networks: (1) Encoder: maps the original inputs to a compressed low dimension; (2) 
Decoder: recovers original inputs from the compressed representation. 

 

Figure 1 : Illustration of autoencoder model architecture [68] 

Fan et al. [69] compared three types of deep learning based feature selection methods (i.e. 
fully connected AE, convolutional AE and generative adversarial networks) to variable ranking 
and PCA. The result shows that the deep learning-based feature selection method enhanced the 
one-step-ahead cooling load prediction performance for an educational building. Furthermore, 
Mujeeb and Javaid [70] proposed an efficient sparse autoencoder as feature extraction method, and 
then utilized the compressed feature space as inputs for an non-linear autoregressive network. The 
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proposed method decreased forecasting error of the non-linear autoregressive network for regional 
load forecasting. 

Note that the application of autoencoder for feature extraction in the field of building 
energy prediction is still uncommon. One reason is that the dimension of original input features is 
usually small, thus, AE would be computing intensively compared to other feature extraction 
methods. Following the explosive growth of collected data and implementation of deep learning, 
the interests in AE would increase. 

Strengths and weaknesses of previous introduced feature selection methods are 
summarized in Table 2. 

Table 2 : Strengths and weaknesses of feature selection methods 

Type of feature 
selection 

Strengths Weaknesses 

Variable ranking 

1. Fastest and easiest to use 
2. Quantitatively calculate the relevance between 

individual variables and outputs 

1. Hard to determine number of desired features 
2. Unavailable for considering the effect of inter-

relevance between features on the output 
3. Could not select the best subset 

Filter method 

1. Fast and easy to use 
2. Subset selection 
3. Robust to overfitting 
 

1. Less stable 
 

Wrapper method 
1. Subset selection that considers inter-relevant of 

input features 
2. More stable 

1. Computational expensiveness 
2. High risk of overfitting 

Embedded method 1. Easy to use 
2. Unnecessary to eliminate features 

1. Unable to quantitatively present the 
importance of features 

PCA 

1. Relatively easy to use 
2. Effective when original feature space 

dimension is not too large 
3. Unnecessary to eliminate features  

1. Hard to determine number of desired features 
2. For kernel PCA, kernel function needs to be 

properly selected  
 

AE 
1. Learn nonlinear representation of original input 
2. More powerful for compressing the dimension 

of features with lower loss of information 

1. Computational expensiveness 
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2.2.Data-driven algorithms 
Data-driven algorithms introduced in this paper are shown in Figure 2. A detailed 

description is presented in following sections. 

 

Figure 2 : Data-driven models for building energy prediction 

2.2.1. Statistical models 
2.2.1.1.Linear regression (LR) 
Linear regression is one of the traditional statistical approaches to study the relationship 

between a dependent variable (i.e. response or output) and one or more independent variables (i.e. 
predictor or input features). Its general form is shown in Equation 3. 

𝑦𝑦� = 𝑤𝑤0 + 𝑤𝑤𝑥𝑥                                                               (3) 

where, 

𝑦𝑦� is the predicted output, 

𝑤𝑤0 is the bias term, 

𝑤𝑤 is a weight matrix for features 𝑥𝑥. 

Note that the general form could only discover the linear relationship between features and 
output. To extend the applicability of linear regression, the input variables could be converted to 
other forms through different active functions, such as polynomial (Equation 4) or natural 
logarithm function (Equation 5). 
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𝑦𝑦� = 𝑤𝑤0 + 𝑤𝑤𝑥𝑥𝑚𝑚                                                    (4) 

where m means m-th polynomial. 

𝑦𝑦� = 𝑤𝑤0 + 𝑤𝑤𝑤𝑤𝑜𝑜𝑤𝑤(𝑥𝑥)                                                    (5) 

 

The main advantage of linear regression is that it is very easy to use and intuitive to 
understand. The contribution of individual variables on the prediction result could be directly 
found from the weight matrix. Besides, extended linear regression could be applied in solving 
nonlinear problems. However, its limitations should also be noted: (1) General form of linear 
regression could not consider nonlinear relationships between inputs and outputs; (2) The 
prediction performance of extended linear regression is highly dependent on the proper selection 
of active function, which could be a significant challenge; (3) Multicollinearity of input features 
would hurt the prediction result of linear regression. Therefore, feature extraction methods are 
recommended to be applied before developing linear regression models. 

Applications of linear regression approach into building energy prediction have been 
sufficiently reviewed in the literature, see Table 1. 

2.2.1.2.Time series analysis 
The most commonly used methods for time series analysis are AutoRegressive-Moving 

Average (ARMA) and AutoRegressive Integrated Moving Average (ARIMA) [10]. ARMA 
mainly includes two parts: an autoregressive model (AR) with order p and a moving average model 
(MA) with order q, 

𝑦𝑦𝑡𝑡� = 𝑐𝑐 + 𝜀𝜀𝑡𝑡 + ∑ 𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + ∑ 𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖

𝑞𝑞
𝑖𝑖=1                                        (6) 

where 𝜑𝜑1, … ,𝜑𝜑𝑝𝑝  are weights for AR, 𝜃𝜃1, … ,𝜃𝜃𝑞𝑞 are weights for MA, 𝜀𝜀  is white noise, 𝑐𝑐  is a 
constant. 

ARMA could only handle stationary time series. When predicting nonstationary time 
series, ARIMA would be a better choice since it integrated an initial differencing step to eliminate 
the non-stationary [71]. 

ARMA and ARIMA show the ability to consider the effect of historical data, thus, their 
prediction performance would be acceptable if the output is highly impacted by previous values.  
However, determining the orders for AR and MA models and the times of initial difference would 
be a challenge. A detailed summary for applying ARMA and ARIMA models can be found in 
references listed in Table 1. 

2.2.2. Machine learning methods 
2.2.2.1.Regression tree (RT) 
RT is a type of decision tree with continuous target variables, see Figure 3. An RT starts 

with a root node where the input data are split into different internal nodes or leaf nodes. For 
internal nodes, the inputs are continuously split into subsets, while leaf nodes represent the output 
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of the RT model. This implies that there is a chance that the RT make predictions without involving 
entire feature space. 

 

Figure 3 : Schematic of decision tree 

The main advantage of RT is easy to understand and interpret due to the fact that it could 
be displayed graphically [40], [72]. Besides, RT could outperform traditional statistical methods 
once proper features are selected [73]. The disadvantages of RT are: (1) It could be sensitive to 
small changes of data; (2) Its structure fails to determine smooth and curvilinear boundaries. 
Furthermore, to enhance RT prediction performance, groups of RT could be combined as an 
ensemble model, which would be reviewed in Section 2.2.2.5. 

2.2.2.2.Support vector regression (SVR) 
SVR is a regression application of SVM, which maximizes the margin between different 

categories as shown in Figure 4. For SVR, the goal is to find a linear regression function that could 
predict the result with acceptable deviation from the actual target [74]. For nonlinear regression 
problems, a kernel function should first be selected to map the original inputs to a high-dimensional 
feature space, and then apply the SVR. Therefore, one challenge of SVR is the proper selection of 
kernel function. 

 

Figure 4 : Schematic of margin between different categories 
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The advantages of SVR are: (1) It has the ability to solve global minima instead of local 
minima[75]; (2) Its computational complexity is not determined by the dimensionality of feature 
space[76]; and (3) Its prediction performance is not sensitive to the noisy data. The application of 
SVR will not be discussed here since it has been sufficient summarized. 

2.2.2.3.Artificial neural network (ANN) 
ANN is a machine learning technique inspired by biological neural network [77]. As shown 

in Figure 5, a typical ANN usually consists of three layers: input layer, hidden layer and output 
layer. The training goal of an ANN model is to learn the weights and bias (as shown in Equation 
7) with proper number of neurons and hidden layers as well as activation functions. Note that 
although ANN with a single hidden layer can present any Boolean function and ANN with two 
hidden layers shows the ability to train any function to arbitrary accuracy, the number of hidden 
layers should be carefully selected to achieve better accuracy with fewer neurons. Furthermore, 
once the number of hidden layers is increased, the ANN could be considered as deep learning (see 
Section 2.2.2.4). 

 

Figure 5 : Schematic of typical ANN 

 

𝑦𝑦� = ∅(𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡ℎ + 𝑏𝑏𝑜𝑜𝑜𝑜𝑡𝑡) = ∅[𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡𝜎𝜎(𝑤𝑤𝑥𝑥 + 𝑏𝑏) + 𝑏𝑏𝑜𝑜𝑜𝑜𝑡𝑡]                                  (7) 

where:  

∅ is the activation function of output layer; 

ℎ is the output of the hidden layer, ℎ = 𝜎𝜎(𝑤𝑤𝑥𝑥 + 𝑏𝑏); 

𝜎𝜎 is the activation function for the hidden layer; 

𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑤𝑤 are the weight matrix; 

𝑏𝑏𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑏𝑏 are the bias terms. 
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The advantages and disadvantages of ANN have been described in References [8] and [12]. 
The main advantage of ANN is the ability to deal with non-linear problems without expertise, 
while the main disadvantage is the long time required for training models with large number of 
networks. 

2.2.2.4.Deep learning 
Deep learning based on ANN includes three categories: deep neural networks (DNN), 

convolutional neural networks (CNN) and recurrent neural networks (RNN). 

(1) DNN 

A DNN is a complex version of ANN containing multiple hidden layers between input and 
output layers [78]. Typical DNN is a feedforward network without lopping back [79]. Generally, 
DNN refers to fully connected networks (shown in Figure 6(a)), which means that each neuro in 
one layer receives information from all neuros from previous layer. 

The motivations of utilizing DNN instead of simple ANN have been argued by Good 
Fellow et al.[80]: (1) DNN requires less neurons than simple ANN in representing complex tasks; 
(2) In practice, DNN generally presents higher prediction accuracy than ANN. However, 
implementing DNN models should be done with careful attention to two common issues: 
overfitting and computing intensive. 

(2) CNN 

CNN is a special class of DNN, which adopts convolutional layers (shown in Figure 6(b)) 
to group input unites and apply the same function to gathered groups (i.e. parameter sharing). 
Compared with general DNN, CNN decreases the risk of overfitting by reducing the connectedness 
scale and structure complexity. Therefore, CNN could also be treated as a regularized version of 
typical DNN. 

 

                        
(a)                                                             (b)                                        (c) 

Figure 6 : Schematic of (a) fully connected layer, and (b) convolutional layer (c) loop in RNN 
 

  CNN is well-known in the field of visual imagery analysis, such as image recognition [81], 
image classification[82], medical image analysis [83] and natural language processing [84]. To 
implement CNN into load prediction, Sadaei et al. [85] converted hourly load data, hourly 
temperature data and fuzzified version of load data into multi-channel images, and then fed it to a 
CNN model. The prediction performance of the developed CNN model was even better than Long 
Short-Term Memory (LSTM) models, a kind of RNN. 
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(3) RNN 

The distinction between RNNs and other deep learning algorithms is that RNNs involve 
loops (shown as the cycle in Figure 6(c)) in their structure and makes it possible that information 
flow in any direction. These cycles introduce time delay in RNN and make RNN more suitable to 
exhibit temporal dynamic behavior. Therefore, the utilization of RNNs in energy prediction has 
attracted increasing research interests in recent years. 

However, as the weight for the loop is the same for each time step, gradients in the 
traditional RNN tend to explode or vanish when the loop runs for many times. This problem is 
called long dependency. To solve this problem, one commonly utilized RNN model, called LSTM, 
could be applied to remember information for a long period. 

2.2.2.5.Ensemble methods 
An ensemble method combines the output of multiple learning algorithms in order to 

enhance the prediction performance of single data-driven models [86]. Commonly used ensemble 
methods could be classified into three categories: bagging, boosting and stacking models (also 
called parallel homogeneous, sequential homogeneous and heterogeneous ensemble methods 
[19]). Schematics of these three types of ensemble methods are shown in Figure 7. 

               
(a) Bagging                                                                      (b) Boosting 

 

                           (c) Stacking 

Figure 7 : Schematic of different ensemble methods 
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(1) Bagging 

Bagging, also called bootstrap aggregating, predicts the output by training the same 
baseline models parallel on different sub-datasets, which are sampled from original input datasets 
uniformly by replacement. This algorithm tends to decrease the variance when running the trained 
model on the validation set, due to the independence of each baseline model. 

The most commonly utilized bagging method is random forests (RF), for which the 
baseline models are decision trees. Wang et al. [87] reported that RF is more accurate than RT and 
SVR in hourly electricity consumption prediction. Furthermore, Johannesen et al. [88] found that 
RF provides better 30 min-ahead electrical load prediction for urban area compared with kNN and 
LR. Wang et al. [56] proposed an ensemble bagging tree model to predict hourly educational 
building electricity demand. Their result shows that the proposed ensemble model is more accurate 
than RT. However, the larger training time of the bagging tree model than RT would be an issue. 
Besides, the required additional process for generating sub-dataset and the less interpretable than 
RT also limits the application of the proposed bagging method. 

(2) Boosting 

The difference between bagging and boosting is that boosting trains the baseline models 
incrementally, which means every successive model tries to fix the mistake made by previous 
models. To achieve this goal, the basic solution is to increase the weight for misclassified data (i.e. 
orange points in Figure 7(b)). As a result of boosting, the training error would be decreased. 

Robinson et al. [89] utilized a gradient boosting regression model to predict annual energy 
consumption for different types of commercial buildings located in different regions. Their results 
indicate that the gradient boosting regression model outperforms general linear models (e.g. LR 
and SVR) and even bagging models with limited number of features. Besides, Walter et al. [90] 
reported that the gradient boosting decision trees (GBDT) is flexible and accurate for very short 
term load forecasting for a factory. 

Besides comparing the prediction accuracy between different models, interpretability, 
robustness and efficiency of different models should also be studied. Wang et al. [52] compared 
these four aspects of five models (i.e. extreme gradient boosting (XGB), GBDT, RF, ANN and 
SVM) based on a case study of 2-hour ahead heating load prediction for a residential quarter. They 
concluded that there is no best model when considering all performance. For instance, RF shows 
the highest accuracy, interpretability and robustness, while XGB presents better efficiency. 

(3) Stacking 

Unlike bagging and boosting, which utilize the same baseline models, stacking works on 
an arbitrary set of models. As shown in Figure 7(c), different models are trained on the available 
input dataset, and then a meta-model is trained based on the outputs of these models to make the 
final prediction. 

Huang et al. [55] combined XGB, extreme learning machine (ELM), LR and SVR as an 
ensemble learning method, and then utilized it to do a 2-hour ahead heating load prediction for a 
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ground source heat pump that supplies space heating for a residential area. Their result shows the 
proposed ensemble model is more accurate than XGB, ELM, LR and SVR. Fan et al. [40] 
developed an ensemble model integrated by eight learning algorithms to enhance the prediction 
accuracy for next day energy consumption and peak power demand. 

2.3.Outputs 
In this section, research objects of outputs, i.e. the type of buildings, the types of energy, 

the scale of buildings, the length and number of steps expected for prediction, and the criteria of 
evaluation for the accuracy of developed date-driven models, etc. will be presented.   

2.3.1. Building Type 
When evaluating building loads, the type of buildings (i.e. residential or non-residential) 

should be distinguished, because the percentage of end use and the influence factors for energy 
consumption would be different for different types of buildings. For instance, the load consumed 
by cooking could be a huge contribution for peak load in residential buildings, while official 
equipment would consume a considerable percentage of commercial building loads. Besides, the 
set-point temperature for air conditioning is generally controllable for occupants in residential 
buildings, while it shows a large chance of being constant for nonresidential buildings. 

Note that non-residential buildings further include commercial buildings, educational 
buildings, industrial buildings and hotels. 

2.3.2. Energy type 
The predicted energy could be separated into electricity, natural gas, fuel oil, and steam in 

terms of energy source, while it can be divided as air conditioning (space heating and cooling), 
domestic water heating, plug-load and lighting in terms of end-use [91], [92]. Besides, the 
forecasted energy could be classified as energy consumption and power demand. Energy 
consumption is the amount of energy consumed during a period of time, while power demand 
means how fast energy needs to be supplied. Thus, energy consumption is the integral of power 
demand over time. For a given time interval, if power demand is constant, its prediction within the 
given resolution would be consistent with energy consumption forecasting. On the other hand, 
when power demand fluctuates among the given time interval, energy consumption prediction and 
power demand forecasting should be distinguished. 

The benefits of distinguishing the type of predicted energy are: 

(1) Making it possible to quantitatively evaluate the environmental impact (e.g. global 
warming, ozone layer depletion, human toxicity, and photochemical oxidation, etc.) of 
building energy use and then give basis to take measures in order to reduce the 
environmental impact [93]. 

(2) Providing a foundation in feature construction. For instance, meteorological 
information might be the critical factor for heating/cooling demand prediction, while 
occupancy related data and time index could be the most promising features for 
predicting energy consumed by lighting. 

(3) Offering opportunities for more targeted energy/cost saving methods. Through 
developing energy prediction models for a specific end-use, unique operation/control 
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plans could be formulated to achieve the minimum energy consumption or cost during 
a given period. 

2.3.3. Scale 
Scale can be classified into four classes: sub-building, building, district, region (city), 

country. Note that a sub-building refers to an individual room or component in a building. 

Energy prediction for larger scale (e.g. region and country) should not be considered as a 
simple aggregation of smaller scale (e.g. sub-building and building), since the effective and 
available features for different scales would vary [10]. For instance, socio-economic information 
tends to be collectable and useful for large scale energy prediction, while its effect declines in 
predicting building/sub-building level energy consumption. Besides, the application of energy 
prediction models in reality varies for different scales. The model developed for sub-building and 
building scale could be utilized for demand response control, while large scale energy prediction 
model is applicable in energy distribution. 

2.3.4. Temporal granularity 
Two types of temporal granularity need to be determined: horizon and resolution. Horizon 

means the length of time-ahead load prediction, while resolution means the duration of a time step. 
When horizon is longer than resolution, the developed model makes an n-step ahead prediction, 
where n equals to horizon divided by resolution. For instance, if the prediction horizon is 1 hour 
and the resolution of data points is 15 min, then the model does a 4-step ahead prediction. One 
thing to note is that under the same resolution, longer horizon prediction takes more risk for higher 
error. For instance, Ding et al. [94] utilized historical data and meteorological parameters to predict 
one hour ahead and one day ahead cooling load with 30 min intervals. Their results indicate that a 
shorter horizon (i.e. 1 hour) prediction presents higher accuracy than a one day ahead prediction. 

Time horizon of electrical load prediction models is usually classified as four categories: 
very short term, short term, medium term and long term [10], [9]. However, the cut-off horizon 
for these categories varies among different references. Generally, when the time horizon is less 
than one month, it belongs to short term prediction or even very short term prediction. Very short 
term and short term predictions help users to implement proper control strategy for load shifting 
and benefits utilities to design energy distribution plans, while medium and long term prediction 
could be beneficial for utilities to upgrade their equipment and for governments to formulate 
standards for energy saving and modify plans for the electricity market. 

2.3.5. Criteria 
Commonly used validation criteria for evaluating the performance of prediction models 

include [63], [95]–[98]: 

Mean Absolute Error (MAE) = 1
𝑛𝑛
∑ |𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                                            (8) 

Mean Absolute Percentage Error (MAPE) (%) = 1
𝑛𝑛
∑ | 𝑥𝑥𝚤𝚤� −𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
|𝑛𝑛

𝑖𝑖=1 ∗ 100                                        (9) 

Mean Bias Error (MBE) = ∑ (𝑥𝑥𝚤𝚤� −𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                            (10) 
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Normalized MBE (NMBE) (%) =  
∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑥𝑥

∗ 100                                                                   (11)  

Mean Squared Error (MSE) = 1
𝑛𝑛
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                           (12) 

Root Mean Square Error (RMSE) = �1
𝑛𝑛
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                              (13)                                                                               

Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) = 
�1𝑛𝑛∑ (𝑥𝑥𝚤𝚤� −𝑥𝑥𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

𝑥𝑥
           (14) 

R Square (𝑅𝑅2) = 1 −
1
𝑛𝑛
∑ (𝑥𝑥𝚤𝚤� −𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

                                                                                               (15) 

where 𝑦𝑦 is the average value of measured outputs. 

These criteria could also be utilized to evaluate the prediction accuracy during model 
training. Through comparing the prediction accuracy between model training and model 
validation, overfitting or underfitting could be detected [99]. For instance, if training accuracy is 
much higher than validation, it might indicate overfitting which means the trained data-driven 
model fits too closely to the training set with covering the noise and outlier. Besides, if both 
training and validation accuracy are not acceptable, underfitting occurs to show that the developed 
data-driven model cannot capture the structure of the studied problem. Both overfitting and 
underfitting undermine the developed models’ generalization, which refers to the ability to predict 
unseen data. 

Here, a short description is given in the following to help the criteria selection. 

MAE is the mean value of the sum of absolute errors, while MBE is the average prediction 
error which could be understood as how far the average predicted values is above or below the 
average of measured output value. Both MAE and MBE have units that should be taken into 
consideration when utilizing them to compare the results of different works. Note that the under-
predicted outputs would reduce the value of MBE, which means cancellation errors. Therefore, if 
choosing MBE, other criteria without cancellation errors should be considered. 

MAPE is a commonly utilized measure of prediction accuracy because it calculates the 
mean relative prediction error without units. However, it cannot be utilized when there are zero 
values in the measured output. By contrast, zero values would not be a big concern when utilizing 
NMBE, which also shows the advantages of having no units. However, NMBE is limited by 
cancellation errors. 

MSE has the ability to evaluate both variance and bias of the predicted value to the 
measured output. Note that the unit of MSE would be square of the unit of predicted outputs. To 
have the same unit as the predicted outputs, RMSE could be utilized. In terms of principle, 
CV(RMSE) is calculated by dividing RMSE by the mean value of measured outputs; therefore, it 
evaluates how much the predicted error varies with respect to the mean target value. It is not limited 
by cancellation errors. Furthermore, NMBE and CV(RMSE) have been recommended as 
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evaluation criteria for building energy prediction models by several standards, such as ASHRAE 
[63], FEMP [100] and IPMVP [101]. 

𝑅𝑅2 indicates the goodness of fit. The bigger the value of 𝑅𝑅2, the closer its predicted value 
will be to its target value. 

2.4. Discussion 
To better understand recent development of energy series prediction by data-driven 

approaches, papers from 2015 to 2019 are reviewed a total of 105. These literature are found by 
following steps: (1) Search keywords “data driven; building” or “machine learning; building” from 
Scopus [102]; (2) Quickly review title of the searched papers, and remain papers which work on 
energy prediction; (3) Review in depth and keep the relevant 105 papers. 

Among the reviewed 105 papers, 17% of these studies are based on public datasets, such 
as [103]–[110], etc. To the best of the authors knowledge, studies based on the same dataset are 
lacking. Even if utilize the same dataset, these studies are not compared to each other. Besides, 
most of existing studies utilize private datasets which are not published due to some reasons, such 
as privacy and ethics issues. It makes it further difficult for other researchers to reproduce and 
improve the existing studies. Therefore, as more public data available in the future, quantitatively 
comparison of new techniques to the existing studies would be effective to improve the usability 
of data-driven models in building energy prediction. Besides, the number of data points utilized 
by model training and validation, as well as the number of meters and buildings utilized for data 
collection are recorded for each reviewed paper. However, these aspects are not analyzed in this 
paper, because the amount and quality of utilized data are affected by many factors and varies case 
by case. 

Furthermore, the distribution of the reviewed studies among the feature selection, model 
utilization and prediction objective (output) are summarized in the following subsections. 

2.4.1. Study distribution based on features 
The utilization of different types of features in studies from year 2015 to 2019 is 

summarized in Figure 8. Meteorological information, historical data and time index are the top-3 
important factors for building energy prediction. Indoor environment information is not commonly 
used because air-conditioned buildings (especially nonresidential buildings) usually have a nearly 
constant indoor condition. However, the dynamic change of indoor conditions should be 
considered for energy prediction to achieve peak shifting by controlling the indoor environment 
within an acceptable range. The relatively lower utilization of occupancy related data is caused by 
the complexity of data collection and its replacement by time index data. Building characteristic 
data is usually ignored because it is generally kept as constant through the life cycle of a specific 
building. One possible reason for less utilization of socio-economic information among recent 
studies is that it is only useful for large scale prediction. This conclusion can be deduced from 
Figure 9. Another interesting observation from Figure 9 is that indoor environment information, 
occupancy related data and building characteristic are just utilized by relatively small scale (i.e. 
sub-building, building and district level). 
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Figure 8 : Feature utilization in recent studies 

 

Figure 9 : Feature utilization among different scales in recent studies 

2.4.2. Study distribution based on models 
The percentage of studies utilizing different kinds of data-driven models are summarized 

in Figure 10. ANN, SVR and LR seem to be the popular models, while the concentration on time 
series analysis and RT is less. The application of RT is less due to its unacceptable prediction 
accuracy when applied to validation dataset or test dataset. However, RT is a common base model 
in ensemble methods, which have attracted considerable attention in recent years. Besides this, as  
Figure 10 shows, deep learning has started to draw interest in recent years. Moreover, around 80% 
of studies implement more than one model to the collected data, because the generalization of data-
driven models varies among different factors, e.g. size and structure of dataset. 
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Figure 10 : Model utilization among studies 

2.4.3. Study distribution based on outputs 
Distribution of research among building types is shown in Figure 11. Earlier studies have 

mainly concentrated on residential, commercial and educational buildings, while studies based on 
industrial buildings and hotels are lacking. The reason for few studies focusing on industrial 
buildings is that the production from different factories varies a lot and thus the influencing factors 
cannot be easily realized and selected. Besides, for hotels, occupant numbers and occupancy 
activity are unstable, thus, energy prediction for hotels based on data-driven approaches could be 
challenging. 

  

Figure 11: Study distribution by building type 

Research distribution by energy type is not summarized here because most studies 
predicted aggregated end-use energy consumption instead of individual end-use and the effect of 
primary energy type on model development process is negligible. 

Figure 12 presents the distribution of studies for different scales. More than 60% of studies 
predict the energy for an entire building, followed by around 20% of studies for district level. The 
high number of studies on these two scales is caused by more collectable data and applicability of 
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the developed model to realistic demand response control and grid distribution. However, 
prediction for sub-building level is lacking due to the limitation of data collection. For instance, 
Geyer et al. [111] utilized simulation data instead of real measured data to predict heat flux through 
individual components, such as walls, windows, and roofs. The research focusing on sub-building 
level energy prediction would increase as the demand for individual room control and for energy 
saving potential analysis of different envelopes goes higher. 

 

 

Figure 12 : Study distribution by scale 
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Figure 13 : Study distribution by temporal granularity 

Horizon and resolution of the 105 studies are shown in Figure 13. The centroid of each 
circle means the resolution and horizon of studies; the bigger the circle, the more studies are 
located in that temporal granularity. Circles lies on the dash line are single step predictions, 
meaning horizon is equal to resolution. All circles above the dash line are multi-step predictions. 
Note that one paper could present results for several temporal granularities. Most (64.75%) studies 
present multi-step prediction, which is useful for continuous control and monitoring. Besides, the 
resolution and horizon for most studies are higher than 1 min. 

3. Updating strategies for multi-step building energy prediction 
After training and validating a data-driven model, the developed model could be utilized 

for energy prediction in real life. Prior to implementation, the process of updating prediction inputs 
should be resolved. Therefore, this section summarizes several updating strategies for multi-step 
building energy prediction. 

3.1. Strategy 1: Updating inputs by real values without historical data 
In this strategy, energy consumption during a specific period or power demand at a specific 

time is predicted only based on exogenous inputs (e.g. forecasted meteorological information, time 
index, etc.) during that specific time period or time point. Studies that did multi-step building 
energy prediction based on Strategy 1 are summarized in Table 3. 
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Table 3 : Studies for multistep energy prediction based on Strategy 1 

Reference No. 
training 
points 

No. 
validation 
points 

No. 
meters 

No. 
buildings 

Features Models Building 
type 

Energy type Scale Resol
ution 

Horizon No. 
steps 

Criteria 

[112] 3562 
 

1526 
 

- 1 Meteorological information, 
time index 

LR, 
SVR, RF 

Educational Electricity 
energy 
consumption 

Building - - 1-3 MAE, 
RMSE 

[113] - - - - Meteorological information, 
time index, 
socio-economic information, 
operation characteristic of 
HVAC system 

DNN Commercial, 
industrial 
parks 

Heating and 
cooling 
energy 
consumption 

District 1hour 1hour- 
3hour 

1-3 MSE 

[60] 2784 
 

96 
 

6 6 Meteorological information, 
time index 

ANN, 
SVR, 
LR, 
Gaussian 
process 

Commercial, 
Hotel 

Electricity 
energy 
consumption 

Building 15min 24hour 96 RMSE, 
NMBE, 
CV(RMSE)
, R2 

[33] 12240 
 

2880 
 

- 8 Meteorological information, 
indoor environmental 
information, 
time index, 
operation characteristic of 
HVAC system 

RT, RF Educational Electricity 
power 
demand 

Building 5min 1hour 12 - 

[114] 1440; 
4368; 
17520 
 

480; 
1488; 
5760 
 
 

- 
 

- Meteorological information ANN, 
LR, 
ensemble 
method 
(AdaBoo
st) 

ALL Energy 
consumption 

District 30min 1month, 
1season, 
1year 

1440, 
4320, 
17520 

MAE, 
MAPE, 
CV(RMSE) 

[115] 21924 
 

3132 
 

- 1 Meteorological information,  
time index 

ANN Educational Electricity 
power 
demand 

Building 1hour 24hour, 
9days 

24, 
216 

MAE, 
MAPE, 
RMSE 
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Since no historical data would be utilized as input for prediction, the multi-step ahead 
prediction performance is mainly limited by the forecasting uncertainty of exogenous inputs. 
Another drawback of this strategy is its inability to treat the expected output as time series data. 
Therefore, it is usually utilized in three cases: (1) Doing single-step prediction [56], [116]; (2) 
Doing multi-step prediction with longer horizon (usually higher than 1 day) and larger scale 
(generally greater than district). For instance, Salcedo-Sanz et al. [117] and Sánchez-Oro et al. 
[118] presented acceptable one-year ahead energy demand prediction for Spain based on socio-
economic factors for the corresponding year; (3) Furthermore, for predicting energy for appliances 
whose operation schedule is not affected by previous conditions, such as lighting. For instance, 
Amasyali and El-Gohary [119] predicted daily lighting energy consumption using SVM based on 
daily average sky cover and day type. 

3.2. Strategy 2: Updating inputs by real values with historical data 
In this strategy, historical data is one of the input factors for energy prediction. However, 

the historical data is not treated as continuous information, which means energy consumption in 
the next step might be affected by data in discontinuous previous steps. Therefore, ground truth of 
historical data is utilized as input during multi-step energy prediction. 

Guo et al. [120], [121] observed the thermal response time of the building as 40 min, and 
thus utilized current heating load, meteorological information, indoor temperature, and time index 
to predict the heating load after 40 min by SVM, MLR and ANN. Note that their study only focused 
on single-step prediction. Dedinec et al. [122] employed the average load of the previous day, the 
load for the same hour of the previous day and the load for the same hour-day combination of 
previous week as historical data to forecast day ahead hourly electricity load for buildings in 
Macedonia. These discontinuous historical data ensure the availability of ground truth data. 
Similarly, Idowu et al. [123] utilized data at time t-k and t-2k to predict heating load at t+k (where 
t means current time and k is the forecast horizon). The drawback of this study is the inconsistent 
lag time for different time steps in a specific horizon, which means a larger lag period for a further 
future point. More studies doing multi-step energy prediction based on Strategy 2 can be found in 
Table 4. 

The main limitation of Strategy 2 is that the intermittent historical data could weaken the 
energy prediction accuracy, because recent historical data has more effect on future energy 
consumption than before. 
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Table 4 : Studies for multistep energy prediction based on Strategy 2 

Reference No. 
training 
points 

No. 
validation 
points 

No. 
meters 

No. 
buildings 

Features Models Building type Energy type Scale Resolu
tion 

Horizon No. 
steps 

Criteria 

[94] 768 768 4 
 

1 Meteorological information,  
historical data (previous 
hour’s cooling load/one day 
prior cooling load) 

SVR Commercial 
  

Cooling load Building 30min 1hour, 
24hour 

2, 
48 

MAE, RMSE, 
R2 

[29] 144 
 

24 - 1 Historical Meteorological data MLP, 
SVR 

Commercial Heating load Building 1hour 24hour 24 MRE, 
CV(RMSE), 
R2 

[124], 
[125] 

2400; 
696 

48; 
24 

2 
  

2 Meteorological information, 
historical data 

SVR Commercial, 
Hotel 

Electricity 
power demand 
intensity 

building 1hour 24hour 24 MAE, MAPE, 
RMSE 

[126] 35064 
 

17544 
 

- 
 

- 
 

Meteorological information, 
time index, 
historical data (previous 24 hr 
average load, 24-hr lagged 
load, and 168-hr lagged load) 

ANN-
IEAMCG
M-R 
 

ALL Electricity 
energy 
consumption 

Region 30min, 
1hour 

24hour 48, 
24 

MAE, 
MAPE 

[127] 14400 
 

5040 
 

- 10 Meteorological information,  
time index, 
historical data (thermal load 
and control signal with a lag of 
1 day and 1 week) 

LR, ANN, 
SVR, 
RT 

Commercial Heating load District 1hour 24hour 24 MAPE 

[123] 936 
 

168 
 

10 10 Meteorological information, 
historical data 
(Meteorological, thermal load 
and operational variables) 

MLR, 
ANN, 
SVR, 
RT 

Commercial, 
residential 

Heating load Building 1hour 1hour-
48hour 

1-48 RMSE 

[122] 43800 
 

17520 
 

- - Meteorological information,  
time index, 
historical data (average load of 
the previous day, load for the 
same hour of the previous day, 
and load for the same hour-day 
combination of previous 
week) 

Deep 
belief 
network 

ALL Electricity 
power demand 

Country 1hour 24hour 24 MAPE 

[128] - - - 
 

- 
 

Meteorological information,  
time index, 
historical data (previous day 
hourly load, previous week 
hourly load), 

Ensemble 
methods 

- Electric power 
demand  

- 1hour 24hour 24 - 
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Reference No. 
training 
points 

No. 
validation 
points 

No. 
meters 

No. 
buildings 

Features Models Building type Energy type Scale Resolu
tion 

Horizon No. 
steps 

Criteria 

 1st and 2nd derivatives of 
previous load and current 
temperature 

[129] 17520 8760 - - Time index, 
historical data (previous two 
days’ consumption, previous 
day exterior temperature) 

ANN ALL Energy 
consumption 

Region 1hour 24hour 24 MAPE 

[130] 14892 2628 - 
 

5 Meteorological information,  
time index, 
historical data (energy 
consumption at the same 
timestep the previous day, and 
energy consumption at the 
same timestep the previous 
week) 

ANN ALL Heating 
energy 
consumption 

Building 1hour 24hour 24 R2 
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3.3. Strategy 3: Updating inputs by predicted data 
In this strategy, multistep energy prediction with historical data as one of input features is 

achieved by updating predicted value as historical data for upcoming steps, as shown in Figure 14. 
Note that the moving box in Figure 14 could also be called as sliding window method with length 
n. 

 
Figure 14 : Updating process of Strategy 3 for m-step ahead energy prediction with n steps of historical data 

Deb et al. [131] employed Strategy 3 to predict next 20 days’ daily energy consumption 
using the previous 5 days’ cooling load. Their result presents high accuracy (𝑅𝑅2 more than 0.94). 
Note that the inputs and outputs in their study are all summarized classes instead of continuous 
values. Fan et al. [132] applied the updating process shown in Figure 14 for 24 hour ahead cooling 
load prediction based on data with 30 min intervals. Their study shows that involving past 24 
hours’ data as input features could significantly increase the prediction accuracy compared with 
only considering time index and meteorological information at the predicted time. Furthermore, 
the study of Mocanu et al. [133] illustrates that under Strategy 3, one-day ahead energy prediction 
is worse than one hour ahead prediction with 1-minute resolution data. Summary for more studies 
with multi-step energy prediction by Strategy 3 are shown in Table 5
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Table 5 : Studies for multistep energy prediction based on Strategy 3 

Reference No. 
training 
points 

No. 
validation 
points 

No. 
meter
s 

No. 
buildings 

Features Models Building 
type 

Energy type Scale Resolut
ion 

Horizon No. 
steps 

Criteria 

[24] 3942 216 - 3 Meteorological information, 
historical data 

ARIMA, 
RNN 

Commercial Electricity 
energy 
consumption 

Building 1hour 24hour 24 MAPE, 
CV(RMSE) 

[131] 237 158 - 
 

3 Historical data (previous five 
days’ energy consumption) 

ANN Educational Energy 
consumption for 
cooling 

Building 1day 20day 20 R2 

[134] - - - - Meteorological information, 
historical data 

LR, 
Gaussian 
process, 
ANN 

Commercial Cooling load of 
water source 
heat pump 

Building 5min 7days, 
1month 

2016, 
8640 

MAE, 
CV(RMSE), 
MAPE 

[132] 11054 2369 - 1 Meteorological information, 
time index, 
historical data (previous 
24hours’ cooling load, 
exterior temperature and 
humidity) 

MLR, RF, 
GBM, SVR, 
XGB, DNN, 
elastic net 

Educational Cooling load Building 30min 24hour 48 MAE, 
RMSE, 
CV(RMSE) 

[135] 10526 
 

1858 
 

- 
 

- Historical data ANN, SVR, 
ensemble 
method 

Commercial Energy 
consumption of 
heat pump 
system 

Building 5min 30min 6 RMSE, 
MAE, R2 

[136] 2688 96 12 
 

1 Meteorological information, 
time index, 
historical data 

ARIMA, 
SVR, 
MetaFA-
LSSVR,  
SARIMA-
MetaFA-
LSSVR 

Residential Electricity 
energy 
consumption 

Building 15min 24hour 96 MAE, 
MAPE, 
RMSE 

[137] 2688 96 12 
 

1 Meteorological information, 
time index, 
historical data 

SARIMA-
MetaFA-
LSSVR 

Residential Electricity 
energy 
consumption 

Building 15min 24hour 96 Error rate 

[138] 40320 2976 19  1 factory 
with four 
sections 

Meteorological information, 
time index, 
historical data (lag of 
1,2,3,24,168) 

MLR,  
SVR 
 
  

Industrial Reactive power 
demand 
 

Building 1hour 1hour - 
24hours 

1-48 Normalized 
MAE, 
Normalized 
RMSE, 
MASE 

[139] - 
 

- - 30 Meteorological information, 
time index; historical data 

ANN Educational Thermal load District 15min 24hour 96 NMBE, 
CV(RMSE) 
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One drawback of converting predicted value as inputs for multi-step energy prediction is 
the accumulated prediction error [140], [141]. To avoid this issue, two general solutions could be 
utilized. The first solution is Strategy 2, which has a longer lagging time than prediction horizon. 
The second solution is to aggregate training data and reduce the resolution. For example, Gu et al. 
[142] calculated the daily averaged value from 10 min interval data for daily heating load 
prediction, while utilizing hourly collected data for hourly prediction. Grolinger et al. [143] found 
that energy consumption prediction for event venues with 1 day interval data is more accurate than 
with 15 min or 1 hour interval data. They also presented that the processing time for models with 
large intervals is much faster than for those with smaller ones. One thing to note when applying 
this aggregating approach is that the reduced resolution would reflect the flexibility of control 
strategies developed based on energy prediction model. 

Furthermore, to ease the influence of continuous historical data, Chen et al.[124], [125] 
proposed a clustering based training method for machine learning models when doing 1 day ahead 
hourly energy consumption prediction. In their study, training data was firstly separated into 
different groups based on the similarity of electric demand intensity at previous hours and then 
models for corresponding groups were trained based on meteorological data. Zhang et al. [144] 
proposed an error correction approach to improve the cooling load prediction accuracy. The error 
correction terms are calculated by mean difference between real cooling load and predicted cooling 
load. The proposed approach could significantly increase the 1-hour-ahead prediction accuracy of 
MLR. However, this approach did not consider accumulated error, thus its effect on multistep 
ahead prediction is still uncertain. 

3.4. Strategy 4: Exploiting time series nature of energy data directly through models 
In this strategy, the time series nature of energy related data is considered directly through 

models, which means the developed models show the ability to predict a sequence of output just 
based on ground truth data. Schematic for this type of model is shown in Figure 15. Note that 
models shown in this strategy could also be utilized as a solution for the accumulated error caused 
by Strategy 3. 

 

Figure 15 : Schematic for models with a sequence of output 
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Table 6 : Studies for multistep energy prediction based on Strategy 4 

Reference No. 
training 
points 

No. 
validation 
points 

No. 
meters 

No. 
buildings 

Features Models Building type Energy type Scale Resolu
tion 

Horizon No. 
steps 

Criteria 

[24] 3942 
 

219 
 

- 3 Meteorological information, 
historical data 

CNN Commercial Electricity 
energy 
consumption 

Building 1hour 24hour 24 MAPE, 
CV(RMSE) 

[145] 504; 
840 

24 - 
 

2 Historical data LSTM Commercial Miscellaneous 
electric loads, 
lighting, heat 
gain 

Building 1hour 8hour, 
24hour 

8, 
24 

Relative 
RMSE 

[146] 8760 1820; 
8760 

- 
 

31 Meteorological information, 
time index, 
historical data 

RNN Commercial, 
residential 

Electricity 
energy 
consumption 

Building
, district 

1hour 24hour 24 RMSE 
 
 

[147] 1844352 
 
 

204928 
 

3 1 Time index, 
historical data, 
sub-metering data 

CNN-
LSTM 

Residential Electricity 
energy 
consumption 

Building 1min 1hour 60 MAE, MAPE, 
MSE, RMSE 

[148] 75000 2538 - 100 users Meteorological information, 
historical data (previous 4 
weeks of a load profile 
sequence) 

LSTM - Electricity 
energy 
consumption 

Building 1day 4weeks 28  
Accuracy 

[149] - - - - Historical data (previous 4 
hours’ load profile sequence) 

LSTM ALL Electricity 
energy 
consumption. 
power demand 

Region 15min 30min 2 MAPE, RMSE 

[150] - - 63 
. 

1 Historical data 
(previous 240 hours’ load or 
previous 70 days’ load) 

LSTM Residential Electric power 
demand 

Building 1hour 
1day 

24hour 
7day 

24 
7 

MRE, MAE, 
RMSE, 
SMAPE 

[151] 22000 2000 - 
 

200  Time index, 
historical data 

LSTM Residential Electric power 
demand 

Building 30min 1hour 
2hour 
4hour 

2 
4 
8 

Pinball loss 

[152] 19104; 
18096; 
18624 

6336; 
6048; 
6192 

- 
 

3 Meteorological information, 
time index, 
historical data (previous 
3days’ load) 

Recurrent 
inception 
convolutio
n neural 
network 
(RICNN) 

ALL Electric 
energy 
consumption 

Region 30min 24hour 48 RMSE, MAPE 

[153] 3592 634 - 1 Meteorological information, 
historical data 

LSTM Residential Heating 
demand 

Building 1hour 
 
 

12hour 
24hour 
 
 

12 
24 

- 
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Studies doing multi-step energy prediction based on Strategy 4 is summarized in Table 6. 
It shows that the most commonly used model for Strategy 4 is RNN. For instance, Rahman et 
al.[146] developed two RNN models that could predict 24-h sequence of electric load with 1 hour 
intervals. The proposed RNN models provided more accurate electricity prediction than a three-
layer DNN, while DNN is more reliable for a year ahead hourly aggregated energy prediction for 
a group of residential buildings. The poor performance of RNN in predicting aggregated energy 
prediction is caused by the fewer long-term dependencies in the aggregated profile. Moreover, the 
training time of these RNN models limited their application. 

4. Conclusions and opportunities for future works 
In this paper, studies working on building energy prediction with data-driven approaches 

are reviewed. To clarify shortages of existing review papers, a revision is done for previous 
literature reviews focusing on similar subject as this paper. Incomplete work of previous review 
papers is present in all steps of developing a data-driven model. Besides, no review summarizes 
how to implement the developed data-driven models in multi-step energy prediction. 

In order to fill research gaps in previous review studies, this paper first gives a 
comprehensive review for developing data-driven models in terms of general procedures, which 
contains feature engineering, data-driven algorithms and factors reflected from outputs. Prior to 
this, data collection and data cleaning are briefly introduced. For data collection, the number of 
data points collected for model training and model validation, the number of collection devices 
(e.g. meters or buildings), data sources, as well as the type of collected features are the aspects to 
be considered. Thus, for feature engineering, potential feature types (i.e. meteorological 
information, indoor environmental information, occupancy related data, time index, building 
characteristic data, socio-economic information, historical data) are firstly summarized to give an 
inspiration to data collection. Then, feature extraction methods, such as variable ranking, filter and 
wrapper methods, embedded method, PCA, and AE, are reviewed. To select proper feature 
extraction methods, their strengths and weaknesses are presented. As for data-driven algorithms, 
a variety of models are introduced in terms of principles as well as advantages and disadvantages. 
Factors reflected from the expected outputs (i.e. building type, energy type, scale, temporal 
granularity, and criteria) are also reviewed. A discussion is given to analyze the distribution of 
studies from 2015 to 2019. 

Then, four input updating strategies are summarized to give a guide for utilizing the 
developed models in realistic multi-step energy prediction. The applications of these updating 
strategies are reviewed. Limitations of them are introduced: Strategy 1 is limited by the disability 
of considering time series property; Strategy 2 is weakened by the neglect of most recent historical 
data; Strategy 3 shows a disadvantage of accumulated error; Strategy 4 requires a huge amount of 
data in model training. Possible solutions for these drawbacks are also explained. However, novel 
updating strategies with high speed and accuracy are still required. 

According to the distribution of reviewed studies and drawbacks shows in existing 
updating strategies, future works could focus on: 

(1) Implementing novel data-driven techniques to real-life cases. 
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(2) Proposing guidelines for feature engineering and data-driven model selection under 
different cases. 

(3) Fixing problems occurred in existing updating strategies, e.g. accumulated error. 
(4) Integrating data-driven energy prediction models into other applications e.g. model 

predictive control strategies. 
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Abbreviations 
AE Autoencoder 

ANN Artificial Neural Network 

AR AutoRegressive Model 

ARIMA AutoRegression Integrated Moving Average 

ARMA AutoRegression-Moving Average 

ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning 
Engineers 

CNN Convolutional Neural Networks 

CV(RMSE) Coefficient of Variation of the Root Mean Square Error 

DNN Deep Neural Networks 

ELM Extreme Learning Machine 

FEMP  Federal Energy Management Program 

GBDT Gradient Boosting Decision Trees 

IPMVP International Performance Measurement and Verification Protocol 

kNN k-Nearest Neighbor 

LR Linear Regression 

LSTM Long Short-Term Memory 

MA Moving Average Model 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MBE Mean Bias Error 

MSE Mean Squared Error 

NMBE Normalized Mean Bias Error 

PCA Principal Component Analysis 

PLSR Partial Least Squares Regression 

𝑅𝑅2 R Square 

RF Random Forests 

RICNN Recurrent Inception Convolution Neural Network 

RMSE Root Mean Square Error 

RNN Recurrent Neural Networks 
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RT Regression Tree 

SVM Support Vector Machine 

SVR Support Vector Regression 

XGB Extreme Gradient Boosting 

 

Nomenclature 
𝑐𝑐 Constant 

ℎ Output of the hidden layer in ANN 

p Order of AR 

q Order of MA 

𝑟𝑟𝑥𝑥𝑥𝑥 Pearson correlation coefficient between input feature x and target output y 

𝑟𝑟ℎ𝑜𝑜𝑥𝑥𝑥𝑥 Spearman’s ranking correlation between input feature x and target output y 

𝑥𝑥𝑖𝑖 Input of i-th sample point 

𝑥𝑥 Mean value of input feature 

𝑥𝑥𝑖𝑖′ Input rank of i-th individual sample points 

𝑥𝑥′ Mean rank values of input feature 

𝑦𝑦𝑖𝑖 Target output of i-th sample point 

𝑦𝑦 Mean value of target (measured) output 

𝑦𝑦𝑖𝑖′ Target output rank of i-th sample point 

𝑦𝑦′ Mean rank values of target output 

𝑦𝑦� Predicted output 

𝑤𝑤0 Bias term 

𝑤𝑤 Weight matrix 

𝜑𝜑1, … ,𝜑𝜑𝑝𝑝 Weights for AR 

𝜃𝜃1, … ,𝜃𝜃𝑞𝑞 Weights for MA 

𝜀𝜀 White noise 

∅ Activation function of output layer in ANN 

𝜎𝜎 Activation function for the hidden layer in ANN 
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