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Abstract

Building energy prediction plays a vital role in developing a model predictive controller for
consumers and optimizing energy distribution plan for utilities. Common approaches for energy
prediction include physical models, data-driven models and hybrid models. Among them, data-
driven approaches have become a popular topic in recent years due to their ability to discover
statistical patterns without expertise knowledge. To acquire the latest research trends, this study
first summarizes the limitations of earlier reviews: seldom present comprehensive review for the
entire data-driven process for building energy prediction and rarely summarize the input updating
strategies when applying the trained data-driven model to multi-step energy prediction. To
overcome these gaps, this paper provides a comprehensive review on building energy prediction,
covering the entire data-driven process that includes feature engineering, potential data-driven
models and expected outputs. The distribution of 105 papers, which focus on building energy
prediction by data-driven approaches, are reviewed over data source, feature types, model
utilization and prediction outputs. Then, in order to implement the trained data-driven models into
multi-step prediction, input updating strategies are reviewed to deal with the time series property
of energy related data. Finally, the review concludes with some potential future research directions
based on discussion of existing research gaps.
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1. Introduction
1.1. Motivation for building energy prediction using data-driven approaches

The buildings and buildings construction sectors consumed 36% of the global final energy
and nearly 40% of total CO> emission in 2018 [1]. Moreover, these percentages are expected to
further rise. To lower the environmental and economic burden caused by the increasing building
energy demand, improving the energy efficiency of buildings would be an effective solution. The
energy saving potential of energy conservation measures could be quantified and compared
through building energy prediction [2], [3]. This indicates that building energy prediction could be
utilized as a tool for designing and selecting proper energy conservation methods. Besides, multi-
step energy prediction could be integrated into a model predictive controller to predefine an
optimized HVAC operation schedule in order to achieve peak shifting or energy/cost saving.
Furthermore, accurate energy demand forecasting makes it possible for utilities to optimize energy
distribution plan and for governments to formulate standards for energy saving.

Common approaches to predict building energy performance mainly include physical
models (“white box”), hybrid methods (“grey box) and data-driven approaches (“black box”).
Physical models predict the thermal behavior by numerical equations by considering detailed
physical properties of building materials and characteristics. Plenty of energy prediction software
have been developed and implemented, such as EnergyPlus, TRNSYS, DOE-2, eQUEST, DeST,
etc. A detailed review of these physical models is available in [4]-[6]. The main advantage of
physical models is the ability to describe heat transfer mechanisms, while their disadvantages
include: (1) requirement of expertise; (2) difficulties in making proper assumptions; (3) time-
consuming; and (4) inability to adapt to environmental/social-economic vicissitudes. Hybrid
methods combine physical models and data-driven approaches to simulate building energy. For
instance, Dong et al. [7] integrated data-driven techniques into a physical model to forecast hour
and day ahead load for a residential building. Their study shows that the hybrid model improves
the prediction accuracy and reduces the computational complexity of traditional physical models.
However, hybrid models still face the issues which usually present in physical models, such as
improper assumption and requirement of expertise. In contrast, data-driven approaches show the
ability to overcome above mentioned limitations of physical models and hybrid methods, due to
their ability of discovering statistical patterns from the available dataset instead of on-site physical
information. Therefore, recently, data-driven approaches have drawn significant attention in
building energy prediction.

1.2. Literature reviews

As the application of data-driven approach on building energy prediction attracts more
attention, a variety of review papers have been published in recent years on this topic. To better
understand the latest research interest, the content of review papers published after 2013 is
summarized in Table 1. This table is organized in the order of general data-driven modeling



procedures: (1) feature engineering which is a process of preparing transforming, constructing, and
filtering features with the goal of optimizing the performance of a data analysis task. In this part,
whether potential feature types for building energy prediction and feature extraction methods are
introduced by these review papers is summarized; (2) data-driven algorithms. The presence of
reviews about commonly used models, e.g. Linear Regression (LR), AutoRegression-Moving
Average (ARMA) and AutoRegression Integrated Moving Average (ARIMA), Regression Tree
(RT), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Ensemble models
that include boosting and bagging, etc., is listed; and (3) factors considered for expected outputs
(i.e. temporal granularity, scale, energy type, building type and validation criteria). Clearly
distinguishing these aspects could give an inspiration to feature engineering as well as data-driven
model selection. Besides, proper selection and application of validation criteria could ensure the
prediction accuracy and generalization of trained models for building energy prediction. Therefore,
whether existing review papers summarize these aspects are shown in Table 1.

Note that data collection and data cleaning are generally considered as steps needed prior
to research and are rarely reviewed in previous review papers; thus, these aspects are not included
in Table 1.



Table 1: Review contents in terms of general data-driven procedures

Reference Year Feature Data-driven algorithms Factors considered for expected outputs
Type Extraction | LR ARMA RT SVM | ANN Ensemble | Other Building Energy Scale Temporal Criteria
method and method type type granularity
ARIMA

[6] 2013 | x x x x x N N x x x x x x x
[8] 2014 | x x x x x N N Hybrid X x X X x x
[9] 2016 | x x N N x N N N Semi-parametric | x x Electric | V x

additive models; utility

exponential

smoothing

models; Fuzzy

regression

models
[10] 2017 | x N N x N N x x x x N N x
[11] 2017 | N N N N N N x x Commercial | V x x x
[12] 2017 | x X \ Y X \ Y Hybrid X x x x x X
[13] 2017 | x N X x N N X v v x v x
[14] 2017 | x x x N x N N Hybrid Fuzzy time | x X X x x

series; moving

average and

exponential

smoothing, k-

Nearest

Neighbor (KNN)
[15] 2018 | N N y x N Y x x N v x \ \
[16] 2018 | x N x N N N x Clustering x x x x x
[17] 2018 | x x x N x N N x Clustering x x Urban | x x

and
rural

[18] 2019 | x x x x x x N x x x N x x N
[19] 2019 | x N N N N N N kNN x x x x N
[20] 2019 | x x N N x N N x Deep learning x x N N N
Note:

1. “\” means the literature includes the corresponding contents, while ‘x” means exclusion.
2. Hybrid model refers to the integration of two data-driven models, instead of the grey box model.



Limitations of existing literature reviews are summarized below:

(1) Comprehensive review for the entire data-driven process in the field of energy
prediction was missing. No existing review papers in Table 1 covers all aspects in
feature engineering, data-driven algorithms and expected outputs. The missing part
mainly include:

Vi.

Data utilized by the reviewed studies to predict building energy through data-
driven algorithms are rarely summarized. However, the number of data points
utilized for model training and validation, number of meters and buildings for
data collection, as well as accessibility of data would affect the reproducibility
and generalization of studied techniques.

The time series property of energy related data was not highlighted. For
instance, Kuster et al. [10] reviewed the number of papers that utilized the time
index for different horizon and scale predictions, but they did not consider the
situation that utilized historical data as one of inputs.

Systematic review for feature extraction methods was missing. For instance,
Yildiz et al. [11] introduced several feature selection algorithms, but the
fundamentals of each method as well as their advantages and disadvantages still
need to be further summarized.

Relatively novel technologies were generally not included. For instance,
autoencoders were not reviewed as feature extraction methods, while deep
learning and ensemble methods were not well revised when summarizing data-
driven algorithms.

Factors (such as temporal granularity, scale, energy type and building type,
criteria) reflected from prediction outputs were rarely reviewed at the same
time.

For temporal granularity, the difference between time horizon (the length of
time-ahead energy prediction) and time resolution (duration of a time step) was
not clearly distinguished. Many existing literature reviews, such as references
[15] and [13], focus mainly on time horizon; therefore, the effect of prediction
steps (i.e. time horizon divided by time resolution) on prediction accuracy could
not be analyzed.

(2) No review summarized the input updating strategies when applying the trained data-
driven model in realistic multi-step energy prediction. As time series data, historical
energy consumption would affect the predicted future values. The most recent
historical energy consumption data lies within the prediction horizon when doing multi-
step energy prediction. Thus, the problem of how to deal with the effect of
unmeasurable most recent historical data should be solved by proper updating
strategies.



1.3. Objectives, contributions and structure of the review

To overcome limitations in existing literature, this paper aims to provide a comprehensive
review of building energy prediction data-driven approaches. To be specific, the objectives of this
paper include: (1) to give a systematic and comprehensive overview for developing data-driven
models to predict building energy consumption; (2) to summarize input updating strategies for
applying the developed data-driven model to achieve realistic energy prediction; (3) to highlight
future research opportunities in the field of building energy prediction with data-driven
approaches.

The main contributions of this paper can be summarized as following: (1) Present a
comprehensive review for the entire procedure of data-driven energy prediction approaches.
Potential feature types for energy prediction are listed. Commonly-used and novel feature
extraction methods and data-driven algorithms are reviewed in terms of principles and their
strengths and weakness. Besides, factors reflected from the expected outputs are summarized and
clearly distinguished. Then, the distribution of studies from 2015 to 2019 is reviewed for better
understanding the recent research interest. (2) Summarize input updating strategies for multi-step
energy prediction by the developed data-driven models. These strategies could solve the following
problems: i. Whether to consider the effect of historical energy consumption data; ii. How to
consider the effect of historical data; iii. How to consider the effect of most recent unmeasurable
historical data lied in the prediction horizon.

This paper is organized as follows: Section 2 gives a comprehensive review for the general
procedure of developing data-driven energy prediction models, which mainly include feature
engineering, data-driven algorithms and factors reflected from expected outputs. Then, Section 3
summarizes four input updating strategies for multi-step building energy prediction. Section 4
presents conclusions and opportunities for future work.



2. General data-driven modeling procedure
Before a data-driven procedure, data is first collected from simulation,
measurement/survey, or public database. Then, the data should be thoroughly processed to
remove/correct the missing/incorrect data. This process is called data cleaning. Commonly utilized
outlier/anomaly detection methods can be found in [21], [22], while approaches to impute/replace
missing data were presented [23].

After data collection and data cleaning, features contributing most to prediction results
need to be constructed and extracted. Therefore, in Section 2.1, the most commonly used features
for energy prediction and feature extraction methods are presented. After data preparation, proper
data-driven algorithms should be selected and trained. A summary for data-driven algorithms is
shown in Section 2.2. The developed data-driven models could be utilized for building energy
prediction after validation. Factors reflected from the expected prediction outputs are introduced
in Section 2.3.

2.1.Feature engineering
In this section, potential features types that contribute to building energy consumption are
firstly introduced in Section 2.1.1. Then, feature extraction methods which select valuable features
or reconstruct feature vectors are summarized in Section 2.1.2.

2.1.1. Feature types

2.1.1.1. Meteorological information

Meteorological information mainly includes ambient dry bulb temperature, wet bulb
temperature, dew point temperature, humidity, wind speed, solar radiation, rainfall, air pressure,
etc. [13].

Prior to data-driven model construction, the correlation between weather variables and
building load (except heating load) has been studied by Cai et al. [24] for three buildings located
in Alexandria VA, Shirley NY, and Uxbridge MA, respectively. Among these weather variables,
outdoor temperature was found to be positively correlated to building load, while the relation
between other variables and building load were insignificant. However, when the ambient
temperature was lower than 24.4 °C, it was found to be irrelevant to electricity demand of
residential buildings in Italy [25]. This is because the main heating fuel for homes in Italy is natural
gas, while electricity is used for cooling systems. Besides ambient temperature, Solar radiation is
also commonly utilized in building energy prediction, due to its significant effect on thermal
demand and its accessible from weather forecasting [26].

2.1.1.2. Indoor environmental information

Except for weather information, indoor conditions that include set-point temperature of
thermostats, indoor temperature, indoor humidity, indoor carbon dioxide concentration, etc. have
been identified as a priority for residential cooling and heating load calculation [27]. Note that
unlike constant design values of indoor conditions during design stage, these values are dynamic



during reality operation. Therefore, to predict building loads precisely, indoor environmental
information needs to be considered as a potential feature.

Chammas et al. [28] considered indoor temperature and humidity when predicting energy
consumption for a residential house. However, their study did not compare the importance of
meteorological information, indoor conditions and time indexes (which will be introduced in
Section 2.1.1.4). Ding et al. [29] presented that interior variables would further improve heating
load prediction accuracy. However, due to unpredictable interior temperature, the variables could
not be utilized for 24 hour ahead heating demand prediction. Wei et al. [30] found that indoor
relative humidity, dry-bulb temperature and carbon dioxide concentration are among the top 10
important variables for energy consumption prediction of an office building. These three features
were also included for predicting desk fan usage preferences[31]. Furthermore, indoor temperature
and humidity have been used as inputs in predicting air conditioning operation[32].

It is interesting to note that studies with considering set-point temperature as inputs for
predicting building loads generally aimed at developing demand response control strategy, such
as in the research by Behl et al. [33]. Otherwise, studies tend to ignore the effect of set-point
temperature in energy prediction accuracy, even though residents in residential buildings have the
ability to adjust the set-point temperature to meet their thermal comfort requirement and save
energy [34].

2.1.1.3.0ccupancy related data

Occupancy related data, such as number of occupants and types of occupant activities,
would affect internal gain and then influence the pattern of energy usage [35], [36]. Therefore, it
would be a potential feature for building energy prediction.

The principal component analysis of Wei et al. [30] indicated that the number of occupants
is even more important than meteorological information for energy prediction in an office
building. Wang et al. [37] utilized linear regression to observe the strong linear relation between
plug load power and occupant count for working days, and then selected it as one of features for
plug load prediction. Sala-Cardoso et al. [38] predicted the activity indicator through a recurrent
neural network (RNN) and then integrated it with a power demand prediction model to improve
the prediction accuracy of HVAC thermal power demand for a research building.

However, short leave of occupants would not affect the load consumption. Besides, if a
public building is controlled without taking into account the occupancy status, its energy
consumption might not be strongly related to occupancy patterns [39]. Furthermore, in most cases,
the types of occupant activities are not flexible to be collected.

2.1.1.4.Time index

Time index means the stamps series for time, which mainly include time of the day, day of
the week, hour type (peak hour or off-peak hour), day type (weekday or weekends), calendar day,
etc. The purpose of introducing time index into energy prediction is to indicate the occupancy
related effect. For instance, occupants tend to do similar activities at the same time on different
days or at the same day on different weeks. Therefore, time index would be a good option when
occupancy related data is unavailable.



Fan et al. [40] found that due to the similar energy consumption pattern on the same
weekday, 7-days and 14-days ahead peak power demand and energy consumption were the four
most important inputs for next-day energy consumption and peak power demand prediction of a
commercial building. This indicates that day of the week could be selected as one of the input
features able to represent similar energy consumption patterns during the same weekday. Similar
justification could be used for selecting time of the day, holiday/workday, peak hour/off-peak hour
as inputs.

2.1.1.5.Building characteristic data

Building characteristic features mainly include relative compactness, surface area, wall
area, roof area, overall height, orientation, glazing area, heat transfer coefficient of building
envelopes, absorption coefficient for solar radiation of exterior walls, window-wall ratio, shading
coefficient etc. [15].

Once a building is constructed, these data would remain relatively constant. Therefore, it
IS meaningless to contain this information when using data-driven models to predict dynamic load
for a specific building. However, when the study object is multiple buildings or when the objective
is using the known load of an existing building to predict the load of a new building, building
characteristic features would be beneficial. Seyedzadeh et al. [41] drew feature correlation maps
for building characteristic and building heating/cooling loads, and utilized these features as input
for data-driven models to predict building loads. Wei et al. [42] predicted annual heating, cooling
and electricity intensity for different office buildings based on input factors relevant to building
form, e.g. aspect ratio, window-wall ratio, number of floors, orientation and building scale. Talebi
et al. [43] utilized thermal mass as one of input features to predict heating demand of a district.
Similar studies could also be found in references [44]-[47].

2.1.1.6.Socio-economic information
Socio-economic information shows the socio-economic situation of the studied area [10].
It mainly includes income, electricity price, GDP, population, etc.

These features are commonly utilized to do long term (e.g. months or years) load prediction
for large scale (e.g. district, region or country) [48]. For instance, He et al. [49] found that average
electricity price and number of electricity customers/permanent residents could be important in
forecasting annual electricity consumption of a city. He et al. [50] identified that historical energy
consumption, average annual GDP growth rate and total GDP were the key factors for annual
energy consumption prediction of Anhui province, China. However, GDP was revealed by Beyca
et al. [51] to be insignificant in natural gas consumption prediction of Istanbul, while price of
natural gas and population showed a high correlation to the prediction result.

2.1.1.7 Historical data

Due to the thermal mass of building envelopes, building loads could be affected by
historical factors, such as historical values of exogenous features or historical energy consumption.
For example, Wang et al. [52] found that the historical heating consumption is the leading factor
for heating demand prediction of district heated apartment buildings. Similarly, Ahmad et al. [53]
concluded that previous hour’s electricity consumption was more important than meteorological



information, time index and occupancy related data for 1-hour-ahead HVAC energy consumption
prediction of a hotel in Spain. Ding et al. [54] proved that historical cooling capacity data are the
most important data for cooling load prediction of an office building. Huang et al. [55] proposed
a historical energy comprehensive variable named EVMA to improve the energy demand
prediction accuracy for residential buildings based on ensemble methods. Furthermore, He et al.
[50] found the historical annual energy consumption of Anhui province in China significantly
affected its future annual energy consumption. Due to the ability to increase the prediction
accuracy of dynamic loads, the interests in applying historical data as features for data-driven
models have been increasing in recent years.

2.1.2. Feature extraction methods
Properly constructed features could reduce the computation time of a data-driven model
without sacrificing prediction accuracy [56]. The commonly applied feature extraction methods
with the ability to select useful features or reconstruct feature vectors are introduced in the
following sections.

2.1.2.1.Variable ranking
The idea of variable ranking is to choose the desired number of features most relevant to
the output (i.e. building energy consumption/demand) by a scoring function.

In terms of energy prediction, one popular function for variable ranking is the Pearson
correlation coefficient (see Equation 1 [57]) for its quick and easy use. This method determines
the strength and direction of the linear relationship between two variables. To calculate the
monotonic relationship between two continuous or ordinal variables, Spearman’s rank correlation
(see Equation 2 [58]) could be utilized. Note that Spearman’s rank correlation between two
variables equals to the Pearson correlation of rank values of these two variables.

_ Y (=) (yi=Y) 1
y = = (1)
\/z’igl(xi—mz \/z;;l(yi—y)Z
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where:

Tyy IS the Pearson correlation coefficient between input feature x and target output y;
n is sample size;

x;, y; are the i-th individual sample points;

x, y are the mean value of input feature and target output, respectively.

Z?:l(xlf_y)(yi,_y) (2)

Thoy, = =L —
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where:
rho,,, is the Spearman’s ranking correlation between input feature x and target output y;

n is sample size;
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x;, y;are the ranks of i-th individual sample points;

x’, y'are the mean rank values of input feature and target output, respectively.

One challenge for variable ranking is to determine the desired number of features, which
could be considered as a hyperparameter (i.e. a pre-defined parameter which affects the running
time of feature engineering process and prediction accuracy of the developed data-driven model
[59]). Another drawback of variable ranking is that it could only calculate the relationship between
individual variables and output, instead of between subsets of features and output. For instance,
Aaron et al. [60] utilized standardized association factors to find out that dry bulb temperature, wet
bulb temperature and enthalpy are most relevant to building electricity use. However, they failed
to estimate the possible inter-relevance between temperatures and enthalpy. To solve this problem,
filter and wrapper methods could be utilized to select the best subset.

2.1.2.2.Filter and Wrapper methods

Both filter and wrapper methods could be utilized for best-subset selection, which means
they could consider the interrelationship between features. Among them, filter methods evaluate
the importance of individual or subset of features through statistical measures. Filter methods have
two different categories: Rank Based (i.e. variable ranking) and Subset Evaluation Based [61]. The
filter methods mentioned here refer to the later types, since the former one was described in Section
2.1.2.1. Unlike filter methods, wrapper methods consider all possible subsets of features and
measure their performance through supervised learning algorithms.

Filter methods are more efficient than wrapper techniques in terms of computational
complexity, while wrapper methods are more stable [61]. Yuan et al. [62] applied partial least
squares regression (PLSR) and random forests (RF) to rank the top 10 important input features for
predicting weekly coal consumption for space heating. The reason for employing these two filter
methods is that they can consider the inter-dependence between input variables. Then, they utilized
an SVM based wrapper method to evaluate the proper number of features. The prediction accuracy
based on the selected top 6 features met the requirement of ASHRAE Guidelines 14-2014 [63].

2.1.2.3.Embedded method

Unlike the wrapper method, which selects the best subset with the highest prediction
performance in a specific learning algorithm, the embedded method integrates feature selection
into the learning algorithm. For instance, regularization added to data-driven models could be
considered as an embedded method. Jain et al. [64] employed Lasso, a linear regression model
which adds an L1 penalty to the squared error loss, to forecast energy consumption of a multi-
family residential building. Their results confirmed that in certain cases, Lasso could outperform
a Support Vector Regression (SVR) model that did not consider feature selection.

One challenge of the embedded method is that the selected regularization method should
adapt the optimization procedure to ensure the existence of optimum solution. Furthermore, this
method could not present the importance of features.
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2.1.2.4.Principal component analysis (PCA)

The idea of traditional PCA is to project features into a lower-dimensional sub-space with
linearly uncorrelated variables [65], while kernel PCA utilizes a kernel function to map nonlinear
related original inputs into a new feature space and then perform a linear PCA in this new space
[66].

Li et al. [67] compared the building load prediction accuracy between SVR with PCA,
SVR with kernel PCA, and SVR without any feature selection techniques. Their results illustrate
that SVR with PCA increased the cooling load prediction accuracy compared to the SVR model,
while kernel PCA could further improve prediction performance.

Furthermore, Yuldiz et al. [11] showed the way to apply PCA to tackle the multi-
collinearity problem in original input variables, and gave a detailed description about how to
determine the dimension of reduced feature space. A similar application of PCA has been
introduced by Wei et al. [30]. From these studies, one limitation of PCA has been revealed: the
dimension of final feature space needs to be manually selected. Besides, when applying kernel, the
type of kernel function should be determined.

2.1.2.5.Autoencoder (AE)

AE is a type of unsupervised artificial neural network (ANN) that can learn a compressed
nonlinear representation of the input data. As shown in Figure 1, an autoencoder generally consists
of two networks: (1) Encoder: maps the original inputs to a compressed low dimension; (2)
Decoder: recovers original inputs from the compressed representation.

Input <------oooooooeoooo Ideally they are identical. ------------------ > Rec%‘:‘?’tzrﬂe‘i
x~x
Bottleneck!
Encoder Decoder
X !
94 fo x

An compressed low dimensional
representation of the input.

Figure 1 : Hllustration of autoencoder model architecture [68]

Fan et al. [69] compared three types of deep learning based feature selection methods (i.e.
fully connected AE, convolutional AE and generative adversarial networks) to variable ranking
and PCA. The result shows that the deep learning-based feature selection method enhanced the
one-step-ahead cooling load prediction performance for an educational building. Furthermore,
Mujeeb and Javaid [70] proposed an efficient sparse autoencoder as feature extraction method, and
then utilized the compressed feature space as inputs for an non-linear autoregressive network. The
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proposed method decreased forecasting error of the non-linear autoregressive network for regional
load forecasting.

Note that the application of autoencoder for feature extraction in the field of building
energy prediction is still uncommon. One reason is that the dimension of original input features is
usually small, thus, AE would be computing intensively compared to other feature extraction
methods. Following the explosive growth of collected data and implementation of deep learning,
the interests in AE would increase.

Strengths and weaknesses of previous introduced feature selection methods are

summarized in Table 2.

Table 2 : Strengths and weaknesses of feature selection methods

Type of feature
selection

Strengths

Weaknesses

Variable ranking

1.
2.

Fastest and easiest to use
Quantitatively calculate the relevance between
individual variables and outputs

1. Hard to determine number of desired features

2. Unavailable for considering the effect of inter-
relevance between features on the output

3. Could not select the best subset

Filter method

N

.Fast and easy to use
. Subset selection
. Robust to overfitting

1. Less stable

. Subset selection that considers inter-relevant of

1. Computational expensiveness

of features with lower loss of information

Wrapper method input features 2. High risk of overfitting
2. More stable
Embedded method 1. Easy to use o 1. _Unable to quantitatively present the
2. Unnecessary to eliminate features importance of features
1. Relatively easy to use 1. Hard to determine number of desired features
PCA 2. Effective when original feature space | 2. For kernel PCA, kernel function needs to be
dimension is not too large properly selected
3. Unnecessary to eliminate features
1. Learn nonlinear representation of original input | 1. Computational expensiveness
AE 2. More powerful for compressing the dimension
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2.2.Data-driven algorithms
Data-driven algorithms introduced in this paper are shown in Figure 2. A detailed
description is presented in following sections.

_,_I Li - Auto regression-moving
Inear regression _— = 2
average
Statistical models —— . .
Time series p—
analysis Auto regression integrated
moving average
Data driven
approaches
—'-I Regression tree
__,| Machme leaming =
methods Support vector
Tegression ™ Deap neural network
.| Artificial neural Convelutional neural
sl network

¥

Deep leamning l_‘ » Recurrently neural network

Ensemble .

methods | |+ Bagging
— Boosting
L Stacking

Figure 2 : Data-driven models for building energy prediction

2.2.1. Statistical models

2.2.1.1.Linear regression (LR)

Linear regression is one of the traditional statistical approaches to study the relationship
between a dependent variable (i.e. response or output) and one or more independent variables (i.e.
predictor or input features). Its general form is shown in Equation 3.

¥y =wy+wx (3)
where,
¥ is the predicted output,
wy IS the bias term,
w is a weight matrix for features x.

Note that the general form could only discover the linear relationship between features and
output. To extend the applicability of linear regression, the input variables could be converted to
other forms through different active functions, such as polynomial (Equation 4) or natural
logarithm function (Equation 5).
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y=wy+wx™ 4)
where m means m-th polynomial.

y =wp +wlog(x) ()

The main advantage of linear regression is that it is very easy to use and intuitive to
understand. The contribution of individual variables on the prediction result could be directly
found from the weight matrix. Besides, extended linear regression could be applied in solving
nonlinear problems. However, its limitations should also be noted: (1) General form of linear
regression could not consider nonlinear relationships between inputs and outputs; (2) The
prediction performance of extended linear regression is highly dependent on the proper selection
of active function, which could be a significant challenge; (3) Multicollinearity of input features
would hurt the prediction result of linear regression. Therefore, feature extraction methods are
recommended to be applied before developing linear regression models.

Applications of linear regression approach into building energy prediction have been
sufficiently reviewed in the literature, see Table 1.

2.2.1.2.Time series analysis

The most commonly used methods for time series analysis are AutoRegressive-Moving
Average (ARMA) and AutoRegressive Integrated Moving Average (ARIMA) [10]. ARMA
mainly includes two parts: an autoregressive model (AR) with order p and a moving average model
(MA) with order q,

yVe=ct+e+ Z?:l Qiye-i t Z?=1 O (6)

where ¢4, ..., @, are weights for AR, 64,...,6, are weights for MA, ¢ is white noise, c is a
constant.

ARMA could only handle stationary time series. When predicting nonstationary time
series, ARIMA would be a better choice since it integrated an initial differencing step to eliminate
the non-stationary [71].

ARMA and ARIMA show the ability to consider the effect of historical data, thus, their
prediction performance would be acceptable if the output is highly impacted by previous values.
However, determining the orders for AR and MA models and the times of initial difference would
be a challenge. A detailed summary for applying ARMA and ARIMA models can be found in
references listed in Table 1.

2.2.2. Machine learning methods
2.2.2.1.Regression tree (RT)
RT is a type of decision tree with continuous target variables, see Figure 3. An RT starts
with a root node where the input data are split into different internal nodes or leaf nodes. For
internal nodes, the inputs are continuously split into subsets, while leaf nodes represent the output
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of the RT model. This implies that there is a chance that the RT make predictions without involving
entire feature space.

Root node
Condition—
- ) -.

Internal node

¥ ] E &

Leaf node

Figure 3 : Schematic of decision tree

The main advantage of RT is easy to understand and interpret due to the fact that it could
be displayed graphically [40], [72]. Besides, RT could outperform traditional statistical methods
once proper features are selected [73]. The disadvantages of RT are: (1) It could be sensitive to
small changes of data; (2) Its structure fails to determine smooth and curvilinear boundaries.
Furthermore, to enhance RT prediction performance, groups of RT could be combined as an
ensemble model, which would be reviewed in Section 2.2.2.5.

2.2.2.2.Support vector regression (SVR)

SVR is a regression application of SVM, which maximizes the margin between different
categories as shown in Figure 4. For SVR, the goal is to find a linear regression function that could
predict the result with acceptable deviation from the actual target [74]. For nonlinear regression
problems, a kernel function should first be selected to map the original inputs to a high-dimensional
feature space, and then apply the SVR. Therefore, one challenge of SVR is the proper selection of
kernel function.

Figure 4 : Schematic of margin between different categories
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The advantages of SVR are: (1) It has the ability to solve global minima instead of local
minima[75]; (2) Its computational complexity is not determined by the dimensionality of feature
space[76]; and (3) Its prediction performance is not sensitive to the noisy data. The application of
SVR will not be discussed here since it has been sufficient summarized.

2.2.2.3.Artificial neural network (ANN)

ANN is a machine learning technique inspired by biological neural network [77]. As shown
in Figure 5, a typical ANN usually consists of three layers: input layer, hidden layer and output
layer. The training goal of an ANN model is to learn the weights and bias (as shown in Equation
7) with proper number of neurons and hidden layers as well as activation functions. Note that
although ANN with a single hidden layer can present any Boolean function and ANN with two
hidden layers shows the ability to train any function to arbitrary accuracy, the number of hidden
layers should be carefully selected to achieve better accuracy with fewer neurons. Furthermore,
once the number of hidden layers is increased, the ANN could be considered as deep learning (see
Section 2.2.2.4).
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Figure 5 : Schematic of typical ANN

Y = 0Wouth + bout) = B[Wouto (Wx + b) + boye] (7)
where:
@ is the activation function of output layer;
h is the output of the hidden layer, h = o(wx + b);
o is the activation function for the hidden layer;
Wou: and w are the weight matrix;

b,y and b are the bias terms.
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The advantages and disadvantages of ANN have been described in References [8] and [12].
The main advantage of ANN is the ability to deal with non-linear problems without expertise,
while the main disadvantage is the long time required for training models with large number of
networks.

2.2.2.4.Deep learning
Deep learning based on ANN includes three categories: deep neural networks (DNN),
convolutional neural networks (CNN) and recurrent neural networks (RNN).

(1) DNN

A DNN is a complex version of ANN containing multiple hidden layers between input and
output layers [78]. Typical DNN is a feedforward network without lopping back [79]. Generally,
DNN refers to fully connected networks (shown in Figure 6(a)), which means that each neuro in
one layer receives information from all neuros from previous layer.

The motivations of utilizing DNN instead of simple ANN have been argued by Good
Fellow et al.[80]: (1) DNN requires less neurons than simple ANN in representing complex tasks;
(2) In practice, DNN generally presents higher prediction accuracy than ANN. However,
implementing DNN models should be done with careful attention to two common issues:
overfitting and computing intensive.

(2) CNN

CNN is a special class of DNN, which adopts convolutional layers (shown in Figure 6(b))
to group input unites and apply the same function to gathered groups (i.e. parameter sharing).
Compared with general DNN, CNN decreases the risk of overfitting by reducing the connectedness
scale and structure complexity. Therefore, CNN could also be treated as a regularized version of
typical DNN.

fﬁgéﬁﬁaﬁﬁ% """"" i F&&a@@ﬁ@;é “““““ i %?:>

| ] | L @ @

30w v o o T
() (b) (©

Figure 6 : Schematic of (a) fully connected layer, and (b) convolutional layer (c) loop in RNN

CNN is well-known in the field of visual imagery analysis, such as image recognition [81],
image classification[82], medical image analysis [83] and natural language processing [84]. To
implement CNN into load prediction, Sadaei et al. [85] converted hourly load data, hourly
temperature data and fuzzified version of load data into multi-channel images, and then fed it to a
CNN model. The prediction performance of the developed CNN model was even better than Long
Short-Term Memory (LSTM) models, a kind of RNN.
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(3) RNN

The distinction between RNNs and other deep learning algorithms is that RNNs involve
loops (shown as the cycle in Figure 6(c)) in their structure and makes it possible that information
flow in any direction. These cycles introduce time delay in RNN and make RNN more suitable to
exhibit temporal dynamic behavior. Therefore, the utilization of RNNSs in energy prediction has
attracted increasing research interests in recent years.

However, as the weight for the loop is the same for each time step, gradients in the
traditional RNN tend to explode or vanish when the loop runs for many times. This problem is
called long dependency. To solve this problem, one commonly utilized RNN model, called LSTM,
could be applied to remember information for a long period.

2.2.2.5.Ensemble methods

An ensemble method combines the output of multiple learning algorithms in order to
enhance the prediction performance of single data-driven models [86]. Commonly used ensemble
methods could be classified into three categories: bagging, boosting and stacking models (also
called parallel homogeneous, sequential homogeneous and heterogeneous ensemble methods
[19]). Schematics of these three types of ensemble methods are shown in Figure 7.
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Figure 7 : Schematic of different ensemble methods
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(1) Bagging

Bagging, also called bootstrap aggregating, predicts the output by training the same
baseline models parallel on different sub-datasets, which are sampled from original input datasets
uniformly by replacement. This algorithm tends to decrease the variance when running the trained
model on the validation set, due to the independence of each baseline model.

The most commonly utilized bagging method is random forests (RF), for which the
baseline models are decision trees. Wang et al. [87] reported that RF is more accurate than RT and
SVR in hourly electricity consumption prediction. Furthermore, Johannesen et al. [88] found that
RF provides better 30 min-ahead electrical load prediction for urban area compared with KNN and
LR. Wang et al. [56] proposed an ensemble bagging tree model to predict hourly educational
building electricity demand. Their result shows that the proposed ensemble model is more accurate
than RT. However, the larger training time of the bagging tree model than RT would be an issue.
Besides, the required additional process for generating sub-dataset and the less interpretable than
RT also limits the application of the proposed bagging method.

(2) Boosting

The difference between bagging and boosting is that boosting trains the baseline models
incrementally, which means every successive model tries to fix the mistake made by previous
models. To achieve this goal, the basic solution is to increase the weight for misclassified data (i.e.
orange points in Figure 7(b)). As a result of boosting, the training error would be decreased.

Robinson et al. [89] utilized a gradient boosting regression model to predict annual energy
consumption for different types of commercial buildings located in different regions. Their results
indicate that the gradient boosting regression model outperforms general linear models (e.g. LR
and SVR) and even bagging models with limited number of features. Besides, Walter et al. [90]
reported that the gradient boosting decision trees (GBDT) is flexible and accurate for very short
term load forecasting for a factory.

Besides comparing the prediction accuracy between different models, interpretability,
robustness and efficiency of different models should also be studied. Wang et al. [52] compared
these four aspects of five models (i.e. extreme gradient boosting (XGB), GBDT, RF, ANN and
SVM) based on a case study of 2-hour ahead heating load prediction for a residential quarter. They
concluded that there is no best model when considering all performance. For instance, RF shows
the highest accuracy, interpretability and robustness, while XGB presents better efficiency.

(3) Stacking

Unlike bagging and boosting, which utilize the same baseline models, stacking works on
an arbitrary set of models. As shown in Figure 7(c), different models are trained on the available
input dataset, and then a meta-model is trained based on the outputs of these models to make the
final prediction.

Huang et al. [55] combined XGB, extreme learning machine (ELM), LR and SVR as an
ensemble learning method, and then utilized it to do a 2-hour ahead heating load prediction for a
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ground source heat pump that supplies space heating for a residential area. Their result shows the
proposed ensemble model is more accurate than XGB, ELM, LR and SVR. Fan et al. [40]
developed an ensemble model integrated by eight learning algorithms to enhance the prediction
accuracy for next day energy consumption and peak power demand.

2.3.0utputs
In this section, research objects of outputs, i.e. the type of buildings, the types of energy,
the scale of buildings, the length and number of steps expected for prediction, and the criteria of
evaluation for the accuracy of developed date-driven models, etc. will be presented.

2.3.1. Building Type

When evaluating building loads, the type of buildings (i.e. residential or non-residential)
should be distinguished, because the percentage of end use and the influence factors for energy
consumption would be different for different types of buildings. For instance, the load consumed
by cooking could be a huge contribution for peak load in residential buildings, while official
equipment would consume a considerable percentage of commercial building loads. Besides, the
set-point temperature for air conditioning is generally controllable for occupants in residential
buildings, while it shows a large chance of being constant for nonresidential buildings.

Note that non-residential buildings further include commercial buildings, educational
buildings, industrial buildings and hotels.

2.3.2. Energy type

The predicted energy could be separated into electricity, natural gas, fuel oil, and steam in
terms of energy source, while it can be divided as air conditioning (space heating and cooling),
domestic water heating, plug-load and lighting in terms of end-use [91], [92]. Besides, the
forecasted energy could be classified as energy consumption and power demand. Energy
consumption is the amount of energy consumed during a period of time, while power demand
means how fast energy needs to be supplied. Thus, energy consumption is the integral of power
demand over time. For a given time interval, if power demand is constant, its prediction within the
given resolution would be consistent with energy consumption forecasting. On the other hand,
when power demand fluctuates among the given time interval, energy consumption prediction and
power demand forecasting should be distinguished.

The benefits of distinguishing the type of predicted energy are:

(1) Making it possible to quantitatively evaluate the environmental impact (e.g. global
warming, ozone layer depletion, human toxicity, and photochemical oxidation, etc.) of
building energy use and then give basis to take measures in order to reduce the
environmental impact [93].

(2) Providing a foundation in feature construction. For instance, meteorological
information might be the critical factor for heating/cooling demand prediction, while
occupancy related data and time index could be the most promising features for
predicting energy consumed by lighting.

(3) Offering opportunities for more targeted energy/cost saving methods. Through
developing energy prediction models for a specific end-use, unique operation/control
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plans could be formulated to achieve the minimum energy consumption or cost during
a given period.

2.3.3. Scale
Scale can be classified into four classes: sub-building, building, district, region (city),
country. Note that a sub-building refers to an individual room or component in a building.

Energy prediction for larger scale (e.g. region and country) should not be considered as a
simple aggregation of smaller scale (e.g. sub-building and building), since the effective and
available features for different scales would vary [10]. For instance, socio-economic information
tends to be collectable and useful for large scale energy prediction, while its effect declines in
predicting building/sub-building level energy consumption. Besides, the application of energy
prediction models in reality varies for different scales. The model developed for sub-building and
building scale could be utilized for demand response control, while large scale energy prediction
model is applicable in energy distribution.

2.3.4. Temporal granularity

Two types of temporal granularity need to be determined: horizon and resolution. Horizon
means the length of time-ahead load prediction, while resolution means the duration of a time step.
When horizon is longer than resolution, the developed model makes an n-step ahead prediction,
where n equals to horizon divided by resolution. For instance, if the prediction horizon is 1 hour
and the resolution of data points is 15 min, then the model does a 4-step ahead prediction. One
thing to note is that under the same resolution, longer horizon prediction takes more risk for higher
error. For instance, Ding et al. [94] utilized historical data and meteorological parameters to predict
one hour ahead and one day ahead cooling load with 30 min intervals. Their results indicate that a
shorter horizon (i.e. 1 hour) prediction presents higher accuracy than a one day ahead prediction.

Time horizon of electrical load prediction models is usually classified as four categories:
very short term, short term, medium term and long term [10], [9]. However, the cut-off horizon
for these categories varies among different references. Generally, when the time horizon is less
than one month, it belongs to short term prediction or even very short term prediction. Very short
term and short term predictions help users to implement proper control strategy for load shifting
and benefits utilities to design energy distribution plans, while medium and long term prediction
could be beneficial for utilities to upgrade their equipment and for governments to formulate
standards for energy saving and modify plans for the electricity market.

2.3.5. Criteria
Commonly used validation criteria for evaluating the performance of prediction models
include [63], [95]-[98]:

Mean Absolute Error (MAE) = % % =il (8)
Mean Absolute Percentage Error (MAPE) (%) :% oy %| * 100 9)
Mean Bias Error (MBE) = w (10)
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where y is the average value of measured outputs.

These criteria could also be utilized to evaluate the prediction accuracy during model
training. Through comparing the prediction accuracy between model training and model
validation, overfitting or underfitting could be detected [99]. For instance, if training accuracy is
much higher than validation, it might indicate overfitting which means the trained data-driven
model fits too closely to the training set with covering the noise and outlier. Besides, if both
training and validation accuracy are not acceptable, underfitting occurs to show that the developed
data-driven model cannot capture the structure of the studied problem. Both overfitting and
underfitting undermine the developed models’ generalization, which refers to the ability to predict
unseen data.

Here, a short description is given in the following to help the criteria selection.

MAE is the mean value of the sum of absolute errors, while MBE is the average prediction
error which could be understood as how far the average predicted values is above or below the
average of measured output value. Both MAE and MBE have units that should be taken into
consideration when utilizing them to compare the results of different works. Note that the under-
predicted outputs would reduce the value of MBE, which means cancellation errors. Therefore, if
choosing MBE, other criteria without cancellation errors should be considered.

MAPE is a commonly utilized measure of prediction accuracy because it calculates the
mean relative prediction error without units. However, it cannot be utilized when there are zero
values in the measured output. By contrast, zero values would not be a big concern when utilizing
NMBE, which also shows the advantages of having no units. However, NMBE is limited by
cancellation errors.

MSE has the ability to evaluate both variance and bias of the predicted value to the
measured output. Note that the unit of MSE would be square of the unit of predicted outputs. To
have the same unit as the predicted outputs, RMSE could be utilized. In terms of principle,
CV(RMSE) is calculated by dividing RMSE by the mean value of measured outputs; therefore, it
evaluates how much the predicted error varies with respect to the mean target value. It is not limited
by cancellation errors. Furthermore, NMBE and CV(RMSE) have been recommended as
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evaluation criteria for building energy prediction models by several standards, such as ASHRAE
[63], FEMP [100] and IPMVP [101].

R? indicates the goodness of fit. The bigger the value of R?, the closer its predicted value
will be to its target value.

2.4. Discussion
To better understand recent development of energy series prediction by data-driven
approaches, papers from 2015 to 2019 are reviewed a total of 105. These literature are found by
following steps: (1) Search keywords “data driven; building” or “machine learning; building” from
Scopus [102]; (2) Quickly review title of the searched papers, and remain papers which work on
energy prediction; (3) Review in depth and keep the relevant 105 papers.

Among the reviewed 105 papers, 17% of these studies are based on public datasets, such
as [103]-[110], etc. To the best of the authors knowledge, studies based on the same dataset are
lacking. Even if utilize the same dataset, these studies are not compared to each other. Besides,
most of existing studies utilize private datasets which are not published due to some reasons, such
as privacy and ethics issues. It makes it further difficult for other researchers to reproduce and
improve the existing studies. Therefore, as more public data available in the future, quantitatively
comparison of new techniques to the existing studies would be effective to improve the usability
of data-driven models in building energy prediction. Besides, the number of data points utilized
by model training and validation, as well as the number of meters and buildings utilized for data
collection are recorded for each reviewed paper. However, these aspects are not analyzed in this
paper, because the amount and quality of utilized data are affected by many factors and varies case
by case.

Furthermore, the distribution of the reviewed studies among the feature selection, model
utilization and prediction objective (output) are summarized in the following subsections.

2.4.1. Study distribution based on features

The utilization of different types of features in studies from year 2015 to 2019 is
summarized in Figure 8. Meteorological information, historical data and time index are the top-3
important factors for building energy prediction. Indoor environment information is not commonly
used because air-conditioned buildings (especially nonresidential buildings) usually have a nearly
constant indoor condition. However, the dynamic change of indoor conditions should be
considered for energy prediction to achieve peak shifting by controlling the indoor environment
within an acceptable range. The relatively lower utilization of occupancy related data is caused by
the complexity of data collection and its replacement by time index data. Building characteristic
data is usually ignored because it is generally kept as constant through the life cycle of a specific
building. One possible reason for less utilization of socio-economic information among recent
studies is that it is only useful for large scale prediction. This conclusion can be deduced from
Figure 9. Another interesting observation from Figure 9 is that indoor environment information,
occupancy related data and building characteristic are just utilized by relatively small scale (i.e.
sub-building, building and district level).
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2.4.2. Study distribution based on models

The percentage of studies utilizing different kinds of data-driven models are summarized
in Figure 10. ANN, SVR and LR seem to be the popular models, while the concentration on time
series analysis and RT is less. The application of RT is less due to its unacceptable prediction
accuracy when applied to validation dataset or test dataset. However, RT is a common base model
in ensemble methods, which have attracted considerable attention in recent years. Besides this, as
Figure 10 shows, deep learning has started to draw interest in recent years. Moreover, around 80%
of studies implement more than one model to the collected data, because the generalization of data-
driven models varies among different factors, e.g. size and structure of dataset.
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Figure 10 : Model utilization among studies

2.4.3. Study distribution based on outputs

Distribution of research among building types is shown in Figure 11. Earlier studies have
mainly concentrated on residential, commercial and educational buildings, while studies based on
industrial buildings and hotels are lacking. The reason for few studies focusing on industrial
buildings is that the production from different factories varies a lot and thus the influencing factors
cannot be easily realized and selected. Besides, for hotels, occupant numbers and occupancy
activity are unstable, thus, energy prediction for hotels based on data-driven approaches could be
challenging.
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Figure 11: Study distribution by building type

Research distribution by energy type is not summarized here because most studies
predicted aggregated end-use energy consumption instead of individual end-use and the effect of
primary energy type on model development process is negligible.

Figure 12 presents the distribution of studies for different scales. More than 60% of studies
predict the energy for an entire building, followed by around 20% of studies for district level. The
high number of studies on these two scales is caused by more collectable data and applicability of
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the developed model to realistic demand response control and grid distribution. However,
prediction for sub-building level is lacking due to the limitation of data collection. For instance,
Geyer etal. [111] utilized simulation data instead of real measured data to predict heat flux through
individual components, such as walls, windows, and roofs. The research focusing on sub-building
level energy prediction would increase as the demand for individual room control and for energy
saving potential analysis of different envelopes goes higher.
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Figure 12 : Study distribution by scale
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Horizon and resolution of the 105 studies are shown in Figure 13. The centroid of each
circle means the resolution and horizon of studies; the bigger the circle, the more studies are
located in that temporal granularity. Circles lies on the dash line are single step predictions,
meaning horizon is equal to resolution. All circles above the dash line are multi-step predictions.
Note that one paper could present results for several temporal granularities. Most (64.75%) studies
present multi-step prediction, which is useful for continuous control and monitoring. Besides, the
resolution and horizon for most studies are higher than 1 min.

3. Updating strategies for multi-step building energy prediction
After training and validating a data-driven model, the developed model could be utilized
for energy prediction in real life. Prior to implementation, the process of updating prediction inputs
should be resolved. Therefore, this section summarizes several updating strategies for multi-step
building energy prediction.

3.1. Strategy 1: Updating inputs by real values without historical data
In this strategy, energy consumption during a specific period or power demand at a specific
time is predicted only based on exogenous inputs (e.g. forecasted meteorological information, time
index, etc.) during that specific time period or time point. Studies that did multi-step building
energy prediction based on Strategy 1 are summarized in Table 3.
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Table 3 : Studies for multistep energy prediction based on Strategy 1

Reference No. No. No. No. Features Models Building Energy type (Scale Resol | Horizon | No. Criteria
training |validation |meters puildings type ution steps
points points
[112] 3562 1526 - 1 Meteorological information, | LR, Educational | Electricity  [Building | - - 1-3 MAE,
time index SVR, RF energy RMSE
consumption
[113] - - - - Meteorological information, | DNN Commercial, | Heating and |District | 1hour | lhour- 1-3 MSE
time index, industrial cooling 3hour
socio-economic information, parks energy
operation characteristic of consumption
HVAC system
[60] 2784 96 6 6 Meteorological information, | ANN, Commercial, | Electricity ~ [Building | 15min | 24hour | 96 RMSE,
time index SVR, Hotel energy NMBE,
LR, consumption CV(RMSE)
Gaussian , R?
process
[33] 12240 | 2880 - 8 Meteorological information, | RT, RF Educational | Electricity  Building | 5min lhour 12 -
indoor environmental power
information, demand
time index,
operation characteristic of
HVAC system
[114] 1440; 480; - - Meteorological information | ANN, ALL Energy District | 30min | 1month, | 1440, | MAE,
4368; 1488; LR, consumption 1season, | 4320, | MAPE,
17520 | 5760 ensemble lyear 17520 | CV(RMSE)
method
(AdaBoo
st)
[115] 21924 | 3132 - 1 Meteorological information, | ANN Educational | Electricity  |Building | 1hour | 24hour, | 24, MAE,
time index power 9days 216 MAPE,
demand RMSE
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Since no historical data would be utilized as input for prediction, the multi-step ahead
prediction performance is mainly limited by the forecasting uncertainty of exogenous inputs.
Another drawback of this strategy is its inability to treat the expected output as time series data.
Therefore, it is usually utilized in three cases: (1) Doing single-step prediction [56], [116]; (2)
Doing multi-step prediction with longer horizon (usually higher than 1 day) and larger scale
(generally greater than district). For instance, Salcedo-Sanz et al. [117] and Sanchez-Oro et al.
[118] presented acceptable one-year ahead energy demand prediction for Spain based on socio-
economic factors for the corresponding year; (3) Furthermore, for predicting energy for appliances
whose operation schedule is not affected by previous conditions, such as lighting. For instance,
Amasyali and El-Gohary [119] predicted daily lighting energy consumption using SVM based on
daily average sky cover and day type.

3.2. Strategy 2: Updating inputs by real values with historical data
In this strategy, historical data is one of the input factors for energy prediction. However,
the historical data is not treated as continuous information, which means energy consumption in
the next step might be affected by data in discontinuous previous steps. Therefore, ground truth of
historical data is utilized as input during multi-step energy prediction.

Guo et al. [120], [121] observed the thermal response time of the building as 40 min, and
thus utilized current heating load, meteorological information, indoor temperature, and time index
to predict the heating load after 40 min by SVM, MLR and ANN. Note that their study only focused
on single-step prediction. Dedinec et al. [122] employed the average load of the previous day, the
load for the same hour of the previous day and the load for the same hour-day combination of
previous week as historical data to forecast day ahead hourly electricity load for buildings in
Macedonia. These discontinuous historical data ensure the availability of ground truth data.
Similarly, Idowu et al. [123] utilized data at time t-k and t-2k to predict heating load at t+k (where
t means current time and k is the forecast horizon). The drawback of this study is the inconsistent
lag time for different time steps in a specific horizon, which means a larger lag period for a further
future point. More studies doing multi-step energy prediction based on Strategy 2 can be found in
Table 4.

The main limitation of Strategy 2 is that the intermittent historical data could weaken the
energy prediction accuracy, because recent historical data has more effect on future energy
consumption than before.
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Table 4 : Studies for multistep energy prediction based on Strategy 2

Reference | No. No. No. No. Features Models Building type | Energy type Scale Resolu | Horizon | No. Criteria
training | validation | meters | buildings tion steps
points points
[94] 768 768 4 1 Meteorological information, SVR Commercial Cooling load Building | 30min 1hour, 2, MAE, RMSE,
historical ~data  (previous 24hour 48 R?
hour’s cooling load/one day
prior cooling load)
[29] 144 24 - 1 Historical Meteorological data | MLP, Commercial Heating load Building | lhour 24hour 24 MRE,
SVR CV(RMSE),
RZ
[124], 2400; 48; 2 2 Meteorological information, SVR Commercial, Electricity building | 1hour 24hour 24 MAE, MAPE,
[125] 696 24 historical data Hotel power demand RMSE
intensity
[126] 35064 17544 - - Meteorological information, ANN- ALL Electricity Region 30min, | 24hour 48, MAE,
time index, IEAMCG energy lhour 24 MAPE
historical data (previous 24 hr | M-R consumption
average load, 24-hr lagged
load, and 168-hr lagged load)
[127] 14400 5040 - 10 Meteorological information, LR, ANN, | Commercial Heating load District | lhour 24hour 24 MAPE
time index, SVR,
historical data (thermal load | RT
and control signal with a lag of
1 day and 1 week)
[123] 936 168 10 10 Meteorological information, MLR, Commercial, Heating load Building | lhour lhour- 1-48 RMSE
historical data | ANN, residential 48hour
(Meteorological, thermal load | SVR,
and operational variables) RT
[122] 43800 17520 - - Meteorological information, Deep ALL Electricity Country | 1lhour 24hour 24 MAPE
time index, belief power demand
historical data (average load of | network
the previous day, load for the
same hour of the previous day,
and load for the same hour-day
combination of  previous
week)
[128] - - - - Meteorological information, Ensemble | - Electric power | - lhour 24hour 24 -
time index, methods demand

historical data (previous day
hourly load, previous week
hourly load),
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Reference | No. No. No. No. Features Models Building type | Energy type Scale Resolu | Horizon | No. Criteria
training | validation | meters | buildings tion steps
points points
1%t and 2" derivatives of
previous load and current
temperature
[129] 17520 8760 - - Time index, ANN ALL Energy Region lhour 24hour 24 MAPE
historical data (previous two consumption
days’ consumption, previous
day exterior temperature)
[130] 14892 2628 - 5 Meteorological information, ANN ALL Heating Building | lhour 24hour 24 R?
time index, energy

historical data (energy
consumption at the same
timestep the previous day, and
energy consumption at the
same timestep the previous
week)

consumption

32




3.3. Strategy 3: Updating inputs by predicted data
In this strategy, multistep energy prediction with historical data as one of input features is
achieved by updating predicted value as historical data for upcoming steps, as shown in Figure 14.
Note that the moving box in Figure 14 could also be called as sliding window method with length
n.

Current

moment
e b
:Hlstorlcal values in past n times
|
| Ty | T2 | T5 | Ty | .. |Ter| T |Tan
N e e

@ Historical value update

e

Note: means real value: I:l means predicted value

Figure 14 : Updating process of Strategy 3 for m-step ahead energy prediction with n steps of historical data

Deb et al. [131] employed Strategy 3 to predict next 20 days’ daily energy consumption
using the previous 5 days’ cooling load. Their result presents high accuracy (R? more than 0.94).
Note that the inputs and outputs in their study are all summarized classes instead of continuous
values. Fan et al. [132] applied the updating process shown in Figure 14 for 24 hour ahead cooling
load prediction based on data with 30 min intervals. Their study shows that involving past 24
hours’ data as input features could significantly increase the prediction accuracy compared with
only considering time index and meteorological information at the predicted time. Furthermore,
the study of Mocanu et al. [133] illustrates that under Strategy 3, one-day ahead energy prediction
is worse than one hour ahead prediction with 1-minute resolution data. Summary for more studies
with multi-step energy prediction by Strategy 3 are shown in Table 5
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Table 5 : Studies for multistep energy prediction based on Strategy 3

Reference | No. No. No. No. Features Models Building Energy type Scale Resolut | Horizon | No. Criteria
training | validation | meter | buildings type ion steps
points points S
[24] 3942 216 - 3 Meteorological information, | ARIMA, Commercial | Electricity Building | lhour 24hour 24 MAPE,
historical data RNN energy CV(RMSE)
consumption
[131] 237 158 - 3 Historical data (previous five | ANN Educational | Energy Building | 1lday 20day 20 R?
days’ energy consumption) consumption for
cooling

[134] - - - - Meteorological information, | LR, Commercial | Cooling load of | Building | 5min 7days, 2016, MAE,

historical data Gaussian water source 1month 8640 CV(RMSE),
process, heat pump MAPE
ANN

[132] 11054 2369 - 1 Meteorological information, | MLR, RF,  [Educational | Cooling load Building | 30min 24hour 48 MAE,

time index, GBM, SVR, RMSE,

historical data  (previous | XGB, DNN, CV(RMSE)

24hours’ cooling load, | elastic net

exterior  temperature  and

humidity)

[135] 10526 1858 - - Historical data ANN, SVR, Commercial | Energy Building | 5min 30min 6 RMSE,
ensemble consumption of MAE, R?
method heat pump

system
[136] 2688 96 12 1 Meteorological information, ARIMA, Residential | Electricity Building | 15min 24hour 96 MAE,
time index, SVR, energy MAPE,
historical data MetaFA- consumption RMSE
LSSVR,
SARIMA-
MetaFA-
LSSVR
[137] 2688 96 12 1 Meteorological information, | SARIMA-  Residential | Electricity Building | 15min 24hour 96 Error rate
time index, MetaFA- energy
historical data LSSVR consumption

[138] 40320 2976 19 1 factory | Meteorological information, | MLR, Industrial Reactive power | Building | 1hour lhour - | 1-48 Normalized

with four | time index, SVR demand 24hours MAE,
sections historical data (lag of Normalized

1,2,3,24,168) RMSE,

MASE

[139] - - - 30 Meteorological information, | ANN Educational | Thermal load District | 15min 24hour 96 NMBE,

time index; historical data CV(RMSE)
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One drawback of converting predicted value as inputs for multi-step energy prediction is
the accumulated prediction error [140], [141]. To avoid this issue, two general solutions could be
utilized. The first solution is Strategy 2, which has a longer lagging time than prediction horizon.
The second solution is to aggregate training data and reduce the resolution. For example, Gu et al.
[142] calculated the daily averaged value from 10 min interval data for daily heating load
prediction, while utilizing hourly collected data for hourly prediction. Grolinger et al. [143] found
that energy consumption prediction for event venues with 1 day interval data is more accurate than
with 15 min or 1 hour interval data. They also presented that the processing time for models with
large intervals is much faster than for those with smaller ones. One thing to note when applying
this aggregating approach is that the reduced resolution would reflect the flexibility of control
strategies developed based on energy prediction model.

Furthermore, to ease the influence of continuous historical data, Chen et al.[124], [125]
proposed a clustering based training method for machine learning models when doing 1 day ahead
hourly energy consumption prediction. In their study, training data was firstly separated into
different groups based on the similarity of electric demand intensity at previous hours and then
models for corresponding groups were trained based on meteorological data. Zhang et al. [144]
proposed an error correction approach to improve the cooling load prediction accuracy. The error
correction terms are calculated by mean difference between real cooling load and predicted cooling
load. The proposed approach could significantly increase the 1-hour-ahead prediction accuracy of
MLR. However, this approach did not consider accumulated error, thus its effect on multistep
ahead prediction is still uncertain.

3.4. Strategy 4: Exploiting time series nature of energy data directly through models
In this strategy, the time series nature of energy related data is considered directly through
models, which means the developed models show the ability to predict a sequence of output just
based on ground truth data. Schematic for this type of model is shown in Figure 15. Note that
models shown in this strategy could also be utilized as a solution for the accumulated error caused
by Strategy 3.

. Historical values in past n times

Ty [Ty [Ta [Ty | .., [To1| Tn

____________ i

Data driven model

:

Toor [Tez [Tz | ., et otenTotm

Note: means real value; D means predicted value

Figure 15 : Schematic for models with a sequence of output
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Table 6 : Studies for multistep energy prediction based on Strategy 4

Reference | No. No. No. No. Features Models Building type | Energy type Scale Resolu | Horizon | No. Criteria
training | validation | meters | buildings tion steps
points points
[24] 3942 219 - 3 Meteorological information, | CNN Commercial Electricity Building | lhour 24hour 24 MAPE,
historical data energy CV(RMSE)
consumption
[145] 504; 24 - 2 Historical data LSTM Commercial Miscellaneous | Building | 1hour 8hour, 8, Relative
840 electric loads, 24hour 24 RMSE
lighting, heat
gain
[146] 8760 1820; - 31 Meteorological information, | RNN Commercial, Electricity Building | lhour 24hour 24 RMSE
8760 time index, residential energy , district
historical data consumption
[147] 1844352 | 204928 3 1 Time index, CNN- Residential Electricity Building | 1min lhour 60 MAE, MAPE,
historical data, LSTM energy MSE, RMSE
sub-metering data consumption
[148] 75000 2538 - 100 users | Meteorological information, | LSTM - Electricity Building | 1lday 4weeks 28
historical data (previous 4 energy Accuracy
weeks of a load profile consumption
sequence)
[149] - - - - Historical data (previous 4 | LSTM ALL Electricity Region 15min | 30min 2 MAPE, RMSE
hours’ load profile sequence) energy
consumption.
power demand
[150] - - 63 1 Historical data LSTM Residential Electric power | Building | 1hour 24hour 24 MRE, MAE,
(previous 240 hours’ load or demand lday Tday 7 RMSE,
previous 70 days’ load) SMAPE
[151] 22000 2000 - 200 Time index, LSTM Residential Electric power | Building | 30min | lhour 2 Pinball loss
historical data demand 2hour 4
4hour 8
[152] 19104; 6336; - 3 Meteorological information, | Recurrent | ALL Electric Region 30min 24hour 48 RMSE, MAPE
18096; 6048; time index, inception energy
18624 6192 historical data  (previous | convolutio consumption
3days’ load) n neural
network
(RICNN)
[153] 3592 634 - 1 Meteorological information, | LSTM Residential Heating Building | lhour 12hour 12 -
historical data demand 24hour 24
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Studies doing multi-step energy prediction based on Strategy 4 is summarized in Table 6.
It shows that the most commonly used model for Strategy 4 is RNN. For instance, Rahman et
al.[146] developed two RNN models that could predict 24-h sequence of electric load with 1 hour
intervals. The proposed RNN models provided more accurate electricity prediction than a three-
layer DNN, while DNN is more reliable for a year ahead hourly aggregated energy prediction for
a group of residential buildings. The poor performance of RNN in predicting aggregated energy
prediction is caused by the fewer long-term dependencies in the aggregated profile. Moreover, the
training time of these RNN models limited their application.

4. Conclusions and opportunities for future works
In this paper, studies working on building energy prediction with data-driven approaches
are reviewed. To clarify shortages of existing review papers, a revision is done for previous
literature reviews focusing on similar subject as this paper. Incomplete work of previous review
papers is present in all steps of developing a data-driven model. Besides, no review summarizes
how to implement the developed data-driven models in multi-step energy prediction.

In order to fill research gaps in previous review studies, this paper first gives a
comprehensive review for developing data-driven models in terms of general procedures, which
contains feature engineering, data-driven algorithms and factors reflected from outputs. Prior to
this, data collection and data cleaning are briefly introduced. For data collection, the number of
data points collected for model training and model validation, the number of collection devices
(e.g. meters or buildings), data sources, as well as the type of collected features are the aspects to
be considered. Thus, for feature engineering, potential feature types (i.e. meteorological
information, indoor environmental information, occupancy related data, time index, building
characteristic data, socio-economic information, historical data) are firstly summarized to give an
inspiration to data collection. Then, feature extraction methods, such as variable ranking, filter and
wrapper methods, embedded method, PCA, and AE, are reviewed. To select proper feature
extraction methods, their strengths and weaknesses are presented. As for data-driven algorithms,
a variety of models are introduced in terms of principles as well as advantages and disadvantages.
Factors reflected from the expected outputs (i.e. building type, energy type, scale, temporal
granularity, and criteria) are also reviewed. A discussion is given to analyze the distribution of
studies from 2015 to 20109.

Then, four input updating strategies are summarized to give a guide for utilizing the
developed models in realistic multi-step energy prediction. The applications of these updating
strategies are reviewed. Limitations of them are introduced: Strategy 1 is limited by the disability
of considering time series property; Strategy 2 is weakened by the neglect of most recent historical
data; Strategy 3 shows a disadvantage of accumulated error; Strategy 4 requires a huge amount of
data in model training. Possible solutions for these drawbacks are also explained. However, novel
updating strategies with high speed and accuracy are still required.

According to the distribution of reviewed studies and drawbacks shows in existing
updating strategies, future works could focus on:

(1) Implementing novel data-driven techniques to real-life cases.
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(2) Proposing guidelines for feature engineering and data-driven model selection under
different cases.

(3) Fixing problems occurred in existing updating strategies, e.g. accumulated error.

(4) Integrating data-driven energy prediction models into other applications e.g. model
predictive control strategies.
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Abbreviations

AE

ANN

AR
ARIMA
ARMA
ASHRAE

CNN
CV(RMSE)
DNN
ELM
FEMP
GBDT
IPMVP
KNN

LR

LSTM

MA

MAE
MAPE
MBE
MSE
NMBE
PCA
PLSR

RF
RICNN
RMSE
RNN

Autoencoder

Artificial Neural Network

AutoRegressive Model

AutoRegression Integrated Moving Average
AutoRegression-Moving Average

The American Society of Heating, Refrigerating and Air-Conditioning
Engineers
Convolutional Neural Networks

Coefficient of Variation of the Root Mean Square Error
Deep Neural Networks

Extreme Learning Machine

Federal Energy Management Program

Gradient Boosting Decision Trees

International Performance Measurement and Verification Protocol
k-Nearest Neighbor

Linear Regression

Long Short-Term Memory

Moving Average Model

Mean Absolute Error

Mean Absolute Percentage Error

Mean Bias Error

Mean Squared Error

Normalized Mean Bias Error

Principal Component Analysis

Partial Least Squares Regression

R Square

Random Forests

Recurrent Inception Convolution Neural Network
Root Mean Square Error

Recurrent Neural Networks
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RT Regression Tree

SVM Support Vector Machine

SVR Support Vector Regression

XGB Extreme Gradient Boosting
Nomenclature

c Constant

h Output of the hidden layer in ANN

p Order of AR

q Order of MA

Tyy Pearson correlation coefficient between input feature x and target output y
Thoy,y Spearman’s ranking correlation between input feature x and target output y
X; Input of i-th sample point

x Mean value of input feature

X Input rank of i-th individual sample points

X' Mean rank values of input feature

Vi Target output of i-th sample point

y Mean value of target (measured) output

y Target output rank of i-th sample point

Mean rank values of target output

Y% Predicted output
Wy Bias term
w Weight matrix
P1) s Pp Weights for AR
01, ..., 6 Weights for MA
White noise
) Activation function of output layer in ANN
o Activation function for the hidden layer in ANN
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