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Abstract 

In recent years, massive data collected from buildings made development and application of 

data-driven building models is a hot research topic. Due to the variation of data volume in different 

conditions, existing data-driven building models (DDBMs) would present distinct accuracy for 

different users or periods. This may create further fairness problems. To solve these issues, 

balancing training dataset between different conditions using pre-processing techniques could 

help. In this study, a sequentially balanced sampling (SBS) technique is proposed. Its 

generalizability to improve fairness and preserve accuracy of DDBMs is compared with four 

existing pre-processing techniques—random sampling (RS), sequential sampling (SS), reversed 

preferential sampling (RPS), and sequential preferential sampling (SPS). Totally, 4960 cases are 

carried out to apply these pre-processing techniques to process training dataset before developing 

4 types of classifiers for one-week ahead lighting status prediction of 155 lights in 16 apartments 

through a year. Note that the collected data show 5 distribution modes. 

The newly proposed SBS shows comparable performance to RPS. They significantly 

improve predictive accuracy for minority classes but decrease the accuracy for majority classes. 

On the other hand, SS and SPS show a slight accuracy improvement for minority classes with an 

acceptable price of accuracy decrease on majority classes. In terms of fairness improvement, SBS, 

RS, and RPS could effectively increase the recall rate. However, RS and RPS show more negative 

effect on accuracy rate and specificity rate. The results of this study provide guidance for 

researchers to select proper pre-processing techniques to improve the preferred predictive 

performance under different data distribution. 
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1. Introduction 

1.1. Background 

In recent years, buildings and building construction sectors have become data rich, due to 

the rapidly popularity of Internet of Things (IoT) and building management systems (BMS) [1]. 

This means that plenty of information (such as indoor environment parameters, occupancy-related 

data, energy consumption, and equipment and device operational data, etc.) has been dynamically 

collected from buildings [2]. These data could be used as a basis to develop data-driven building 

models (DDBMs) to predict indoor air temperature [3], energy consumption [4–6], thermal 

comfort [7], occupancy status/numbers [8–10], indoor air quality [11], fire hazard [12] or HVAC 

system performance [13,14]. 

Predictive accuracy is an important performance criteria for DDBMs to reflect the similarity 

of predicted values to measured/simulated values [15,16]. Existing studies on DDBMs mainly 

focus on improving these models’ predictive accuracy, to ensure that the predictive result could 

reasonably represent indoor environment parameters, energy consumption patterns, or device 

operational status. For instance, González-Vidal et al. [17] proposed a feature selection structure 

to improve the mean absolute error (MAE) by 42.28% and root mean square error (RMSE) by 

36.62% for energy prediction regression models. Kallio et al. [18] compared the accuracy of four 

machine learning techniques for predicting indoor CO2 concentration in terms of MAE and 

proposed the possible application of DDBMs for proactive indoor environment control. 

However, a DDBM with high overall predictive accuracy could not ensure a good predictive 

performance under all different scenarios/operation situations [19]. In reality, different volume of 

training dataset under various conditions may result in better predictive accuracy under majority 

conditions and poor accuracy under other conditions [20]. For instance, HVAC system operational 

data are mostly collected in normal conditions. Few are measured during faulty scenarios. As a 

result, even if a model trained on these data works well to predict the normal HVAC operation 

status, the problem remains that it wrongly predicts faulty scenarios as normal [1]. 

The different predictive performance under different conditions may further leads to fairness 

problems [21]. For instance, if an energy consumption predictor works much better for users who 

provide more data than others, it would be unfair for other users who use the predictor with poor 
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performance. 

Three types of fairness concepts have been introduced into the building application [21]. 

Type I: The predicted output is independent of the protected attribute(s), whose values are not 

willing to be disclosed. For building models, occupancy-related data could be the protected 

attribute(s). This is because these data may be denied as inputs by users with the concern of 

avoiding to reveal occupants’ individual location and behavior [22–24]. Type II: Some 

performance measures (e.g., accuracy) are equal across classes/conditions defined by the 

protected attribute(s). For instance, when developing energy predictive models for users from 

different occupations, the predictive accuracy is expected to be similar for them no matter what 

energy consumption habits caused by their work pattern. In this example, users’ occupation is the 

protected attribute. Type III: Predictive outcomes should be independent of the predictive 

probability score of different classes/conditions defined by the protected attribute(s). For example, 

if a data-driven predictor predicts the same probability score of approving house loan to people 

coming from different races (protected attribute), their loan application result should be the same. 

Achieving Type II fairness in the building application could ensure uniform predictive 

performance under different situations. To improve Type II fairness, we previously proposed three 

types of data pre-processing techniques — sequential sampling (SS), reversed preferential 

sampling (RPS), and sequential preferential sampling (SPS)—to sample a balanced training 

dataset [21]. However, these techniques were only applied to data collected from one apartment. 

Their generalizability (i.e., the extent to which the study results could be applied to other situations 

[25]) to other apartments/buildings could not be indicated. Besides, among these techniques, SS 

shows the advantage of capturing the most recent pattern from the original training dataset. It 

could be helpful to preserve the predictive accuracy for situations where the data pattern changes 

with time. However, the data collection time required by SS to produce a balanced training dataset 

could be too long if the collected data is extremely imbalanced. Therefore, it would be interesting 

to propose a pre-processing technique that maintains the recent information from original training 

dataset and produces a balanced training dataset at the first time of implementation. 

1.2. Literature review 

The predictive performance of DDBMs depends on the representativeness of training dataset, 
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such as proper selected features [26], data quality [27], and balanced data [28]. Imbalanced 

training dataset may result in perfect predictive result on majority classes that are represented by 

most samples but poor performance on minority conditions. Approaches to deal with imbalanced 

training data could be commonly divided into two categories: 1) Data pre-processing methods. 

Note that data pre-processing methods usually manipulate data by specific tasks, such as data 

cleaning, data scaling, data transformation, data reduction, data partitioning, and data 

augmentation, etc., before it is used [29]. In this paper, data pre-processing methods refer to 

produce a balanced training dataset; 2) Algorithm-based methods, or also called cost-sensitive 

learning. This kind of methods assigns different misclassification costs to data from different 

classes, and thus, forces the classifier concentrate on minority classes or classes that desire higher 

predictive accuracy. 

To produce a balanced training dataset, the fundamental of reviewed data pre-processing 

methods are mostly in line with stratified sampling that divides the data into homogeneous 

conditions, and then, samples data for each condition using probability sampling methods, such 

as random sampling or clustering [30]. To be more specific, when separating data into different 

conditions, discrimination would occur which means that some conditions may contain more data 

than others. To balance data among these conditions, data pre-processing methods will oversample 

for minority conditions and/or undersample for majority conditions. 

Data pre-processing methods could be used to produce a balanced training dataset for fault 

detection and diagnosis (FDD). For instance, Fan et al. [31] applied an oversampling technique, 

called SMOTE, to oversample faulty samples before training the support vector machine (SVM) 

model for chiller fault diagnosis. The re-balanced training dataset improved diagnostic accuracy. 

However, if the oversampling size is larger than 100% of original data, the large volume of 

synthetic samples would increase the classification uncertainty. Similarly, Zhou et al. [32] applied 

SMOTE to balance data between normal status and faulty status of a variable refrigerant flow 

system. The balanced dataset could increase the fault detection accuracy by more than 43%. 

However, SMOTE may suffer the risk of changing data distribution and overfitting [33]. Yan et 

al. [34] increased data in faulty conditions among the training dataset by inserting confidently 

predicted samples by data-driven classifiers. It results in over 80% diagnostic accuracy for air 

handling units (AHUs) in summer and 89% in winter. Note that to apply this method, the inserted 
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samples should be accurately predicted to represent the actual scene. Besides, data augmentation 

methods, such as generative model-based methods, could be used to enrich the training dataset by 

creating samples for conditions that initially do not have adequate respective data [29]. For 

instance, generative adversarial network (GAN) have been widely used for FDD of devices in 

buildings [1,35,36]. However, these techniques could be hard to train because of the problems of 

non-convergence and diminished gradient [37]. 

Cost-sensitive learning algorithms are also used in building engineering to improve 

classification accuracy of minority classes. For instance, Li et al. [38] set different user-defined 

misclassification costs for false negative instances and false positive instances in two-class 

classification problems, such as rolling-up shading prediction and rolling-down shading behavior 

classification. The cost matrix was integrated into the objective function to minimize the total 

expected cost when training classification models, such as RF, SVM, and DT. The results showed 

that the proposed cost-sensitive learning algorithm improved the classification accuracy of 

minority conditions, i.e., behavior (such as rolling-up shading) occurred situations in their study. 

Tang et al. [39] proposed a cost-sensitive extremely randomized trees algorithm for wind turbine 

generator fault detection. The proposed algorithm considered different misclassification costs 

between missed detection (false negative) instances and false alarm (false positive) instances 

when calculating misclassification cost gain for branch nodes and leaf nodes of extreme decision 

trees. Through adding higher misclassification cost for missed detection instances, it significantly 

decreased the missing detection rates compared to traditional randomized trees. Furthermore, 

AdaBoost models that assign higher weights for misclassified points are commonly used cost-

sensitive models in FDD [40,41] and energy prediction [42]. 

Although cost-sensitive learning algorithms enable DDBMs to improve predictive accuracy 

of minority classes, proper definition and integration of misclassification costs could be 

challenging as it requires expertise in the target problem and data-driven model framework [43]. 

In contrast, data-preprocessing methods are usually easier to apply. When applied to new 

tasks/scenarios, they require simple modifications on the sampling size. Besides, their processed 

data could be directly used by various models without requiring for objective function 

modification. Furthermore, Weiss et al. [44] found that data-preprocessing methods perform better 

on smaller dataset, while cost-sensitive learning outperforms sampling methods if the training 
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dataset contains more than 10,000 samples. 

Moreover, it is worth to mention that even if above reviewed approaches are widely used for 

imbalanced dataset, they have not been used to solve fairness problems in the area of building 

engineering application. Besides, existing studies usually apply the studied approaches to a 

specific building/system. Thus, it would be a challenge to evaluate their generalizability. For 

instance, most existing data-driven building models were analyzed in a case study of a single 

building, so their predictive performance could not be guaranteed for other buildings [45]. In fact, 

the generalizability of data-driven models is hard to summarize [46], as their predictive 

performance relies on many factors, such as input features, the scope of training dataset, and 

hyperparameters, etc. 

Similarly, widely applied fairness-improvement techniques can be grouped into: 1) Pre-

processing: preprocesses training data to remove discrimination before the training phase; 2) In-

processing: adds fairness-related constraints or penalties to the model’s optimization objective 

during the training phase [47]; and 3) Post-processing: modifies a classifier’s predictive results to 

achieve fairness [48]. 

As pre-processing techniques are usually easy to implement, they have been used to solve 

Type II fairness problems. Their function is to re-balance the training dataset under different 

conditions defined by the protected attribute and predictive output. For instance, Kamiran and 

Calders [49] suggested uniform sampling and preferential sampling techniques to achieve fairness 

among classification problems with a binary protected attribute, such as income prediction and 

crime prediction with selecting gender as the protected attribute. In the previous study [21], we 

compared three proposed pre-processing techniques with uniform sampling and preferential 

sampling in terms of their ability to obtain similar lighting status prediction accuracy under 

different conditions defined by the protected attribute (i.e., motion status). These techniques could 

improve Type II fairness while preserving accuracy. However, this study relies on data gathered 

from only one residential unit. Thus, further research is needed to demonstrate the generalizability 

of these approaches based on training dataset with different structures. Note that the 

generalizability of these pre-processing techniques should be easier to evaluate than that of data-

driven models given there are less hyperparameters. 
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1.3. Objective and contributions 

This study is aimed at 1) proposing a pre-processing technique (sequentially balanced 

sampling (SBS)) that maintains the recent pattern from the original training dataset and produces 

a balanced training dataset at the first time of implementation; 2) evaluating the generalizability 

of this proposed technique and three previously proposed pre-processing techniques — SS, RPS, 

and SPS — to improve predictive performance similarity between different conditions (Type II 

fairness). These techniques are compared with RS that randomly samples data for each condition 

and reference cases that does not apply any pre-processing technique. To do so, a case study is 

conducted to apply these techniques to process training data for two-class classification problems 

(lighting status prediction of 155 lights in 16 apartments) with a binary protected attribute (motion 

status). The data could be classified into 5 modes based on the distribution on the protected 

attribute and target output. Then, 4 types of classifiers are developed based on the processed data. 

The predictive performance is evaluated in terms of accuracy measures and fairness measures. 

Accordingly, the generalizability of a pre-processing technique is assessed by its ability to 

improve any accuracy/fairness measure no matter what mode the training dataset is distributed in 

and/or what types of data-driven models are developed. 

Therefore, the contributions of this work include: 1) propose the SBS technique to address 

the shortcoming of SS that fails to sample a balanced training dataset at the beginning stage of 

implementation; 2) verify the generalizability of the newly proposed technique and three 

previously proposed pre-processing techniques through a case study, and thus, provide guidance 

on selecting proper pre-processing techniques for imbalanced training dataset under different data 

distribution modes based on the preferred predictive performance (accuracy and/or fairness). The 

findings for these pre-processing techniques could be easily applied to other problems in building 

and indoor environment, if their data distribution could be classified as one data mode in this 

paper and their target performance is achieved by one of the pre-processing techniques. 

The paper is organized as follows: Section 2 introduces the pre-processing techniques. 

Section 3 uses a case study to evaluate their generalizability. The accuracy and fairness measures 

used to evaluate predictive performance are described in Section 4. In Section 5, results are 

analyzed in terms of accuracy measures and fairness measures. Further discussion on results is 

presented in Section 6. Finally, Section 7 provides the conclusion for this study. 
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2. Methodology 

The newly proposed sequentially balanced sampling (SBS) technique, three previously 

proposed pre-processing techniques (namely SS, RPS, and SPS), as well as random sampling (RS) 

will be introduced in this section. Their purpose is processing the original candidate training 

dataset (Xcandidate) to generate a designed training dataset (Xdesigned) that distributes evenly among 

conditions defined by the protected attribute and output labels. 

For two-class classification problems with a binary protected attribute, there would be four 

conditions, i.e., PP, PN, NP, and NN, as listed in Table 1. For example, in lighting status (ON/OFF) 

prediction considering motion status (ON/OFF) as the protected attribute, PP means the condition 

that lighting status is ON and motion status is ON; PN refers to the period during which lighting 

status is OFF and motion status is ON; NP is the situation that lighting status is ON and motion 

status is OFF; NN means that lighting status and motion status are OFF. In addition, the number 

of samples in these conditions are represented by |PP|, |PN|, |NP|, and |NN|, respectively. To 

eliminate bias among these conditions, the expected number of data points for each condition in 

Xdesigned is calculated using Equation 1. 

Table 1: PP, PN, NP and NN defined by the protected attribute and output labels 

 Y 

Positive Negative 

S 
Positive PP PN 

Negative NP NN 

Note S is the protected attribute, and Y is the class label of the training point. 

|𝑃𝑃|𝑑𝑒𝑠𝑖𝑔𝑛 = |𝑃𝑁|𝑑𝑒𝑠𝑖𝑔𝑛 =  |𝑁𝑃|𝑑𝑒𝑠𝑖𝑔𝑛 =  |𝑁𝑁|𝑑𝑒𝑠𝑖𝑔𝑛  = 0.25 ∗ | 𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 | (1) 

where |𝑃𝑃|𝑑𝑒𝑠𝑖𝑔𝑛 , |𝑃𝑁|𝑑𝑒𝑠𝑖𝑔𝑛 , |𝑁𝑃|𝑑𝑒𝑠𝑖𝑔𝑛 , and |𝑁𝑁|𝑑𝑒𝑠𝑖𝑔𝑛  is the expected number of data 

points in PP, PN, NP, and NN of 𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑, respectively; | 𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 | is the size of 𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑. 

For multi-class classification problems with multi-class protected attributes, such as a i-class 

prediction problem with a j-class protected attribute, there would be i*j conditions (see Table 2) 

and the expected number of data points in each condition is 
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑|. 

Table 2: Conditions defined by a i-class prediction problem with a j-class protected attribute 

 Y 
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Y1 Y2 … Yi 

S 

S1 S1Y1 S1Y2 … S1Yi 

S2 S2Y1 S2Y2 … S2Yi 

… …  … … 

Sj SjY1 SjY2 … SjYi 

Note SjYi is the condition in which data’s protected attribute is Sj and output label is Yi. 

In the following subsections, detailed procedure of these techniques is mainly explained for 

two-class classification problems with a binary protected attribute, while additional explain for 

multi-class classification problems with multi-class protected attributes is provided when it is 

necessary. In general, the procedure could be simply modified for multi-class classification 

problems with multi-class protected attributes through considering more conditions in each step. 

2.1. Sequentially balanced sampling (SBS) 

Sequentially balanced sampling (SBS) is aimed at getting a balanced training dataset at the 

first time of processing Xcandidate with preserving the latest information from Xcandidate. Its procedure 

is as follows: 

Step 1. Partitioning samples in Xcandidate into PP, PN, NP, and NN. 

Step 2. List the data in each condition in descending order of collection time. 

Step 3. Sample the most recently collected 0.25*|Xdesigned| data points from each condition. 

If the number of points in one condition is less than 0.25*|Xdesigned|, it would duplicate the most 

recently collected data until the data in that condition reaches 0.25*|Xdesigned|. 

These steps are summarized in Figure 1. Detailed coding algorithms for SBS and other 

techniques are presented in the supplementary information. 

In addition, for a i-class prediction problem with a j-class protected attribute, Step 1 would 

divide samples into i*j conditions, while Step 3 would sample 
1

𝑖∗𝑗
|𝑋𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑| recently collected 

data for each condition.
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Figure 1: Procedure of SBS, SS, RPS, and SPS in a two-class classification problem with a binary protected attribute 1 
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2.2. Sequential sampling (SS) 

Sequential sampling (SS) also captures the latest information from Xcandidate, but it will make 

Xdesigned balance as the time of updating Xcandidate increases and the number of data points in each 

condition of Xcandidate are more than the expected number. 

As shown in Figure 1, its first two steps are the same as SBS, the difference is in Step 3: SS 

samples a data point from each condition to Xdesigned each time by ascending order, until reaching 

|Xdesigned|. To be more specific, it samples the first point from PP, PN, NP, and NN in turns at the 

first time. Then, it gets the second data point and next round the third point. After each round, the 

sampling will move to the next data. If all data points in one condition are sampled but this 

condition in Xdesigned still does not get 0.25*|Xdesigned| points, SS will continue sample data from 

the next condition. In other words, when newly observed data comes to update Xcandidate, it will 

catch this data to Xdesigned, and then, delete one old data from the majority condition. 

2.3. Reversed preferential sampling (RPS) 

Reversed preferential sampling (RPS) was suggested following the hypothesis that 

duplicating data close to the decision boundary (a hypersurface separating the dataset into two 

classes) in minority conditions will help distinguish the decision boundary, while removing data 

furthest from the decision boundary in majority conditions could avoid making large changes to 

the decision boundary. Its procedure is explained as below. 

Step 1. The same as SBS. 

Step 2. List the data in each condition in ascending order of distance from the decision 

boundary. For conditions with Y=Positive, data’s distance from the decision boundary is 

represented by its possibility of classifying as positive (p_positive), while evaluated by the 

probability of negative (p_negative) when Y=Negative. In this study, p_positive and p_negative 

are calculated by a ranker, in which a probabilistic classifier, such as logistic regression (LR) or 

Naïve Bayes (NB), is trained using Xcandidate. Detailed algorithm for the ranker is coded in the 

supplementary information. For multi-class classification problems, data is listed by the ascending 

order of correct prediction probability. For instance, in condition SjYi, data is listed by the 

ascending order of the possibility of predicting a data as class Yi. 

Step 3. If the number of actual samples in one condition is above 0.25*|Xdesigned|, slice the 

first 0.25*|Xdesigned| training points to Xdesigned. Otherwise, duplicate points in that condition by 

ascending order until reaching 0.25*|Xdesigned| and sample them to Xdesigned. 

2.4. Sequential preferential sampling (SPS) 

Sequential preferential sampling (SPS) gradually gets a balanced training dataset, while 

maintaining the most representative data for distinguishing the decision boundary. Therefore, its 
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difference from the RPS is in Step 3: SPS iteratively samples a training point each time from the 

four conditions in Xcandidate to Xdesigned, in ascending order of distance from the decision boundary. 

Like SS, it will get a balanced training dataset as the times of updating Xcandidate increases. 

2.5. Random Sampling (RS) 

Random sampling (RS) randomly samples the expected number of data points from each 

condition in Xcandidate to Xdesigned. For instance, in two-class classification problems with a binary 

protected attribute, when the actual points in one condition are more than 0.25*|Xdesigned|, 

randomly select 0.25*|Xdesigned| training points from that condition to Xdesigned. Otherwise, 

randomly duplicate points in that condition until 0.25*|Xdesigned| is reached, and then sample these 

data to Xdesigned. 

3. Case study for generalizability investigation 

To investigate the generalizability of the proposed pre-processing techniques, a case study is 

designed to extend their application to data collected from 16 apartments. These data could be 

classified into 5 modes based on their distribution on the output labels (ON/OFF lighting status) 

and protected attribute labels (ON/OFF motion status). Detailed description of the collected data 

and study cases is shown in Section 3.1 and Section 3.2, respectively. 

3.1.Data description 

The data used is collected from 16 apartments in a residential building located in Lyon, 

France. These 16 apartments present two types of lay-out: Lay-out Type I (Apt #1 to Apt #8) and 

Lay-out Type II (Apt #9 to Apt #16), as shown in Figure 2. Motion status and lighting status are 

collected from these apartments by presence sensors and lighting sensors, respectively. A detailed 

description of installed sensors is presented in Table 3. Besides, weather information, such as 

altitude of the sun, global horizontal illuminance, diffuse horizontal illuminance, global horizontal 

irradiance, and diffuse horizontal irradiance, etc., is collected from a local weather station. 

The data was collected for the year 2016 with one-minute time intervals and processed to 5-

minute intervals. Further analysis were carried out for missing data and outliers [24,50]. The 

remaining samples for each light in each apartment are presented in Figure 3. 



13 

 

 

Figure 2: Lay-out of studied apartments 
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±2/3/6% 14 13 
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signal. Besides, if a light is in one status (such as turn OFF) all the time, its corresponding lighting 

status attribute would be excluded from the collected dataset. As a result, data collected from 155 

lights remain in the training dataset and work as data-driven models’ outputs. 

In this investigation, ‘Motion Status_total’ is the protected attribute, while lighting status the 

classifiers’ outputs. The ratios of conditions PP, PN, NP, and NN for different lights in these 16 

apartments are presented in Figure 4. Based on the distribution of PP, PN, NP and NN, the dataset 

could be separated into 5 modes. A description of each mode is in Table 4. 

Table 4: Description of data modes 

 

Mode 

No. 

Description Output of Data Number of  

Lights 

1 The light is OFF most of the 

time (>90%) and ‘Motion 

Status_total’ is OFF 60-

70%. 

Detailed distribution: 

NN contains most samples 

(55-70%), followed by 

PN(20-40%), PP(0-8%) and 

NP(0-8%). 

APT #1: Light_1, Light_4, Light_7, Light_8, Light_9, 

Light_10, Light_11, Light_12. 

APT #2: Light_2, Light_3, Light_4, Light_5, Light_6, 

Light_7, Light_8, Light_9, Light_10, Light_11, 

Light_12. 

APT #4: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10, 

Light_11, Light_12. 

APT #6: Light_1, Light_3, Light_4, Light_5, Light_6, 

Light_7, Light_8, Light_9. 

APT #7: Light_1, Light_2, Light_3, Light_4. 

APT #8: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10, 

Light_11, Light_12, Light_13. 

APT #11: Light_1, Light_2, Light_3, Light_5, Light_6, 

Light_7, Light_8. 

APT #12: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_7, Light_8 Light_9, Light_10, Light_11. 

APT #14: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10. 

APT #16: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9. 

92 

2 The light is OFF ~90% of 

the time, and ‘Motion 

Status_total’ is OFF ~70% 

of the time. 

APT #1: Light_2, Light_3, Light_5, Light_6. 

APT #2: Light_1. 

APT #6: Light_2. 

6 

3 The light status and ‘Motion 

Status_total’ are OFF most 

of the time (>90%).  

APT #3: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8. 

APT #10: Light_1, Light_2, Light_3, Light_4. 

12 

4 The light is turned OFF most 

of the time (>90%), and the 

‘Motion Status_total’ is 

evenly distributed with ~50% 

‘OFF’ labels. 

 

APT #5: Light_1, Light_2, Light_4, Light_5, Light_6, 

Light_7, Light_8, Light_9, Light_10, Light_11, 

Light_12. 

APT #9: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10, 

Light_11. 

APT #13: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10. 

APT #15: Light_1, Light_2, Light_3, Light_4, Light_5, 

Light_6, Light_7, Light_8, Light_9, Light_10. 

42 

5 The ‘OFF’ light status is 

<50%. 

APT #5: Light_3. 

APT #11: Light_4. 

APT #12: Light_6. 

3 
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 1 

Figure 4: Ratio of PP, PN, NP, and NN among 16 apartments2 

PP PN NP NN PP PN NP NN PP PN NP NN PP PN NP NN

Light_1 0.10% 31.46% 0.00% 68.44% Light_1 5.15% 45.33% 0.06% 49.46% Light_1 4.92% 43.64% 0.56% 50.87% Light_1 1.20% 53.43% 0.04% 45.33%

Light_2 8.19% 23.37% 2.14% 66.30% Light_2 9.79% 40.69% 0.17% 49.34% Light_2 3.82% 44.74% 0.10% 51.34% Light_2 4.43% 50.20% 0.41% 44.96%

Light_3 9.09% 22.47% 2.80% 65.64% Light_3 32.15% 18.34% 30.23% 19.29% Light_3 5.90% 42.67% 0.39% 51.04% Light_3 3.22% 51.42% 0.28% 45.09%

Light_4 0.29% 31.27% 0.05% 68.39% Light_4 5.90% 44.58% 0.23% 49.29% Light_4 7.61% 40.95% 1.42% 50.02% Light_4 7.72% 46.91% 0.91% 44.45%

Light_5 10.44% 21.12% 2.69% 65.75% Light_5 3.84% 46.64% 0.27% 49.25% Light_5 5.31% 43.26% 0.49% 50.95% Light_5 2.34% 52.30% 0.07% 45.30%

Light_6 10.86% 20.70% 3.20% 65.24% Light_6 14.99% 35.49% 0.48% 49.03% Light_6 3.36% 45.20% 0.39% 51.04% Light_6 1.57% 53.06% 0.04% 45.33%

Light_7 1.01% 30.55% 0.11% 68.33% Light_7 1.27% 49.22% 0.59% 48.93% Light_7 8.07% 40.50% 0.51% 50.93% Light_7 4.25% 50.38% 0.10% 45.27%

Light_8 0.84% 30.72% 0.15% 68.29% Light_8 0.85% 49.63% 0.04% 49.48% Light_8 6.34% 42.23% 0.38% 51.06% Light_8 3.26% 51.37% 0.11% 45.26%

Light_9 0.57% 30.99% 0.03% 68.41% Light_9 9.83% 40.65% 0.02% 49.50% Light_9 5.27% 43.30% 1.27% 50.17% Light_9 3.64% 51.00% 0.10% 45.27%

Light_10 0.18% 31.38% 0.02% 68.42% Light_10 4.27% 46.21% 0.18% 49.33% Light_10 4.59% 43.97% 0.28% 51.16% Light_10 1.14% 53.49% 0.09% 45.27%

Light_11 0.31% 31.25% 0.02% 68.42% Light_11 4.42% 46.06% 0.01% 49.51% Light_11 3.08% 45.48% 0.27% 51.16% Light_1 3.76% 32.27% 1.14% 62.83%

Light_12 0.32% 31.24% 0.02% 68.42% Light_12 6.43% 44.06% 0.02% 49.49% Light_1 1.94% 3.62% 0.27% 94.17% Light_2 2.83% 33.20% 0.09% 63.88%

Light_1 9.00% 24.47% 10.25% 56.28% Light_1 4.81% 22.92% 0.19% 72.08% Light_2 1.36% 4.20% 0.13% 94.32% Light_3 0.77% 35.26% 0.08% 63.89%

Light_2 3.28% 30.20% 0.32% 66.20% Light_2 8.51% 19.23% 0.66% 71.61% Light_3 2.23% 3.33% 0.20% 94.25% Light_4 1.61% 34.42% 0.18% 63.79%

Light_3 2.47% 31.00% 0.50% 66.02% Light_3 2.04% 25.69% 0.07% 72.20% Light_4 1.64% 3.92% 0.23% 94.21% Light_5 2.17% 33.87% 0.27% 63.70%

Light_4 1.81% 31.67% 0.43% 66.09% Light_4 6.00% 21.74% 0.35% 71.92% Light_1 2.33% 30.47% 1.06% 66.14% Light_6 1.80% 34.23% 0.28% 63.69%

Light_5 1.09% 32.39% 0.03% 66.50% Light_5 1.18% 26.55% 0.06% 72.21% Light_2 3.67% 29.13% 0.11% 67.09% Light_7 6.81% 29.22% 3.32% 60.64%

Light_6 2.18% 31.30% 0.07% 66.46% Light_6 1.26% 26.48% 0.15% 72.12% Light_3 4.00% 28.80% 0.37% 66.82% Light_8 3.75% 32.28% 1.16% 62.81%

Light_7 1.49% 31.99% 0.05% 66.48% Light_7 1.50% 26.24% 0.13% 72.14% Light_4 32.23% 0.58% 66.24% 0.96% Light_9 3.26% 32.77% 1.20% 62.77%

Light_8 0.81% 32.67% 0.09% 66.44% Light_8 1.47% 26.26% 0.09% 72.17% Light_5 3.07% 29.73% 0.08% 67.12% Light_10 1.26% 34.77% 0.10% 63.87%

Light_9 2.34% 31.14% 0.09% 66.43% Light_9 2.03% 25.71% 0.10% 72.17% Light_6 1.26% 31.54% 0.25% 66.94% Light_1 5.89% 44.84% 0.23% 49.05%

Light_10 0.87% 32.61% 0.06% 66.46% Light_1 0.54% 31.62% 0.36% 67.49% Light_7 1.30% 31.51% 0.04% 67.16% Light_2 3.33% 47.39% 0.33% 48.95%

Light_11 1.76% 31.72% 0.18% 66.35% Light_2 1.50% 30.65% 0.40% 67.45% Light_8 0.20% 32.60% 0.10% 67.09% Light_3 2.20% 48.53% 0.08% 49.20%

Light_12 2.93% 30.55% 0.23% 66.29% Light_3 2.88% 29.27% 0.19% 67.66% Light_1 1.69% 39.37% 0.13% 58.81% Light_4 4.41% 46.32% 0.16% 49.11%

Light_1 1.67% 8.33% 1.42% 88.57% Light_4 0.48% 31.67% 0.22% 67.63% Light_2 4.08% 36.98% 0.28% 58.67% Light_5 3.50% 47.23% 0.58% 48.70%

Light_2 3.12% 6.89% 0.85% 89.15% Light_1 3.32% 25.84% 1.28% 69.56% Light_3 3.20% 37.86% 1.44% 57.51% Light_6 7.70% 43.03% 0.49% 48.79%

Light_3 1.80% 8.21% 0.25% 89.75% Light_2 3.20% 25.96% 1.54% 69.30% Light_4 5.09% 35.97% 1.95% 57.00% Light_7 2.29% 48.43% 0.37% 48.90%

Light_4 4.52% 5.48% 0.72% 89.27% Light_3 3.98% 25.18% 2.81% 68.03% Light_5 0.36% 40.69% 0.09% 58.85% Light_8 1.07% 49.65% 0.02% 49.25%

Light_5 5.02% 4.98% 0.86% 89.13% Light_4 3.12% 26.04% 1.70% 69.14% Light_6 22.27% 18.78% 28.14% 30.81% Light_9 8.10% 42.62% 0.19% 49.08%

Light_6 1.83% 8.18% 0.29% 89.70% Light_5 3.44% 25.72% 1.17% 69.67% Light_7 1.09% 39.97% 0.26% 58.69% Light_10 2.39% 48.34% 0.05% 49.22%

Light_7 0.77% 9.24% 0.23% 89.76% Light_6 4.02% 25.14% 1.62% 69.23% Light_8 6.57% 34.48% 0.84% 58.11% Light_1 0.74% 35.89% 0.06% 63.31%

Light_8 0.40% 9.61% 0.16% 89.84% Light_7 2.30% 26.86% 0.85% 69.99% Light_9 8.05% 33.01% 1.14% 57.80% Light_2 3.20% 33.42% 1.08% 62.29%

Light_1 3.40% 32.73% 0.51% 63.37% Light_8 1.93% 27.23% 0.45% 70.39% Light_10 3.20% 37.86% 0.47% 58.47% Light_3 1.56% 35.07% 0.08% 63.29%

Light_2 4.60% 31.52% 0.57% 63.30% Light_9 0.80% 28.36% 0.35% 70.49% Light_11 2.13% 38.93% 0.15% 58.80% Light_4 2.47% 34.16% 0.44% 62.94%

Light_3 3.09% 33.03% 0.30% 63.58% Light_10 2.98% 26.18% 0.92% 69.92% Light_5 2.95% 33.67% 1.16% 62.21%

Light_4 0.36% 35.76% 0.03% 63.85% Light_11 2.29% 26.87% 0.87% 69.97% Light_6 2.75% 33.87% 0.74% 62.64%

Light_5 4.93% 31.19% 1.97% 61.90% Light_12 2.17% 26.99% 0.82% 70.03% Light_7 1.90% 34.73% 0.06% 63.31%

Light_6 2.73% 33.40% 2.83% 61.05% Light_13 3.34% 25.82% 3.11% 67.74% Light_8 1.63% 35.00% 0.23% 63.14%

Light_7 0.23% 35.89% 0.01% 63.87% Light_9 1.08% 35.55% 0.09% 63.28%

Light_8 0.89% 35.23% 0.05% 63.83%

Light_9 5.15% 30.97% 0.23% 63.64%

Light_10 1.68% 34.45% 0.16% 63.72%

Light_11 2.80% 33.32% 0.08% 63.80%

Light_12 3.76% 32.36% 0.14% 63.74%

APT#13

APT#14

APT#15

APT#16

APT #10

APT #11

APT #9
APT #5

APT #3

APT #1

APT #2

APT #12

APT #4

APT #6

APT #7

APT #8

0%     100%     
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3.2.Study cases 

Eight kinds of cases are designed and named by the utilized pre-processing techniques, see 

Table 5. The suffix (LR or NB) for RPS and SPS indicates the ranker (LR or NB) utilized in the 

corresponding pre-processing technique. Note that these case studies are applied to 16 apartments 

with totally 155 lightings. For each kind of cases, 4 types of classifiers (i.e., SVM, ANN, LR, NB) 

are utilized. Therefore, a total of 4960 cases are investigated (the combination of 8 types of cases, 

4 types of classifiers and 155 types of outputs (8*4*155=4960)). In other words, there are 2944 

(8*4*92) cases for Mode 1, 192 (8*4*6) cases for Mode 2, 384 (8*4*12) cases for Mode 3, 1344 

(8*4*42) cases for Mode 4, and 96 (8*4*3) cases for Mode 5, respectively.  

Table 5: Description of study cases 

Case Type Pre-processing 

techniques 

Inputs Classifiers Output  

Reference Case  

Hour of The Day, 

Day of The Week, 

Time of The Day, 

Altitude of The Sun, 

Global Horizontal Illuminance, 

Diffuse Horizontal Illuminance, 

Global Horizontal Irradiance, 

Diffuse Horizontal Irradiance, 

Motion Status 

SVM, 

ANN, 

LR, 

NB 

Lighting 

status 

(ON/OFF) 

RS Random Sampling 

SS  Sequential Sampling 

SBS  
Sequentially Balanced 

Sampling 

RPS_LR 

Reversed Preferential 

Sampling with using 

Logistic Regression as 

a ranker 

RPS_NB 

Reversed Preferential 

Sampling with using 

Naïve Bayes as a ranker 

SPS_LR 

Sequential Preferential 

Sampling using 

Logistic Regression as 

a ranker 

SPS_NB 

Sequential Preferential 

Sampling with using 

Naïve Bayes as a ranker 

 

Training and validation procedure of these cases are present in Figure 5. For reference cases, 

classifiers are trained by previous four weeks’ data to predict next week’s lighting status. The 

training data is updated once a week by the newly observed data. The procedure for other cases 

is: Firstly, the Xcandidate is processed by the corresponding pre-processing technique to produce the 

Xdesigned that contains four weeks’ data. Next, Xdesigned is used to train classifiers that will be used 

to predict one-week ahead lighting status. Then, the newly observed next week’s data and Xdesigned 

are updated as Xcandidate for next time’s prediction. 
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Figure 5: Training and validation procedure 

To test if these pre-processing techniques show consistent effect on different classifiers’ 

predictive performance, four types of commonly used classifiers (SVM, ANN, LR, and NB) with 

different mathematical nature are developed. Among these classifiers, SVM predicts the class 

label by maximizing the margin between different categories [51]; ANN predicts the output by 

trained activation functions of neurons in hidden layers and output layer; LR predicts the 

possibility of an object belonging to a positive class using a logistic function [52]; and NB 

conducts a prediction by applying Bayes’ algorithm with the ‘naive’ assumption of conditional 

independence between attributes given the class label value [53]. NB classifiers are generally 

classified as three types: Gaussian NB, Multinomial NB, and Bernoulli NB. This study uses 

Gaussian NB. 

As the predictive performance of classifiers is affected by their hyperparameters [54], the 

hyperparameters of classifiers in reference case are optimized by a RandomizedSearchCV 

function in Python [55]. It optimizes hyperparameters by randomly selecting a chosen number of 

hyperparametric pairs from a given domain and testing only those. The search space of 

hypermeters for each kind of classifier is listed in Table 6. Moreover, this case study is aimed at 

investigating the effect of pre-processing techniques on predictive results instead of the effect of 

classifiers’ hyperparameters, thus, the same kind of classifiers in other cases use the same 

hyperparameters as in reference cases. 
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Table 6: Search space for hyperparameter optimization 

Classifier Hyperparameter Description Search space 

SVM C 
Regularization parameter. The strength of the 

regularization is inversely proportional to C. 
loguniform(1e0, 1e3) 

ANN 

solver The solver for weight optimization ‘adam’, ‘lbfgs’ 

hidden layer sizes 
The i-th element represents the number of 

neurons in the i-th hidden layer. 
(5,2), (3,3), (5,5), (4,4) 

LR 

solver Algorithm to use in the optimization problem. 'newton-cg', 'lbfgs', 'liblinear' 

C 
Regularization parameter. The strength of the 

regularization is inversely proportional to C. 
loguniform(1e0, 1e3) 

Class weight Weights associated with classes ‘balanced’, None 

NB var_smoothing 

Portion of the largest variance of all features 

that is added to variances for calculation 

stability. 

logspace(0,-9, num=100) 

 

All simulations are performed by Python 3.7 on a laptop with Intel Core i7-7700HQ CPU 

@2.80GHz and 8GB of RAM. 

4. Performance evaluation criteria 

This section will introduce accuracy measures for evaluating the difference between 

predicted values and measured values, and fairness measures that could be helpful to indicate Type 

II fairness achievement through rating the difference of predictive performance between 

conditions defined by the protected attribute. 

4.1.Accuracy measures 

In this study, accuracy (Equation 2), recall (Equation 3), and specificity (Equations 4) are 

selected to evaluate the predictive accuracy for the studied two-class classification problems. 

Accuracy is the overall predictive accuracy, which means the rate of accurate predicted samples 

to the entire scope of samples. Recall stipulates the true positive rate, which is the rate of accurate 

prediction when Y=Positive. In other words, it reflects the predictive accuracy of PP and NP 

conditions. Specificity (also called true negative rate) is the portion of accurate prediction when 

Y=Negative. Thus, it shows the predictive accuracy for validation data in conditions PN and NN. 

                          Accuracy = 𝑃[𝑌̂ = 𝑦 | 𝑌 = 𝑦]                                                                 (2)  

                      Recall = 𝑃[𝑌̂ = Positive | 𝑌 = Positive]                                                      (3)  

                    Specificity = 𝑃[𝑌̂ = Negative | 𝑌 = Negative]                                              (4)  

where 𝑌̂ means the predicted label, 𝑌̂ ∈ [Negative, Positive] 

4.2.Fairness measures 

The accuracy measures under different conditions defined by the protected attribute (denoted 



19 

 

by S) are defined as the group conditional accuracy measures, i.e., c-Accuracy (Equation 5), c-

Recall (Equation 6) and c-Specificity (Equation 7), etc. On the one hand, when S = Positive, its 

conditional accuracy measures are called 1-Accuracy, 1-Recall and 1-Specificity. Note that 1-

Accuracy reflects the overall predictive accuracy of PP and PN, while 1-Recall is the predictive 

accuracy of PP and 1-Specificity shows the accuracy of PN. On the other hand, for S = Negative, 

its conditional accuracy measures are called 0-Accuracy, 0-Recall and 0-Specificity. 0-Accuracy 

is the predictive accuracy of NP and NN, while 0-Recall is the accuracy of NP and 0-Specificity 

presents the predictive accuracy of NN. 

                    c − Accuracy = 𝑃[𝑌̂ = 𝑦 | 𝑌 = 𝑦, 𝑆 = 𝑠]                                                         (5)  

                    c − Recall = 𝑃[𝑌̂ = Positive | 𝑌 = Positive, 𝑆 = 𝑠]                                     (6)  

                    𝑐 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑃[𝑌̂ = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 | 𝑌 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑆 = 𝑠]                        (7)  

where c shows the group conditional accuracy measures; c ∈ [0, 1]. 

To quantify the performance similarity between S = Positive and S = Negative, accuracy 

rate (Equation 8), recall rate (Equation 9) and specificity rate (Equation 10) are selected as fairness 

measures. Furthermore, to determine whether Type II fairness exists (i.e., predictive performance 

between different conditions is similar enough), “80 percent rule” [56] could be utilized. This rule 

illustrated that the predictive result is fair when the selected fairness measure is higher than 80%. 

                                Accuracy rate =  
min(1 − Accuracy, 0 − Accuracy)

max(1 − Accuracy, 0 − Accuracy)
                                     (8)  

                                         Recall rate =  
min(1 − Recall, 0 − Recall)

max(1 − Recall, 0 − Recall)
                                                 (9) 

                                 Specificity rate =  
min(1 − Specificity, 0 − Specificity)

max(1 − Specificity, 0 − Specificity)
                              (10) 

5. Results 

The predictive results of study cases are summarized in terms of accuracy measures (Section 

5.1) and fairness measures (Section 5.2). 

5.1. Results: accuracy 

The overall accuracy (y axis) of different classifiers (x axis) trained based on data processed 

by different pre-processing techniques (legend), for lights under different modes (subfigure title) 

are summarized in Figure 6. It shows that reference cases only present a slight predictive accuracy 

variation between different classifiers in the same mode. However, when using the same classifier, 

reference cases under Mode 4 usually present the highest accuracy (higher than 90% mostly), 

followed by Mode 1 (higher than 85% mostly), Mode 2 (65% - 95%), Mode 3 (55% - 80%), and 
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Mode 5 (40% - 55%). This indicates that even if lights classified in Mode 1 to Mode 4 show the 

same lighting status pattern (i.e. turned OFF most of the time), their predictive accuracy would be 

affected by the motion status distribution. The more evenly the motion status is distributed, the 

higher the lighting status predictive accuracy. Furthermore, the accuracy of all cases in Mode 5 is 

quite low and not acceptable. It might be because of the irrelevance between inputs features and 

the output. However, it is still analyzed to show the general effect of pre-processing techniques 

on the predictive output. 

For most cases, the RS shows the most harmful influence on the accuracy, followed by RPS. 

For instance, in Figure 6(a), RS results in the worst accuracy than other pre-processing techniques. 

RPS decreases the accuracy to be lower than 80% for most lights in Mode 1, Mode 2 and Mode 

4, while the accuracy is dropped to be less than 50% in Mode 3. The newly proposed SBS shows 

slightly better accuracy than RPS, but its reduction effect on the overall accuracy is more 

significant than SS and SPS. Besides, the effect of ranker on the predictive accuracy is ignorable 

for RPS, while using LR as the ranker for SPS shows higher accuracy than using NB under Mode 

2 and lower accuracy than NB under Mode 3. 

In Mode 5, RS significantly decreases the overall accuracy for Light_4 of APT #11 from ~40% 

to ~ 20% when using ANN and LR and ~10% when using SVM and NB. RPS decreases the 

accuracy for Light_4 of APT #11 to be lower than ~20%, while SBS could maintain the accuracy 

at ~25%. On the other hand, the effect of RS, RPS, and SBS on Light_3 of APT #5 and Light_6 

of APT #12 is slight and usually depends on classifiers. Furthermore, SS and SPS usually slightly 

decrease the overall predictive accuracy for Mode 5. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 

 
(e) Mode 5 

Figure 6: Accuracy for different modes 
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Besides, the effect of pre-processing techniques and classifiers on the recall are presented in 

Figure 7. For Mode 1 to Mode 4, the recall is zero for most of reference cases when using SVM. 

However, the recall of reference cases could be increased to ~5% - ~71% for Mode 1, ~17% - 

~56% for Mode 2, ~5% - ~47% for Mode 3, and ~5% - ~86% for Mode 4, by using LR. Moreover, 

when using the same classifier for lights in Mode 1 to Mode 4, cases using RS, RPS, or SBS show 

significantly higher recall than cases using SS or SPS. This result is contrary to the overall 

accuracy. It is because that lights in Mode 1 to Mode 4 are turned OFF most of the time in Xcandidate 

and the validation dataset, thus, their overall accuracy is in line with the specificity (see Figure 8). 

When using these pre-processing techniques to process Xcandidate, data with ‘ON’ lighting status 

would be increased in Xdesigned and data with ‘OFF’ lighting status would be decreased. As a result, 

the recall would be increased, while specificity and accuracy would be decreased. Among these 

pre-processing techniques, RPS has the most powerful ability to process a balanced dataset while 

sampling the most representative data for distinguishing ‘ON’ class label, thus, it presents the 

highest recall improvement ability. Besides, SBS could get a balanced Xdesigned at the first time of 

implementation and capture the people’s most recent lighting usage habits, thus, it shows 

comparable recall improvement ability than RPS, especially in Mode 2. In addition, selecting 

different kinds of ranker would not affect the recall improvement ability of RPS. However, using 

LR as the ranker in SPS show higher recall than using NB. 

However, in Mode 5, all pre-processing techniques, especially RS, decrease the recall for 

Light_3 in APT #5 and Light_4 in APT #11, because these two lights are mostly turned ON in 

Xcandidate and applying pre-processing techniques would decrease this ratio. By contrast, these pre-

processing techniques increase the recall for Light_6 of APT #12. Moreover, SS presents the 

highest recall for Light_6 of APT #12, when utilizing SVM or NB.  
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 

 
(e) Mode 5 

Figure 7: Recall for different modes 

 

As illustrated in previous paragraphs, for all cases in Mode 1 to Mode 4, the overall accuracy 
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is in line with the specificity. Therefore, detailed description and analysis of specificity for these 

modes will not be presented. However, the situation is different for Mode 5 (see Figure 8(e)). 

Although SBS and RPS increase the mean specificity, they show a specificity reduction for 

Light_6 of APT #12, whose status was evenly distributed among ON/OFF classes. Besides, the 

effect of RS is not consistent for different classifiers. Furthermore, the SS slightly decreases the 

mean specificity for Mode 5, because of the least specificity increasing ability for Light_3 of APT 

#5 and Light_4 of APT #11. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 

 
(e) Mode 5 

Figure 8: Specificity for different modes 
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5.2. Results: fairness 

The accuracy rate for different modes is present in Figure 9. Reference cases in Mode 1, 

Mode 4 and Mode 5 could ensure the accuracy rate to be higher than 80%. RS or RPS often results 

in the lowest accuracy rate compared to other pre-processing techniques in Mode 1, Mode 3 and 

Mode 4. For instance, in Figure 9(a), RS and RPS decrease the mean accuracy rate from 93% 

(reference case) to 82% when using SVM, and their lowest accuracy rate even drops to 45%. 

However, their effect on the accuracy rate of Mode 2 various among classifiers, while RS 

decreases the accuracy rate of Mode 5 but RPS increases it. More importantly, SBS results in 

higher accuracy rate for most lighting series than RPS. The effect of SS is comparable with SPS. 

For all modes, both slightly change the accuracy rate compared to reference cases. The effect of 

rankers on the accuracy rate is neglectable for both RPS and SPS. Moreover, most cases in Mode 

5 present a higher than 80% accuracy rate. 

The recall rate (see Figure 10) for Mode 1, Mode 3 and Mode 4 is almost zero in most 

reference cases, while the recall rate of reference cases varies between 0% and 80% for Mode 2. 

Applying RS, RPS and SBS could effectively improve the recall rate. For example, RPS increases 

the mean recall rate to be higher than 80% in Mode 1, Mode2 and Mode 4, and higher than 60% 

in Mode 3. In general, the recall rate improvement ability of SBS is ~7% lower than RPS in Mode 

1, Mode 3 and 4 when using SVM, ANN, or LR, while it is almost equal to RPS when using NB 

or in Mode 2. RS also shows better recall rate than SBS in Mode 1 and Mode 4. In addition, SPS 

results in better recall rate than SS for Mode 1, Mode 3 and Mode 4. The influence of ranker on 

the recall rate is not significant for RPS, while using LR as the ranker in SPS usually presents 

higher recall rate than NB. Furthermore, for Mode 5, the recall rate of most cases is similar to 

their corresponding accuracy rate. RS presents the lowest mean recall rate in Mode 5. 

The specificity rate (see Figure 11) is similar to the accuracy rate for cases under Mode 1 and 

Mode 3. However, for Mode 2 and Mode 4, the specificity rate of reference cases is higher than 

their corresponding accuracy rate. This indicates that the poor recall rate shows negative effect on 

the accuracy rate. Furthermore, RS show lower specificity rate than SBS and RPS in Mode 1, 

Mode 3, and Mode 4. Moreover, for Mode 5 (see Figure 11(e)), the lowest specificity rate in each 

box represents the results for Light_4 of APT #11, which is turned ON most of the time. Its 0% 

specificity rate is caused by the 0% 1-Specificity and 0-Specificity; thus, it does not affect the 

accuracy rate. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
 

(e) Mode 5 

Figure 9: Accuracy rate for different modes 
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(e) Mode 5 

Figure 10: Recall rate for different modes 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 

 
(e) Mode 5 

Figure 11: Specificity rate for different modes

6. Discussion 

Through analyzing results presented in Section 5.1, imbalanced training dataset would result 
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in higher predictive accuracy for majority classes and lower for minority classes. For instance, 

lights in Mode 1 were turned OFF most of time in Xcandidate, which means that lighting status ‘OFF’ 

is the majority class and ‘ON’ is the minority class. Reference cases for these lights usually present 

a higher than 90% specificity but almost 0% recall. To increase the predictive accuracy of the 

minority class, RPS would be the first choice. If a relatively simple algorithm is another 

requirement, RS and SBS could be good choices as they do not contain a ranker which contributes 

more hyperparameters to the pre-processing technique. The great predictive performance 

increasing ability of RS, RPS and SBS for minority class is because they produce a balanced 

training dataset at the first time of implementation. This finding reveals their potential application 

to fault detection, which requires higher accuracy for minority conditions.  

In some cases, SBS even shows comparable result than RPS. This is because occupancy 

habits, such as lighting usage and occupancy pattern, are seasonally changed [57]. Therefore, in 

these cases, newly collected data would be more representative than old ones. As a result, Xdesigned 

of SBS would be similar as of RPS. 

One the other hand, when utilizing SS or SPS, predictive accuracy for minority classes maybe 

increased gradually. This is because the amount of data in minority classes is increased as time 

goes on (discussed in our previous study [21]). 

Furthermore, in some building and indoor environment cases, predictive performance for 

majority classes and minority classes all matters. Therefore, decreasing their difference also need 

to be considered. Absolute difference between recall and specificity are summarized in Figure 12. 

Reference cases present the highest absolute difference compared to other cases. It further 

indicates that imbalanced training dataset results in perfect predictive performance for majority 

classes but poor performance for minority classes. To narrow the absolute difference between 

recall and specificity, RS, SBS and RPS could be selected. In most cases, SBS shows comparable 

results with RPS. For instance, when using SVM in Mode 1, these two pre-processing techniques 

could decrease the mean absolute difference from ~96% (reference cases) to ~32%. However, SS 

shows the least difference decline. Therefore, it is not suitable for studies that pursue a model with 

uniform predictive performance for all classes. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 

 
(e) Mode 5 

Figure 12: Absolute difference between recall and specificity for different Modes

One problem in this study is the poor predictive accuracy for lights in Mode 5. It is resulted 

from the non-representative input features. From Figure 13, for Mode 5, all input features are not 
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significantly related to the light status (output), while there are some strong relationships between 

input features and lights in Mode 1 to Mode 4. Note that in this study, input features are kept as 

the same for all cases to make the pre-processing techniques or classifiers as the control variables. 

However, in real-world application, proper features should be selected for specific problems. 

Another interesting finding from Figure 13 is that lighting status could be highly dependent on 

motion status in some cases, such as in Mode 3. In these cases, suppressing motion status from 

input features may destroy the predictive performance. This means that excluding protected 

attribute could not ensure the achievement of Type I fairness: The predictive result is independent 

of the protected attribute. Moreover, detailed correlation matrix values are present in the 

supplementary information. 

Furthermore, this paper reveals that training dataset, in which the protected attribute is 

distributed imbalance, could results in worse fairness rate, when the protected attribute is related 

to the output. For instance, in Mode 1 and Mode 4, the ‘Motion Status_total’ is almost evenly 

distributed among ON/OFF labels, while it is turned OFF most of time in Mode 3 and 5. Thus, 

from Figure 9, reference cases in Mode 1 and Mode 4 present higher accuracy rate than reference 

cases in Mode 2 and Mode 3. 
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Figure 13: Correlation matrix of input features and outputs 
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7. Conclusion 

In this study, SBS was proposed to process Xcandidate to a balanced dataset that maintains the 

most recent information. Then, generalizability of four pre-processing techniques—SS, SBS, RPS, 

and SPS—were studied and compared with RS through a case study that applied them to process 

5 modes of Xcandidate before predicting the lighting status in 16 apartments. Totally, 4,960 cases 

were investigated. The following conclusions are draw from the case study: 

(1) Imbalanced training dataset not only results in poor predictive accuracy for minority 

classes, but also bad fairness rates. 

(2) In terms of the effect on predictive accuracy, SBS, RS, and RPS shows the most 

significant accuracy improvement ability for minority classes, but RS shows the most 

harmful influence on accuracy of majority classes. When Xcandidate is quite imbalanced, 

its negative effect on the overall predictive accuracy could be unacceptable. Besides, the 

newly proposed SBS shows comparable effect on predictive accuracy as RPS, but it is 

simpler as it does not require a ranker. On the other hand, SS and SPS shows a slightly 

accuracy improvement for minority classes with an acceptable price of accuracy decrease 

on majority classes. Rankers in pre-processing techniques could affect the predictive 

performance; however, no consistent pattern has been found. 

(3) From the aspect of fairness improvement, all pre-processing techniques, especially SBS, 

RS, and RPS, could effectively increase the recall rate. However, RS would result in the 

greatest decrease of specificity rate for Mode 1, Mode 3, and Mode 4. SS and SPS could 

remain the specificity rate for most cases in Mode 1 and Mode 4 to be higher than 80%. 

Moreover, RPS or RS often results in the lowest accuracy rate in Mode 1, Mode 3 and 

Mode 4. 

(4) The newly proposed SBS could show similar effects on accuracy and Type II fairness as 

RPS, when patterns in training dataset are changed with time.  

Overall, this study verifies the generalizability of the proposed pre-processing techniques to 

improve Type II fairness while preserving accuracy. Researchers are recommended to select the 

proper pre-processing techniques based on their research objective and training data distribution. 

However, this study presents some limitations: (1) The input features were the same for all cases, 

which results in poor predictive accuracy for cases whose output is not highly related to these 

features. (2) The sample size for Mode 5 is too small. (3) The influence of relationship between 

time change and data pattern on the result of SBS technique is not quantified. (4) Pre-processing 

methods are only tested on lighting status prediction, while fault detection could be a potential 
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application field. Future studies focusing on solving these drawbacks could be interesting. 
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Abbreviations 

ANN Artificial Neural Network 

AHUs Air Handling Units 

BMS Building Management Systems 

DDBMs Data-Driven Buildings Models 

DT Decision Tree 

FDD Fault Detection and Diagnosis 

GAN Generative Adversarial Network 

HVAC Heating Ventilation and Air-Conditioning 

IoT Internet of Things 

KNN k-Nearest-Neighbor 

LR Linear Regression 

MLP Multi-Layer Perceptron 

MPC Model Predictive Controller 

NB Naïve Bayes 

RF Random Forest 

RPS Reversed Preferential Sampling 

RS Random Sampling 

SBS Sequentially Balanced Sampling 

SMOTE Synthetic Minority Oversampling Technique 

SPS Sequential Preferential Sampling 

SS Sequential Sampling 

SVM Support Vector Machine 

 

Nomenclature 

D Unprotected attributes 
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MAE Mean Absolute Error 

NN The condition with Negative protected attribute and Negative actual class label 

|𝑵𝑵| The number of data points in NN of Xcandidate 

|𝑵𝑵|𝒅𝒆𝒔𝒊𝒈𝒏 The expected number of data points in NN of Xdesigned 

NP The condition with Negative protected attribute and Positive actual class label 

|𝑵𝑷| The number of data points in NP of Xcandidate 

|𝑵𝑷|𝒅𝒆𝒔𝒊𝒈𝒏 The expected number of data points in NP of Xdesigned 

PN The condition with Positive protected attribute and Negative actual class label 

|𝑷𝑵| The number of data points in PN of Xcandidate 

|𝑷𝑵|𝒅𝒆𝒔𝒊𝒈𝒏 The expected number of data points in PN of Xdesigned 

PP The condition with Positive protected attribute and Positive actual class label 

|𝑷𝑷| The number of data points in PP of Xcandidate 

|𝑷𝑷|𝒅𝒆𝒔𝒊𝒈𝒏 The expected number of data points in PP of Xdesigned 

p_negative The possibility of classifying a data point as negative 

p_positive The possibility of classifying a data point as positive 

RMSE Root Mean Square Error 

S Protected attributes 

Xcandidate Candidate training dataset 

Xdesigned Designed training dataset 

| 𝑿𝒅𝒆𝒔𝒊𝒈𝒏𝒆𝒅 | The number of data points in Xdesigned 

Y Class label of the training point 

𝒀̂ Predicted class label 
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