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ABSTRACT
Mashup is a web technology that combines information from
more than one source into a single web application. This
technique provides a new platform for different data providers
to flexibly integrate their expertise and deliver highly cus-
tomizable services to their customers. Nonetheless, com-
bining data from different sources could potentially reveal
person-specific sensitive information. In this paper, we study
and resolve a real-life privacy problem in a data mashup ap-
plication for the financial industry in Sweden, and propose a
privacy-preserving data mashup (PPMashup) algorithm to
securely integrate private data from different data providers,
whereas the integrated data still retains the essential infor-
mation for supporting general data exploration or a specific
data mining task, such as classification analysis. Experi-
ments on real-life data suggest that our proposed method
is effective for simultaneously preserving both privacy and
information usefulness, and is scalable for handling large
volume of data.

1. INTRODUCTION
Mashup is a web technology that combines information

and services from more than one source into a single web
application. It was first discussed in a 2005 issue of Business
Week [17] on the topic of integrating real estate information
into Google Maps. Since then, web giants like Amazon,
Yahoo!, and Google have been actively developing mashup
applications. Mashup has created a new horizon for service
providers to integrate their data and expertise to deliver
highly customizable services to their customers.

Data mashup is a special type of mashup application that
aims at integrating data from multiple data providers de-
pending on the user’s service request. Figure 1 illustrates
a typical architecture of the data mashup technology. A
service request could be a general data exploration or a
sophisticated data mining task such as classification anal-
ysis. Upon receiving a service request, the data mashup
web application dynamically determines the data providers,
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Figure 1: Architecture of (Privacy-Preserving) Data
Mashup

collects information from them through their web service
application programming interface (API),1 and then inte-
grates the collected information to fulfill the service request.
Further computation and visualization can be performed at
the user’s site (e.g., a browser or an applet). This is very
different from the traditional web portal which simply di-
vides a web page or a website into independent sections for
displaying information from different sources.

A data mashup application can help ordinary users ex-
plore new knowledge. Nevertheless, it could also be misused
by adversaries to reveal sensitive information that was not
available before the data integration. In this paper, we study
the privacy threats caused by data mashup and propose a
privacy-preserving data mashup (PPMashup) algorithm to
securely integrate person-specific sensitive data from differ-
ent data providers, whereas the integrated data still retains
the essential information for supporting general data explo-
ration or a specific data mining task, such as classification
analysis. The following real-life scenario illustrates the si-
multaneous need of information sharing and privacy preser-
vation in the financial industry.

This research problem was discovered in a collaborative
project with Nordax Finans AB, which is a provider of un-
secured loans in Sweden. We generalize their problem as
follows: A loan company A and a bank B observe different
sets of attributes about the same set of individuals identi-
fied by the common key SSN,2 e.g., TA(SSN, Age, Balance)

1Authentication may be required to ensure that the user has
access rights to the requested data.
2SSN is called ”personnummer” in Sweden.



Table 1: Raw tables

Shared Party A Party B
SSN Class Sex ... Job Salary ...
1-3 0Y3N Male Janitor 30K
4-7 0Y4N Male Mover 32K
8-12 2Y3N Male Carpenter 35K
13-16 3Y1N Female Technician 37K
17-22 4Y2N Female Manager 42K
23-25 3Y0N Female Manager 44K
26-28 3Y0N Male Accountant 44K
29-31 3Y0N Female Accountant 44K
32-33 2Y0N Male Lawyer 44K

34 1Y0N Female Lawyer 44K

and TB(SSN, Job, Salary). These companies want to imple-
ment a data mashup application that integrates their data to
support better decision making such as loan or credit limit
approval, which is basically a data mining task on classifi-
cation analysis. In additional to companies A and B, their
partnered credit card company C also have access to the
data mashup application, so all three companies A, B, and
C are data recipients of the final integrated data. Com-
panies A and B have two privacy concerns. First, simply
joining TA and TB would reveal the sensitive information to
the other party. Second, even if TA and TB individually do
not contain person specific or sensitive information, the in-
tegrated data can increase the possibility of identifying the
record of an individual. The next example illustrates this
point.

Example 1. Consider the data in Table 1 and taxonomy
trees in Figure 2. Party A (the loan company) and Party B
(the bank) own TA(SSN, Sex, . . . , Class) and TB(SSN, Job,
Salary, . . . , Class), respectively. Each row represents one
or more raw records and Class contains the distribution of
class labels Y and N, representing whether or not the loan
has been approved. After integrating the two tables (by
matching the SSN field), the female lawyer on (Sex, Job)
becomes unique, therefore, vulnerable to be linked to sen-
sitive information such as Salary. In other words, linking
attack is possible on the fields Sex and Job. To prevent
such linking, we can generalize Accountant and Lawyer to
Professional so that this individual becomes one of many
female professionals. No information is lost as far as classi-
fication is concerned because Class does not depend on the
distinction of Accountant and Lawyer.

In this paper, we consider the following private data mashup
problem. Given multiple private tables for the same set of
records on different sets of attributes (i.e., vertically parti-
tioned tables), we want to efficiently produce an integrated
table on all attributes for releasing it to different parties.
The integrated table must satisfy both the following privacy
and information requirements:

Privacy Requirement: The integrated table has to sat-
isfy k-anonymity: A data table T satisfies k-anonymity if
every combination of values on QID is shared by at least
k records in T , where the quasi-identifier (QID) is a set of
attributes in T that could potentially identify an individual
in T , and k is a user-specified threshold. k-anonymity can
be satisfied by generalizing domain values into higher level
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Figure 2: Taxonomy trees and QIDs

concepts. In addition, at any time in the procedure of gen-
eralization, no party should learn more detailed information
about the other party other than those in the final inte-
grated table. For example, Lawyer is more detailed than
Professional. In other words, the generalization process
must not leak more specific information other than the final
integrated data,

Information Requirement: The generalized data is as
useful as possible to classification analysis. Generally speak-
ing, the privacy goal requires masking sensitive information
that are specific enough to identify individuals, whereas the
classification goal requires extracting trends and patterns
that are general enough to predict new cases. If generaliza-
tion is carefully performed, it is possible to mask identifying
information while preserving patterns useful for classifica-
tion.

There are two obvious yet incorrect approaches. The first
one is ”integrate-then-generalize”: first integrate the two ta-
bles and then generalize the integrated table using some
single table anonymization methods [4, 12, 13, 19, 24]. Un-
fortunately, this approach does not preserve privacy in the
studied scenario because any party holding the integrated
table will immediately know all private information of both
parties. The second approach is ”generalize-then-integrate”:
first generalize each table locally and then integrate the gen-
eralized tables. This approach does not work for a quasi-
identifier that spans multiple tables. In the above example,
the k-anonymity on (Sex,Job) cannot be achieved by the
k-anonymity on each of Sex and Job separately.

In additional to the privacy and information requirements,
the data mashup application is an online web application.
The user dynamically specifies their requirement and the
system is expected to be efficient and scalable to handle
high volume of data.

This paper makes four contributions.

1. We identify a new privacy problem through a collabo-
ration with the financial industry and generalize their
requirements to formulate the private data mashup
problem (Section 3). The goal is to allow data shar-
ing for classification analysis in the presence of privacy
concern. This problem is very different from secure
multiparty computation [45], which allows ”result shar-
ing”(e.g., the classifier in our case) but completely pro-
hibits data sharing. In many applications, data shar-
ing gives greater flexibility than result sharing because
data recipients can perform their required analysis and
data exploration, such as, mine patterns in a specific
group of records, visualize the transactions containing



a specific pattern, try different modeling methods and
parameters.

2. We present a privacy-preserving data mashup (PP-
Mashup) algorithm to securely integrate private data
from multiple parties (Sections 4-5). Essentially, our
algorithm produces the same final anonymous table as
the integrate-then-generalize approach, but will only
reveal local data that has satisfied a given k-anonymity
requirement. This technique is simple but effective for
privacy protection.

3. We implement the proposed method in the context of
a data mashup web application and evaluate its per-
formance (Section 6). Experimental results on real-life
data suggest that the method can effectively achieve a
privacy requirement without compromising the useful
data for classification, and the method is scalable to
handle large data set.

4. We further extend the proposed privacy-preserving method
to achieve other privacy requirements, such as `-diversity
[25], (α,k)-anonymity [40], and confidence bounding [38]
(Section 7).

2. RELATED WORK
Information integration has been an active area of database

research [6, 39]. This literature typically assumes that all in-
formation in each database can be freely shared [2]. Secure
multiparty computation (SMC), on the other hand, allows
sharing of the computed result (e.g., a classifier), but com-
pletely prohibits sharing of data [46], which is a primary goal
of our studied problem. An example is the secure multiparty
computation of classifiers [5, 7, 8, 45].

Yang et al. [44] proposed several cryptographic solutions
to collect information from a large number for data own-
ers. Yang et al. [45] developed a cryptographic approach to
learn classification rules from a large number of data owners
while their sensitive attributes are protected. The problem
can be viewed as a horizontally partitioned data table in
which each transaction is owned by a different data owner.
The model studied in this paper can be viewed as a ver-
tically partitioned data table, which is completely different
from [44, 45]. More importantly, the output of their method
is a classifier, but the output of our method is an integrated
anonymous data that supports classification analysis. Hav-
ing accessing the data, the data recipient has the freedom
to apply her own classifier and parameters.

Agrawal et al. [2] proposed the notion of minimal in-
formation sharing for computing queries spanning private
databases. They considered computing intersection, inter-
section size, equijoin and equijoin size, assuming that certain
metadata such as the cardinality of databases can be shared
to both parties. Besides, there exists an extensive literature
on inference control in multilevel secure databases [9, 16, 15,
14, 20]. All these works prohibit the sharing of databases.

The notion of k-anonymity was proposed in [33, 32], and
generalization was used to achieve k-anonymity in Datafly
system [34] and µ-Argus system [18]. Unlike generalization
and suppression, Xiao and Tao [41] proposed an alternative
approach, called anatomy, that does not modify the quasi-
identifier or the sensitive attribute, but de-associates the
relationship between the two. [42] proposed the notion of
personalized privacy to allow each record owner to specify

her own privacy level. This model assumes that Sensitive
Attribute has a taxonomy tree and that each record owner
specifies a guarding node in this taxonomy tree. Preserving
k-anonymity for classification was studied in [4, 12, 13, 19,
24]. [11, 37] studied the privacy threats caused by publishing
multiple releases. [43] proposed a new privacy notion called
m-invariance and an anonymization method for continuous
data publishing. All these works considered a single data
source, therefore, data integration is not an issue. In the case
of multiple private databases, joining all private databases
and applying a single table method would violate the privacy
requirement.

Jiang and Clifton [21, 22] proposed a cryptographic ap-
proach to securely integrate two distributed data tables to a
k-anonymous table without considering a data mining task.
First, each party determines a locally k-anonymous table.
Then, determine the intersection of RecID’s for the QID
groups in the two locally k-anonymous tables. If the inter-
section size of each pair of QID group is at least k, then the
algorithm returns the join of the two locally k-anonymous
tables which is globally k-anonymous; otherwise, perform
further generalization on both tables and repeat the RecID
comparison procedure. To prevent the other party from
learning more specific information than the final integrated
table through RecID, they employ a commutative encryp-
tion scheme [30] to encrypt the RecID’s for comparison.
This scheme ensures the equality of two values encrypted in
different order on the same set of keys, i.e., EKey1(EKey2

(RecID)) = EKey2(EKey1(RecID)). Moreover, Vaidya and
Clifton proposed techniques to mine association rules [35]
and to compute k-means clustering [36] over vertically par-
titioned data.

Miklau and Suciu [27] measured information disclosure of
a view set V with respect to a secret view S. S is secure
if publishing the answer to V does not alter the probability
of inferring the answer to S. However, they only focus how
to measure the information disclosure of exchange database
views while our work removes privacy risks by anonymizing
multiple private databases. There is a body of work on ran-
domizing data for achieving privacy [3, 10, 23]. Randomized
data are useful at the aggregated level (such as average or
sum), but not at the record level. Instead of randomizing the
data, we generalize the data to make information less pre-
cise while preserving the ”truthfulness” of information (say,
Lawyer generalized to Professional). Generalized data are
meaningful at the record level, therefore, can be utilized by
the human user to guide the search or interpret the result.
Finally, these works do not consider integration of multiple
data sources, which is a central topic in this paper.

Many synthetic data generation techniques were proposed
in the literature of statistical disclosure control in the sce-
nario of a single data publisher [1, 26]. Similar to random-
ization, the synthetic data usually preserve some important
statistical properties including mean, variances, the covari-
ance matrix, and the Pearson correlation matrix from the
original data. Although the disclosure risk is shown to be
lower than some simple masking methods such as additive
noise [26], it again does not preserve the truthfulness of infor-
mation at the record level. Therefore, both randomization
and synthetic data generation do not satisfy the requirement
of our data mashup application for the financial industry.
Yet, they are still useful techniques if the applications do
not require preserving data truthfulness at the record level.



3. PROBLEM DEFINITION
We first define k-anonymity on a single table and then

extend it for private data mashup from multiple parties.

3.1 The k-Anonymity
Consider a person-specific table T (ID, D1, . . . , Dm, Class).

ID is record identifier, such as SSN , that we can ignore
for now. Each Di is either a categorical or a continuous
attribute. The Class column contains class labels or distri-
bution. Let att(v) denote the attribute of a value v. The
data provider wants to protect against linking an individual
to a record in T through some subset of attributes called a
quasi-identifier, or QID. A sensitive linking occurs if some
value of the QID is shared by only a small number of records
in T . This requirement is defined below.

Definition 3.1 (Anonymity Requirement). Consider
p quasi-identifiers QID1, . . . , QIDp on T . a(qidj) denotes
the number of records in T that share the value qidj on
QIDj . The anonymity of QIDj , denoted A(QIDj), is the
smallest a(qidj) for any value qidj on QIDj . A table T satis-
fies the anonymity requirement {〈QID1, k1〉, . . . , 〈QIDp, kp〉}
if A(QIDj) ≥ kj for 1 ≤ i ≤ p, where kj is the anonymity
threshold on QIDj .

Definition 3.1 generalizes the traditional k-anonymity by
allowing the data provider to specify multiple QIDs. More
details on the motivation and specification of multiple QIDs
can be found in [12, 13]. Note that if QIDj is a subset of
QIDi, where i 6= j, and if kj ≤ ki, then 〈QIDi, ki〉 cov-
ers 〈QIDj , kj〉. 〈QIDj , kj〉 is redundant because if a table
T satisfies 〈QIDi, ki〉, then it must also satisfy 〈QIDj , kj〉;
therefore, 〈QIDj , kj〉 can be removed from the anonymity
requirement.

Example 2. 〈QID1 = {Sex, Job}, 4〉 states that every
qid on QID1 in T must be shared by at least 4 records
in T . In Table 1, the following qids violate this requirement:
〈Male, Janitor〉,
〈Male,Accountant〉,
〈Female,Accountant〉,
〈Male,Lawyer〉,
〈Female,Lawyer〉.

The example in Figure 2 specifies the k-anonymity require-
ment on two QIDs.

3.2 Private Data Mashup
Consider n data providers {Party 1,. . . ,,Party n}, where

each Party y owns a private table Ty(ID, Attribsy, Class)
over the same set of records. ID and Class are shared
attributes among all parties. Attribsy is a set of private
attributes. Attribsy ∩ Attribsz = ∅ for any 1 ≤ y, z ≤ n.
These parties agree to release ”minimal information” to form
an integrated table T (by matching the ID) for conduct-
ing a joint classification analysis. The notion of minimal
information is specified by the joint anonymity requirement
{〈QID1, k1〉, . . . , 〈QIDp, kp〉} on the integrated table. QIDj

is local if it contains only attributes from one party, and
global otherwise.

Definition 3.2 (Private Data Mashup). Given mul-
tiple private tables T1, . . . , Tn, a joint anonymity require-
ment {〈QID1, k1〉, . . . , 〈QIDp, kp〉}, and a taxonomy tree
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Figure 3: A solution cut for QID1 = {Sex,Job}

for each categorical attribute in ∪QIDj , the problem of pri-
vate data mashup is to efficiently produce a generalized inte-
grated table T such that (1) T satisfies the joint anonymity
requirement, (2) T contains as much information as possible
for classification, (3) each party learns nothing about the
other party more specific than what is in the final general-
ized T . We assume that the data providers are semi-honest,
meaning that they will follow the protocol but may attempt
to derive sensitive information from the received data.

For example, if a record in the final T has values Female
and Professional on Sex and Job, and if Party A learns that
Professional in this record comes from Lawyer, condition
(3) is violated. Our privacy model ensures the anonymity
in the final integrated table as well as in any intermediate
table.

To ease the explanation, we present our solution in a sce-
nario of two parties (n = 2). A discussion is given in Sec-
tion 5.4 to describe the extension to multiple parties.

4. SPECIALIZATION CRITERIA
To generalize T , a taxonomy tree is specified for each cat-

egorical attribute in ∪QIDj . A leaf node represents a do-
main value and a parent node represents a less specific value.
For a continuous attribute in ∪QIDj , a taxonomy tree can
be grown at runtime, where each node represents an inter-
val, and each non-leaf node has two child nodes representing
some optimal binary split of the parent interval. Figure 2
shows a dynamically grown taxonomy tree for Salary. We
generalize a table T by a sequence of specializations starting
from the top most general state in which each attribute has
the top most value of its taxonomy tree. A specialization,
written v → child(v), where child(v) denotes the set of child
values of v, replaces the parent value v with the child value
that generalizes the domain value in a record. A specializa-
tion is valid if the specialization results in a table satisfying
the anonymity requirement after the specialization. A spe-
cialization is beneficial if more than one class are involved
in the records containing v. If not then that specialization
does not provide any helpful information for classification.
Thus, a specialization is performed only if it is both valid
and beneficial.

The specialization process can be viewed as pushing the
”cut” of each taxonomy tree downwards. A cut of the taxon-
omy tree for an attribute Di, denoted Cuti, contains exactly
one value on each root-to-leaf path. Figure 3 shows a solu-
tion cut indicated by the dashed curve. Our specialization
starts from the top most solution cut and pushes down the
solution cut iteratively by specializing some value in the cur-
rent solution cut until violating the anonymity requirement.
Each specialization tends to increase information and de-
crease anonymity because records are more distinguishable
by specific values. The key is selecting a specialization at
each step with both impacts considered.



One core step of this approach is computing Score, which
measures the goodness of a specialization with respect to
privacy preservation and information preservation. The ef-
fect of a specialization v → child(v) can be summarized
by information gain, denoted InfoGain(v), and anonymity
loss, denoted AnonyLoss(v), due to the specialization. Our
selection criterion is to favor the specialization v that has
the maximum information gain per unit of anonymity loss:

Score(v) =
InfoGain(v)

AnonyLoss(v) + 1
. (1)

We add 1 to AnonyLoss(v) to avoid division by zero.

InfoGain(v): Let T [x] denote the set of records in T gener-
alized to the value x. Let freq(T [x], cls) denote the number
of records in T [x] having the class cls. Note that |T [v]| =∑

c |T [c]|, where c ∈ child(v). We have

InfoGain(v) = I(T [v])−
∑

c

|T [c]|
|T [v]|I(T [c]), (2)

where I(T [x]) is the entropy of T [x] [31]:

I(T [x]) = −
∑

cls

freq(T [x], cls)

|T [x]| × log2
freq(T [x], cls)

|T [x]| , (3)

Intuitively, I(T [x]) measures the mix of classes for the records
in T [x], and InfoGain(v) is the reduction of the mix by spe-
cializing v.

AnonyLoss(v): This is the average loss of anonymity by
specializing v over all QIDj that contain the attribute of v:

AnonyLoss(v) = avg{A(QIDj)−Av(QIDj)}, (4)

where A(QIDj) and Av(QIDj) represents the anonymity
before and after specializing v. Note that AnonyLoss(v) not
just depends on the attribute of v; it depends on all QIDj

that contain the attribute of v. Hence, avg{A(QIDj) −
Av(QIDj)} is the average loss of all QIDj that contain the
attribute of v.

Example 3. The specialization ANY Job refines the 34
records into 16 records for Blue-collar and 18 records for
White-collar. Score(ANY Job) is calculated as follows.

I(RANY Job) = − 21
34
× log2

21
34
− 13

34
× log2

13
34

= 0.9597

I(RBlue−collar) = − 5
16
× log2

5
16
− 11

16
× log2

11
16

= 0.8960

I(RWhite−collar) = − 16
18
× log2

16
18
− 2

18
× log2

2
18

= 0.5033

InfoGain(ANY Job) = I(RANY Job)− ( 16
34
× I(RBlue−collar)

+ 18
34
× I(RWhite−collar)) = 0.2716

AnonyLoss(ANY Job) = avg{A(QID1)−AANY Job(QID1)}
= (34− 16)/1 = 18

Score(ANY Job) = 0.2716
18

= 0.0151.

For a continuous attribute, the specialization of an inter-
val refers to the optimal binary split that maximizes infor-
mation gain. We use information gain, instead of Score,
to determine the split of an interval because anonymity is
irrelevant to finding a split good for classification. This is
similar to the situation that the taxonomy tree of a categor-
ical attribute is specified independently of the anonymity
issue. Among the specializations of different continuous at-
tributes, we still use Score for selecting the best one, just
like categorical attributes.

Example 4. For the continuous attribute Salary, the top
most value is the full range interval of domain values, [1-99).
To determine the split point of [1-99), we evaluate the infor-
mation gain for the five possible split points for the values
30, 32, 35, 37, 42, and 44. The following is the calculation
for the split point at 37:

InfoGain(37) = I(R[1−99))− ( 12
34 × I(R[1−37)) + 22

34 × I(R[37−99)))

= 0.9597− ( 12
34 × 0.6500 + 22

34 × 0.5746) = 0.3584.

As InfoGain(37) is highest, we grow the taxonomy tree
for Salary by adding two child intervals, [1-37) and [37-99),
under the interval [1-99).

The next example shows that InfoGain alone may lead
to a quick violation of the anonymity requirement, thereby,
prohibiting specializing data to a lower granularity.

Table 2: Raw table for Example 5

Education Sex Work Hrs Class # of Recs.
10th M 40 20Y0N 20
10th M 30 0Y4N 4
9th M 30 0Y2N 2
9th F 30 0Y4N 4
9th F 40 0Y6N 6
8th F 30 0Y2N 2
8th F 40 0Y2N 2

Total: 40

Table 3: Generalized table by Score for Example 5

Education Sex Work Hrs Class # of Recs.
ANY Edu M [40-99) 20Y0N 20
ANY Edu M [1-40) 0Y6N 6
ANY Edu F [40-99) 0Y8N 8
ANY Edu F [1-40) 0Y6N 6

Example 5. Consider Table 2, an anonymity requirement
〈QID = {Education,Sex,Work Hrs}, 4〉, and specializations:

ANY Edu → {8th, 9th, 10th},
ANY Sex → {M, F}, and
[1-99) → {[1-40), [40-99)}.

The class frequency for the specialized values is:
Education: 0Y4N (8th), 0Y12N (9th), 20Y4N (10th)
Sex : 20Y6N (M), 0Y14N (F)
Work Hrs: 0Y12N ([1-40)), 20Y8N ([40-99))

Specializing Education best separates the classes, so is cho-
sen by InfoGain. After that, the other specializations be-
come invalid. Now, the two classes of the top 24 records
become indistinguishable because they are all generalized
into 〈 10th, ANY Sex, [1-99)〉. In contrast, the Score cri-
terion will first specialize Sex because of the highest Score
due to a small AnonyLoss. Subsequently, specializing Ed-
ucation becomes invalid, and the next specialization is on
Work Hrs. The final generalized table is shown in Table 3
where the information for distinguishing the two classes is
preserved.

5. OUR METHOD
In [12, 13], we proposed a top-down specialization (TDS)

approach to generalize a single table T . One non-privacy-
preserving approach to the problem of data mashup is to



first join the multiple private tables into a single table T and
then generalize T to satisfy a k-anonymity requirement us-
ing TDS. Though this approach does not satisfy the privacy
requirement (3) in Definition 3.2 (because the party that
generalizes the joint table knows all the details of the other
parties), the integrated table produced satisfies requirements
(1) and (2). Therefore, it is helpful to first have an overview
of TDS: Initially, all values are generalized to the top most
value in its taxonomy tree, and Cuti contains the top most
value for each attribute Di. At each iteration, TDS per-
forms the best specialization, which has the highest Score
among the candidates that are valid, beneficial specializa-
tions in ∪Cuti, and then updates the Score of the affected
candidates. The algorithm terminates when there is no more
valid and beneficial candidate in ∪Cuti. In other words, the
algorithm terminates if any further specialization would lead
to a violation of the anonymity requirement. An important
property of TDS is that the anonymity requirement is anti-
monotone with respect to a specialization: If it is violated
before a specialization, it remains violated after the special-
ization. This is because a specialization never increases the
anonymity count a(qid).

Now, we consider that the table T is given by two tables
(n = 2) TA and TB with a common key ID, where Party A
holds TA and Party B holds TB . At first glance, it seems
that the change from one party to two parties is trivial be-
cause the change of Score due to specializing a single at-
tribute depends only on that attribute and Class, and each
party knows about Class and the attributes they have. This
observation is wrong because the change of Score involves
the change of A(QIDj) that depends on the combination of
the attributes in QIDj . In PPMashup, each party keeps a
copy of the current ∪Cuti and generalized T , denoted Tg,
in addition to the private TA or TB . The nature of the
top-down approach implies that Tg is more general than the
final answer, therefore, does not violate the requirement (3)
in Definition 3.2. At each iteration, the two parties cooper-
ate to perform the same specialization as identified in TDS
by communicating certain information in a way that satisfies
the requirement (3) in Definition 3.2. Algorithm 1 describes
the procedure at Party A (same for Party B).

First, Party A finds the local best candidate using the
specialization criteria presented in Section 4 and commu-
nicates with Party B to identify the overall global winner
candidate, say w. To protect the input score, the secure
multiparty maximum protocol [46] can be used. Suppose
that w is local to Party A (otherwise, the discussion below
applies to Party B). Party A performs w → child(w) on its
copy of ∪Cuti and Tg. This means specializing each record
t ∈ Tg containing w into those t′1, . . . , t

′
z containing child

values in child(w). Similarly, Party B updates its ∪Cuti

and Tg, and partitions TB [t] into TB [t′1], . . . , TB [t′z]. Since
Party B does not have the attribute for w, Party A needs
to instruct Party B how to partition these records in terms
of IDs.

Example 6. Consider Table 1 and the joint anonymity
requirement:
{〈QID1 = {Sex, Job}, 4〉, 〈QID2 = {Sex,Salary}, 11〉}.

Initially,
Tg = {〈ANY Sex, ANY Job, [1− 99)〉}

and
∪Cuti = {ANY Sex, ANY Job, [1− 99)},

and all specializations in ∪Cuti are candidates. To find the

Algorithm 1 PPMashup for Party A (same as Party B)

1: initialize Tg to include one record containing top most
values;

2: initialize ∪Cuti to include only top most values;
3: while there is some candidate in ∪Cuti do
4: find the local candidate x of highest Score(x);
5: communicate Score(x) with Party B to find the win-

ner;
6: if the winner w is local then
7: specialize w on Tg;
8: instruct Party B to specialize w;
9: else

10: wait for the instruction from Party B;
11: specialize w on Tg using the instruction;
12: end if ;
13: replace w with child(w) in the local copy of ∪Cuti;
14: update Score(x), the beneficial/valid status for can-

didates x in ∪Cuti;
15: end while;
16: output Tg and ∪Cuti;

candidate, Party A computes Score(ANY Sex), and Party
B computes Score(ANY Job) and Score([1-99)).

Below, we describe the key steps: find the winner can-
didate (Line 4-5), perform the winning specialization (Line
7-11), and update the score and status of candidates (Line
14). For Party A, a local attribute refers to an attribute
from TA, and a local specialization refers to that of a local
attribute.

5.1 Find the Winner Candidate
Party A first finds the local candidate x of highest Score(x),

by making use of computed InfoGain(x), Ax(QIDj) and
A(QIDj), and then communicates with Party B (using se-
cure multiparty max algorithm in [46]) to find the winner
candidate. InfoGain(x), Ax(QIDj) and A(QIDj) come
from the update done in the previous iteration or the ini-
tialization prior to the first iteration. This step does not ac-
cess data records. Updating InfoGain(x), Ax(QIDj) and
A(QIDj) is considered in Section 5.3.

5.2 Perform the Winner Candidate
Suppose that the winner candidate w is local at Party A

(otherwise, replace Party A with Party B). For each record t
in Tg containing w, Party A accesses the raw records in TA[t]
to tell how to specialize t. To facilitate this operation, we
represent Tg by the data structure called Taxonomy Indexed
PartitionS (TIPS).

Definition 5.1 (TIPS). TIPS is a tree structure. Each
node represents a generalized record over ∪QIDj . Each
child node represents a specialization of the parent node
on exactly one attribute. A leaf node represents a gener-
alized record t in Tg and the leaf partition containing the
raw records generalized to t, i.e., TA[t]. For a candidate x in
∪Cuti, Px denotes a leaf partition whose generalized record
contains x, and Linkx links up all Px’s.

With the TIPS, we can find all raw records generalized to
x by following Linkx for a candidate x in ∪Cuti. To ensure
that each party has only access to its own raw records, a
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Figure 5: The TIPS after the second specialization

leaf partition at Party A contains only raw records from TA

and a leaf partition at Party B contains only raw records
from TB . Initially, the TIPS has only the root node rep-
resenting the most generalized record and all raw records.
In each iteration, the two parties cooperate to perform the
specialization w by refining the leaf partitions Pw on Linkw

in their own TIPS.

Example 7. Continue with Example 6. Initially, TIPS
has the root representing the most generalized record 〈ANY
Sex, ANY Job, [1 − 99)〉, TA[root] = TA and TB [root] =

TB . The root is on LinkANY Sex, LinkANY Job, and Link[1−99).
See the root in Figure 4. The shaded field contains the num-
ber of raw records generalized by a node. Suppose that the
winning candidate w is

[1-99) → {[1-37), [37-99)} (on Salary).

Party B first creates two child nodes under the root and
partitions TB [root] between them. The root is deleted from
all the Linkx, the child nodes are added to Link[1−37) and
Link[37−99), respectively, and both are added to LinkANY Job

and LinkANY Sex. Party B then sends the following instruc-
tion to Party A:

IDs 1-12 go to the node for [1-37).
IDs 13-34 go to the node for [37-99).

On receiving this instruction, Party A creates the two child
nodes under the root in its copy of TIPS and partitions
TA[root] similarly. Suppose that the next winning candi-
date is

ANY Job → {Blue-collar,White-collar}.
Similarly the two parties cooperate to specialize each leaf
node on LinkANY Job, resulting in the TIPS in Figure 5.

We summarize the operations at the two parties, assuming
that the winner w is local at Party A.

Party A. Refine each leaf partition Pw on Linkw into
child partitions Pc. Linkc is created to link up the new
Pc’s for the same c. Mark c as beneficial if the records
on Linkc has more than one class. Also, add Pc to every

Linkx other than Linkw to which Pw was previously linked.
While scanning the records in Pw, Party A also collects the
following information.

• Instruction for Party B. If a record in Pw is specialized
to a child value c, collect the pair (id,c), where id is
the ID of the record. This information will be sent to
B to refine the corresponding leaf partitions there.

• Count statistics. The following information is collected
for updating Score. (1) For each c in child(w): |TA[c]|,
|TA[d]|, freq(TA[c], cls), and freq(TA[d], cls), where
d ∈ child(c) and cls is a class label. Refer to Sec-
tion 4 for these notations. |TA[c]| (similarly |TA[d]|) is
computed by

∑ |Pc| for Pc on Linkc. (2) For each Pc

on Linkc: |Pd|, where Pd is a child partition under Pc

as if c was specialized.

Party B. On receiving the instruction from Party A,
Party B creates child partitions Pc in its own TIPS. At Party
B, Pc’s contain raw records from TB . Pc’s are obtained
by splitting Pw among Pc’s according to the (id, c) pairs
received.

We emphasize that updating TIPS is the only operation
that accesses raw records. Subsequently, updating Score(x)
(in Section 5.3) makes use of the count statistics without ac-
cessing raw records anymore. The overhead of maintaining
Linkx is small. For each attribute in ∪QIDj and each leaf
partition on Linkw, there are at most |child(w)| ”relinkings”.
Therefore, there are at most |∪QIDj |×|Linkw|×|child(w)|
”relinkings” for performing w.

5.3 Update the Score
The key to the scalability of our algorithm is updating

Score(x) using the count statistics maintained in Section 5.2
without accessing raw records again. Score(x) depends on
InfoGain(x), Ax(QIDj) and A(QIDj). The updated A(QIDj)
is obtained from Aw(QIDj), where w is the specialization
just performed. Below, we consider updating InfoGain(x)
and Ax(QIDj) separately.
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5.3.1 Updating InfoGain(x).
We need to compute InfoGain(c) for the newly added c in

child(w). The owner party of w can compute InfoGain(c)
while collecting the count statistics for c in Section 5.2.

5.3.2 Updating AnonyLoss(x).
Recall that Ax(QIDj) is the minimum a(qidj) after spe-

cializing x. Therefore, if att(x) and att(w) both occur in
some QIDj , the specialization on w might affect Ax(QIDj),
and we need to find the new minimum a(qidj). The follow-
ing QIDTreej data structure indexes a(qidj) by qidj .

Definition 5.2 (QIDTrees). For each QIDj = {D1,
. . . , Dq}, QIDTreej is a tree of q levels, where level i > 0
represents generalized values for Di. A root-to-leaf path
represents an existing qidj on QIDj in the generalized data
Tg, with a(qidj) stored at the leaf node. A branch is trimmed
if its a(qidj) = 0. A(QIDj) is the minimum a(qidj) in
QIDTreej .

QIDTreej is kept at a party if the party owns some at-
tributes in QIDj . On specializing the winner w, a party up-
dates its QIDTreej ’s that contain the attribute att(w): cre-
ates the nodes for the new qidj ’s and computes a(qidj). We
can obtain a(qidj) from the local TIPS: a(qidj) =

∑ |Pc|,
where Pc is on Linkc and qidj is the generalized value on
QIDj for Pc. Note that |Pc| is given by the count statistics
for w collected in Section 5.2.

Example 8. Continue with Example 7. Figure 6 shows
the initial QIDTree1 and QIDTree2 for QID1 and QID2

on the left. On performing [1-99) → {[1-37), [37-99)},
〈ANY Sex, [1-99)〉 in QIDTree2 is replaced with qids 〈ANY Sex,
[1-37) 〉 and 〈 ANY Sex, [37-99)〉. A(QID2) = 12.

Next, on performing ANY Job → {Blue-collar, White-
collar}, 〈 ANY Sex, ANY Job〉 in QIDTree1 is replaced
with new qids 〈ANY Sex, Blue-collar〉 and 〈ANY Sex, White-
collar〉. To compute a(vid) for these new qids, we need
to add |PBlue-collar| on LinkBlue-collar and |PWhite-collar| on
LinkWhite-collar (see Figure 5): a(〈ANY Sex, Blue-collar〉)
= 0 + 12 + 4 = 16, and a(〈ANY Sex, White-collar〉) = 0 +
18 = 18. So AANY Job(QID1) = 16.

Updating Ax(QIDj). For a local candidate x, a party
needs to update Ax(QIDj) in two cases. The first case is
that x is a new candidate just added, i.e., in child(w). The
second case is that att(x) and att(w) are in the same QIDj .
In both cases, the party owning x first computes a(qidx

j ) for

the new qidx
j ’s created as if x was specialized. The proce-

dure is similar to the above procedure of updating QIDj for
specializing w, except that no actual update is performed on
QIDTreej and TIPS. The new a(qidx

j )’s then is compared
with A(QIDj) to determine Ax(QIDj). If Ax(QIDj) ≥ kj ,
we mark x as valid in ∪Cuti.

5.4 Analysis
Our approach produces the same integrated table as the

single party algorithm TDS [12, 13] on a joint table, and en-
sures that no party learns more detailed information about
the other party other than what they agree to share. This
claim follows from the fact that PPMashup performs ex-
actly the same sequence of specializations as in TDS in a
distributed manner where TA and TB are kept locally at
the sources. The only information revealed to each other
is those in ∪Cutj and Tg at each iteration. However, such
information is more general than the final integrated table
that the two parties agree to share.

PPMashup (Algorithm 1) is extendable for multiple par-
ties with minor changes: In Line 5, each party should com-
municate with all the other parties for determining the win-
ner. Similarly, in Line 8, the party holding the winner can-
didate should instruct all the other parties and in Line 10,
a party should wait for instruction from the winner party.

Our algorithm is based on the assumption that all the
parties are semi-honest. An interesting extension would be
to consider the presence of malicious and selfish parties [29].
In such scenario, our developed algorithm has to be not only
secure, but also incentive compatible at the same time.

The cost of PPMashup can be summarized as follows.
Each iteration involves the following work: (1) Scan the
records in TA[w] and TB [w] for updating TIPS and maintain-
ing count statistics (Section 5.2). (2) Update QIDTreej ,
InfoGain(x) and Ax(QIDj) for affected candidates x (Sec-
tion 5.3). (3) Send ”instruction”to the remote party. The in-
struction contains only IDs of the records in TA[w] or TB [w]
and child values c in child(w), therefore, is compact. Only
the work in (1) involves accessing data records; the work
in (2) makes use of the count statistics without accessing
data records and is restricted to only affected candidates.
This feature makes our approach scalable. We will evaluate
the scalability in the next section. For the communication
cost (3), each party communicates (Line 5 of Algorithm 1)
with others to determine the global best candidate. Thus,
each party sends n− 1 messages, where n is the number of
parties. Then, the winner party (Line 8) sends instruction
to other parties. This communication process continues for
at most s times, where s is the number of valid specializa-
tions which is bounded by the number of distinct values in
∪QIDj . Hence, for a given data set, the total communica-
tion cost is s{n(n − 1) + (n − 1)} = s(n2 − 1) ≈ O(n2). If
n = 2, then the total communication cost is 3s. In real-
life data mashup application, such as the one developed for
Nordax Finans AB, the number of parties is usually small.

6. EXPERIMENTAL EVALUATION
We implemented the proposed PPMashup in a distributed

2-party web service environment. Each party is running on
an Intel Pentium IV 2.6GHz PC with 1GB RAM connected
to a LAN. The objective is to evaluate the benefit of data
integration for data analysis. PPMashup should produce
exactly the same integrated table as the single party (non-



Table 4: Attributes for the Adult data set

Attribute Type Numerical Range

# Leaves # Levels

Age (A) continuous 17 - 90
Education-num (En) continuous 1 - 16
Final-weight (Fw) continuous 13492 - 1490400
Relationship (Re) categorical 6 3
Race (Ra) categorical 5 3
Sex (S) categorical 2 2
Martial-status (M) categorical 7 4
Native-country (N) categorical 40 5
Education (E) categorical 16 5

Hours-per-week (H) continuous 1 - 99
Capital-gain (Cg) continuous 0 - 99999
Capital-loss (Cl) continuous 0 - 4356
Work-class (W) categorical 8 5
Occupation (O) categorical 14 3

privacy-preserving) method that first joins TA and TB and
then generalizes the joint table using the TDS approach.

Due to privacy agreement, we could not use the raw data
of Nordax Finans AB for the experiment, so we employed the
de facto benchmark census data set Adult [28], which is also
a real-life dataset, to illustrate the performance of our pro-
posed algorithm. The data set has 6 continuous attributes,
8 categorical attributes, and a binary Class column repre-
senting the income levels ≤50K or >50K. Table 4 describes
each attribute. After removing records with missing values,
there are 30,162 and 15,060 records for the pre-split train-
ing and testing respectively. We model two private tables
TA and TB as follows: TA contains the first 9 attributes in-
teresting to the Immigration Department, and TB contains
the remaining 5 attributes interesting to the Taxation De-
partment. A common key ID for joining the two tables was
added to both tables. For classification models, we used
the well known C4.5 classifier [31]. Unless stated otherwise,
all 14 attributes were used for building classifiers, and the
taxonomy trees for all categorical attributes were from [13].

For the same anonymity threshold k, a single QID is al-
ways more restrictive than breaking it into multiple QIDs.
We first show the results for single QID. The single QID
contains the top N attributes ranked by the C4.5 classifier:
the top attribute is the attribute at the top of the C4.5
decision tree, then we removed this attribute and repeated
this process to determine the rank of other attributes. The
top 9 attributes are Cg, A, M, En, Re, H, S, E, O in that or-
der. Top5, Top7, and Top9 represent the anonymity require-
ments in which the single QID contains the top 5, 7, and 9
attributes, respectively.

We collected several classification errors, all on the cor-
responding testing set. Base error, denoted by BE, is the
error on the integrated data without generalization. Upper
bound error, denoted by UE, is the error on the integrated
data in which all attributes in the QID are generalized to
the top most ANY. This is equivalent to removing all at-
tributes in the QID. Integration error, denoted by IE, is the
error on the integrated data produced by our PPMashup al-
gorithm. We combined the training set and testing set into
one set, generalized this set to satisfy the given anonymity
requirement, built the classifier using the generalized train-
ing set. The error is measured on the generalized testing set.
Source error, denoted SE, is the error without data integra-
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Figure 7: IE for Top5, Top7, and Top9

tion at all, i.e., the error of classifiers built from individual
raw private table. Each party has a SE.

SE − IE measures the benefit of data integration over
individual private table. UE − IE measures the benefit
of generalization compared to the brute removal of the at-
tributes in the QID. IE − BE measures the quality loss
due to the generalization for achieving the anonymity re-
quirement. UE − BE measures the impact of the QID on
classification. A larger UE − BE means that the QID is
more important to classification.

6.1 Benefits of Integration
Our first goal is evaluating the benefit of data integration

over individual private table, measured by SE−IE. SE for
TA, denoted by SE(A), is 17.7% and SE for TB , denoted
by SE(B), is 17.9%. Figure 7 depicts the IE for Top5,
Top7, and Top9 with the anonymity threshold k ranging
from 20 to 1000.3 For example, IE = 14.8% for Top5 for
k ≤ 180, suggesting that the benefit of integration, SE−IE,
for each party is approximately 3%. For Top9, IE stays at
above 17.2% when k ≥ 80, suggesting that the benefit is
less than 1%. In the data mashup application for Nordax
Finans AB, the anonymity threshold k was set at between 20
and 50. This experiment demonstrates the benefit of data
integration over a wide range of anonymity requirements. In
practice, the benefit is more than the accuracy consideration
because our method allows the participating parties to share
information for joint data analysis.

6.2 Impacts of Generalization
Our second goal is evaluating the impact of generalization

on data quality. IE generally increases as the anonymity
threshold k or the QID size increases because the anonymity
requirement becomes more stringent. IE − BE measures
the cost for achieving the anonymity requirement on the
integrated table, which is the increase of error due to gen-
eralization. For the C4.5 classifier, BE = 14.7%. UE − IE
measures the benefit of our PPMashup algorithm compared
to the brute removal of the attributes in the QID. The ideal
result is to have small IE−BE (low cost) and large UE−IE

3In order to show the behavior for both small k and large k,
the x-axis is not spaced linearly.
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(high benefit).
Refer to Figure 7. We use the result of Top7 to sum-

marize the analysis. First, IE − BE is less than 2% for
20 ≤ k ≤ 600, and IE is much lower than UE = 21.5%.
This suggests that accurate classification and privacy pro-
tection can coexist. Typically, there are redundant classi-
fication structures in the data. Though generalization may
eliminate some useful structures, other structures emerge to
help the classification task. Interestingly, in some test cases,
the data quality could even improve when k increases and
when more generalization is performed. For example, IE
drops as k increases from 60 to 100. This is because gen-
eralization could help eliminate noise, which in turn reduce
the classification error.

6.3 Comparing with Genetic Algorithm
Iyengar [19] presented a genetic algorithm for generaliz-

ing a single table to achieve k-anonymity for classification
analysis. One non-privacy-preserving approach is to apply
this algorithm to the joint table of TA and TB . To compare
this method with PPMashup, we employed the data set and
the single QID used in [19], both having the attributes A,
W , E, M , O, Ra, S, N , and the taxonomy trees as in [19].
TA includes A, E, M , Ra, S, N and TB includes W , O.
All errors in this experiment were based on the 10-fold cross
validation. Results of the genetic algorithm were obtained
from [19].

Figure 8 shows IE of PPMashup and the errors for the two
methods in [19], Loss Metric (LM) ignores the classification
goal. Classification Metric (CM) considers the classifica-
tion goal. The error of PPMashup is clearly lower (better)
than LM, suggesting that the classification quality can be
improved by focusing on preserving the classification struc-
tures in the anonymous data. The error of PPMashup is
at least comparable to CM. However, PPMashup took only
20 seconds to generalize the data, including reading data
records from disk and writing the generalized data to disk, in
a multiparty environment. Iyengar reported that his method
requires 18 hours to transform this data on a Pentium III
1GHz PC with 1GB RAM. Of course, Iyengar’s method does
not address the secure integration requirement because of
joining TA and TB before performing generalization.

6.4 Efficiency and Scalability
Our method took at most 20 seconds for all previous ex-
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periments. Out of the 20 seconds, approximately 8 sec-
onds were spent on initializing network sockets, reading data
records from disk, and writing the generalized data to disk.
The actual costs for data generalization and network com-
munication are relatively low.

Our other claim is the scalability of handling large data
sets by maintaining count statistics instead of scanning raw
records. We evaluated this claim on an enlarged version of
the Adult data set. We combined the training and testing
sets, giving 45,222 records, and for each original record r in
the combined set, we created α − 1 variations of r, where
α > 1 is the blowup scale. Each variation has random values
on some randomly selected attributes from ∪QIDj and in-
herits the values of r on the remaining attributes. Together
with original records, the enlarged data set has α × 45, 222
records. For a precise comparison, the runtime reported in
this section excludes the data loading time and result writing
time with respect to disk, but includes the network commu-
nication time.

Figure 9 depicts the runtime of PPMashup for 50K to
200K data records based on two types of anonymity require-
ments. AllAttQID refers to the single QID having all 14 at-
tributes. This is one of the most time consuming settings be-
cause of the largest number of candidates to consider at each
iteration. For PPMashup, the small anonymity threshold of
k = 50 requires more iterations to reach a solution, hence
more runtime, than a larger threshold. In this case, PP-
Mashup took approximately 340 seconds to transform 200K
records.

MultiQID refers to the average over the 30 random multi-
QID anonymity requirements, generated as follows. For
each requirement, we first determined the number of QIDs
by uniformly and randomly drawing a number between 3
and 7, and the length of QIDs between 2 and 9. All QIDs
in the same requirement have the same length and same
threshold k = 50. For each QID, we randomly selected at-
tributes from the 14 attributes. A repeating QID was dis-
carded. For example, a requirement of 3 QIDs and length 2
is {〈{A, En}, k〉, 〈{A, R}, k〉, 〈{S, H}, k〉}.

Compared to AllAttQID, PPMashup becomes less efficient
for MultiQID. There are two reasons. First, an anonymity
requirement on multi-QIDs is less restrictive than the single
QID anonymity requirement containing all attributes in the
QIDs; therefore, PPMashup has to perform more special-
izations before violating the anonymity requirement. More-



over, a party needs to create one QIDTree for each related
QID and maintains a(vid) in QIDTrees. The time increase
is roughly by a factor proportional to the number of QIDs
in an anonymity requirement.

6.5 Summary
The experiments verified several claims about the PP-

Mashup algorithm. First, data integration does lead to im-
proved data analysis. Second, PPMashup achieves a broad
range of anonymity requirements without sacrificing signif-
icantly the usefulness of data to classification. The data
quality is identical or comparable to the result produced by
the single party anonymization methods [12, 13, 19]. This
study suggests that classification analysis has a high tol-
erance towards data generalization, thereby, enabling data
mashup across multiple data providers even in a broad range
of anonymity requirements. Third, PPMashup is scalable
for large data sets and different single QID anonymity re-
quirements. It provides a practical solution to data mashup
where there is the dual need for information sharing and
privacy protection.

7. PRIVACY BEYOND K-ANONYMITY
k-anonymity is an effective privacy requirement that pre-

vents linking an individual to a record in a data table. How-
ever, if some sensitive values occur very frequently within a
qid group, the attacker could still confidently infer the sen-
sitive value of an individual by his/her qid value. This type
of homogeneity attack was studied in [25, 38]. The proposed
approach in this paper can be extended to incorporate with
other privacy requirements, such as `-diversity [25], confi-
dence bounding [38], and (α,k)-anonymity [40], to thwart
homogeneity attacks.

To adopt these privacy requirements, we make 3 changes.
First, the notion of valid specialization has to be redefined
depending on the privacy requirement. Our PPMashup al-
gorithm guarantees that the identified solution is local op-
timal if the privacy measure holds the (anti-)monotonicity
property with respect to specialization. `-diversity [25], con-
fidence bounding [38], and (α,k)-anonymity [40] hold such
(anti-)monotonicity property. Second, the AnonyLoss(v)
function in Section 4 has to be modified in order to reflect
the loss of privacy with respect to a specialization on value
v. We can, for example, adopt the PrivLoss(v) function
in [38] to capture the increase of confidence on inferring a
sensitive value by a qid. Third, to check the validity of a
candidate, the party holding the sensitive attributes has to
first check the distribution of sensitive values in a qid group
before actually performing the specialization. Suppose Party
B holds a sensitive attribute SB . Upon receiving a special-
ization instruction on value v from Party A, Party B has
to first verify whether specializing v would violate the pri-
vacy requirement. If there is a violation, Party B rejects the
specialization request and both parties have to redetermine
the next candidate; otherwise, the algorithm proceeds the
specialization as in Algorithm 1.

8. CONCLUSIONS AND LESSON LEARNED
We implemented a privacy-preserving data mashup appli-

cation for some financial institutions in Sweden, and gen-
eralized their privacy and information requirements to the
problem of private data mashup for the purpose of joint clas-

sification analysis. We formalized this problem as achieving
the k-anonymity on the integrated data without revealing
more detailed information in this process. We presented a
solution and evaluated the benefits of data integration and
the impacts of generalization. Compared to classic secure
multiparty computation, a unique feature is to allow data
sharing instead of only result sharing. This feature is es-
pecially important for data analysis where the process is
hardly performing an input/output black-box mapping and
user interaction and knowledge about the data often lead
to superior results. Being able to share data records would
permit such exploratory data analysis and explanation of
results.

We would like to share our experience in collaboration
with the financial sector. In general, they prefer simple pri-
vacy requirement. Despite some criticisms on k-anonymity [25,
38], the financial sector (and probably some other sectors)
finds that k-anonymity is an ideal privacy requirement due
to its intuitiveness. Their primary concern is whether they
can still effectively perform the task of data analysis on the
anonymous data. Therefore, solutions that solely satisfying
some privacy requirement are insufficient for them. They
demand anonymization methods that can preserve informa-
tion for various data analysis tasks.
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