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1. INTRODUCTION

Gaining access to high-quality health data is a vital requirement to informed
decision making for medical practitioners and pharmaceutical researchers.
Driven by mutual benefits and regulations, there is a demand for healthcare in-
stitutes to share patient data with various parties for research purposes. How-
ever, health data in its raw form often contains sensitive information about
individuals, and publishing such data will violate their privacy. The current
practice in data sharing primarily relies on policies and guidelines on the types
of data that can be shared and agreements on the use of shared data. This ap-
proach alone may lead to excessive data distortion or insufficient protection. In
this paper, we study the challenges in a real-life information-sharing scenario
with the Hong Kong Red Cross Blood Transfusion Service (BTS) and propose a
new privacy model, in conjunction with data anonymization algorithms, to ef-
fectively preserve individuals’ privacy and meet the information requirements
specified by the BTS.

Figure 1 illustrates the data flow in the BTS. After collecting and examin-
ing the blood collected from donors, the BTS distributes the blood to different
public hospitals. The hospitals collect and maintain the health records of their
patients and transfuse the blood to the patients if necessary. The blood trans-
fusion information, such as the patient data, type of surgery, names of medical
practitioners in charge, and reason for transfusion, is clearly documented and
is stored in the database owned by each individual hospital. Periodically, the
public hospitals are required to submit the blood usage data, together with the
patient-specific surgery data, to the BTS for the purpose of data analysis. Hos-
pitals transfer their data to BTS in two ways. Sometimes, hospitals begin by
transferring their data to the central government health agency. The agency
then integrates the data from different hospitals and gives it to the BTS for
data analysis. At other times, hospitals directly submit their data to BTS.
These information sharing scenarios in BTS illustrate a typical dilemma in in-
formation sharing and privacy protection faced by many health institutes. For
example, licensed hospitals in California are also required to submit specific
demographic data on every discharged patient [Carlisle et al. 2007] which can
provide a multitude of privacy concerns outside of the realm of health care. Our
proposed solutions, designed for the BTS case, will also benefit other health in-
stitutes that face similar challenges in information sharing. We summarize the
privacy concerns and the information needs of the BTS case as follows.

Privacy Concern. Giving the BTS access to blood transfusion data for data
analysis is clearly legitimate. However, it raises some concerns on patients’
privacy. The patients are willing to submit their data to a hospital because
they consider the hospital to be a safe and trustworthy entity. Yet, the trust
in the hospital may not necessarily be transitive to a third party. Many agen-
cies and institutes consider that the released data is privacy-preserved if ex-
plicit identifying information, such as name, social security number, address,
and telephone number, are removed. However, substantial research has shown
that simply removing explicit identifying information is insufficient for privacy
protection. Sweeney [2002] showed that an individual can be reidentified by
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.



Anonymization for High-Dimensional Healthcare Data · 18: 3

Fig. 1. Data flow in Hong Kong Red Cross Blood Transfusion Service (BTS).

simply matching other attributes, called quasi-identifiers (QID), such as gen-
der, date of birth, and postal code.

Information Needs. The BTS wants to perform two types of data analysis on
the blood transfusion data collected from the hospitals. First, it wants to obtain
some general count statistics. Second, it wants to employ the surgery informa-
tion as training data for building a classification model on blood transfusion.
One frequently raised question is why the hospital does not simply release the
statistical data or a classifier to the BTS in order to avoid this privacy concern.
The BTS wants to have access to the blood transfusion data, not statistics,
from the hospitals for several reasons. First, the practitioners in hospitals have
no resources and knowledge in performing data mining. They simply want to
share the patient data with the BTS, who needs the health data for legitimate
reasons. Second, having access to the data, the BTS has much better flexibility
to perform the required data analysis. It is impractical to continuously request
practitioners in hospitals to produce different types of statistical information
and fine-tune the data mining results for research purposes.

The problems with this BTS case can be generalized into two scenarios. In
the first scenario, there exists a trustworthy entity such as the central gov-
ernment health agency to collect the raw patient data from multiple hospitals
and submit the data to BTS after performing the centralized anonymization.
In the second scenario, the hospitals have to directly submit the integration of
their data to the BTS while protecting the patients’ privacy. In the following,
we explain the privacy threats and challenges of each of the scenarios by an
example.

1.1 Centralized Anonymization

Example 1. Consider the integrated raw patient data in Table I (ignore Par-
ties A, B, and C for now), where each record represents a surgery case with
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Table I. Raw Patient Data
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery

Party A
1 Janitor M 34 Y Transgender
2 Lawyer F 58 N Plastic
3 Mover M 58 N Urology

Party B

4 Lawyer M 24 N Vascular
5 Mover M 34 Y Transgender
6 Janitor M 44 Y Plastic
7 Doctor F 44 N Vascular

Party C

8 Doctor M 58 N Plastic
9 Doctor M 24 N Urology

10 Carpenter F 63 Y Vascular
11 Technician F 63 Y Plastic

the patient-specific information. Job , Sex, and Age are quasi-identifying at-
tributes. Hospitals want to release Table I to the BTS for the purpose of clas-
sification analysis on the class attribute, Transfuse, which has two values, Y
and N, indicating whether or not the patient has received blood transfusion.
Without a loss of generality, we assume that the only sensitive value in Surgery
is Transgender. Hospitals express concern on two types of privacy threats.

—Identity linkage. If a record in the table is so specific that not many patients
match it, releasing the data may lead to linking the patient’s record and,
therefore, her received surgery. Suppose that the adversary knows that the
target patient is a Mover and his age is 34. Hence, record #5, together with
his sensitive value (Transgender in this case), can be uniquely identified since
he is the only Mover who is 34 years old in the raw data.

—Attribute linkage. If a sensitive value occurs frequently together with some
QID attributes, then the sensitive information can be inferred from such
attributes even though the exact record of the patient cannot be identified.
Suppose the adversary knows that the patient is a male of age 34. Even
though there exist two such records (#1 and #5), the adversary can infer that
the patient has received a Transgender surgery with 100% confidence since
both the records contain Transgender.

High-Dimensionality. Many privacy models, such as K-anonymity
[Samarati 2001; Sweeney 2002] and its extensions [Machanavajjhala et al.
2007; Wang et al. 2007], have been proposed to thwart privacy threats caused
by identity and attribute linkages in the context of relational databases. The
usual approach is to generalize the records into equivalence groups so that
each group contains at least K records with respect to some QID attributes,
and the sensitive values in each QID group are diversified enough to disorient
confident inferences. However, Aggarwal [2005] has shown that when the
number of QID attributes is large, that is, when the dimensionality of data is
high, most of the data have to be suppressed in order to achieve K-anonymity,
resulting in poor data quality for data analysis. Our experiments confirm this
curse of high-dimensionality on K-anonymity [Aggarwal 2005]. In order to
overcome this bottleneck, we exploit one of the limitations of an adversary.
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.
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Table II. Anonymous Data (L = 2, K = 2, C = 0.5, S = {Transgender})
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 Nontechnical M [30 − 60) Y Transgender
2 Professional F [30 − 60) N Plastic
3 Nontechnical M [30 − 60) N Urology
4 Professional M [1 − 30) N Vascular
5 Nontechnical M [30 − 60) Y Transgender
6 Nontechnical M [30 − 60) Y Plastic
7 Professional F [30 − 60) N Vascular
8 Professional M [30 − 60) N Plastic
9 Professional M [1 − 30) N Urology
10 Technical F [60 − 99) Y Vascular
11 Technical F [60 − 99) Y Plastic

Fig. 2. Taxonomy trees and QIDs.

In real-life privacy attacks, it is very difficult for an adversary to acquire
all the QID information of a target patient because it requires nontrivial
effort to gather each piece of prior knowledge from so many possible values.
Thus, it is reasonable to assume that the adversary’s prior knowledge is
bounded by at most L values of the QID attributes of the patient. Based
on this assumption, we define a new privacy model called LKC-privacy for
anonymizing high-dimensional data.

The general intuition of LKC-privacy is to ensure that every combination of
values in QID j ⊆ QID with maximum length L in the data table T is shared
by at least K records, and the confidence of inferring any sensitive values in S
is not greater than C, where L, K, C are thresholds and S is a set of sensitive
values specified by the data holder (the hospital). LKC-privacy bounds the
probability of a successful identity linkage to be ≤ 1/K and the probability of
a successful attribute linkage to be ≤ C, provided that the adversary’s prior
knowledge does not exceed L. Table II shows an example of an anonymous
table that satisfies (2, 2, 50%)-privacy with S = {Transgender} by generalizing
all the values from Table I according to the taxonomies in Figure 2 (Ignore the
dashed curve for now). Every possible value of QID j with maximum length 2
in Table II (namely, QID1, QID2, and QID3 in Figure 2) is shared by at least
2 records, and the confidence of inferring the sensitive value Transgender is not
greater than 50%. In contrast, enforcing traditional 2-anonymity will require
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Table III. Distributed Anonymization (L = 2, K = 2, C = 0.5, S = {Transgender})
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 ANY ANY [30 − 60) Y Transgender
2 ANY ANY [30 − 60) N Plastic
3 ANY ANY [30 − 60) N Urology

4 Professional ANY [1 − 60) N Vascular
5 Nontechnical M [30 − 60) Y Transgender
6 Nontechnical M [30 − 60) Y Plastic
7 Professional ANY [1 − 60) N Vascular

8 Professional M [1 − 60) N Plastic
9 Professional M [1 − 60) N Urology

10 Technical F [60 − 99) Y Vascular
11 Technical F [60 − 99) Y Plastic

further generalization. For example, in order to make 〈Pro fessional, M, [30 −
60)〉 to satisfy traditional 2-anonymity, we may further generalize all instances
of [1 − 30) and [30 − 60) to [1 − 60), resulting in much higher utility loss.

1.2 Distributed Anonymization

The centralized anonymization method can be viewed as “integrate-then-
generalize” approach, where the central government health agency first in-
tegrates the data from different hospitals then performs generalization. In
real-life information sharing, a trustworthy central authority may not always
exist. Sometimes, it is more flexible for the data recipient to make requests
to the data holders, and the data holders directly send the requested data to
the recipient. For example, in some special occasions and events, BTS has to
directly collect data from the hospitals without going through the government
health agency.

In this distributed scenario, each hospital owns a set of raw patient data
records. The data can be viewed as horizontally partitioned among the data
holders over the same set of attributes. Consider the raw patient data in
Table I, where records 1–3 are from Party A, records 4–7 are from Party B,
and records 8–11 are from Party C. To achieve distributed anonymization, a
naı̈ve approach is to anonymize the patient data independently by the hospi-
tals and then integrate as shown in Table III. However, such a distributed
“generalize-then-integrate” approach suffers significant utility loss compared
to the centralized “integrate-then-generalize” approach as shown in Table II.

The distributed anonymization problem has two major challenges in addi-
tion to high dimensionality. First, the data utility of the anonymous inte-
grated data should be as good as the data quality produced by the centralized
anonymization algorithm. Second, in the process of anonymization, the algo-
rithm should not reveal more specific information than the final anonymous
integrated table. In Section 5, we propose a distributed anonymization algo-
rithm that incorporates secure multiparty computation (SMC) techniques to
achieve the same data utility as centralized approach while ensuring the pri-
vacy requirements.
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.
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Contributions. The contributions of this article are summarized as follows.

(1) We use the Red Cross BTS as a real-life example to present the challenges
of privacy-aware information sharing for data analysis and define the prob-
lems of centralized and distributed anonymization in the context of BTS.

(2) We propose a new privacy model called LKC-privacy that overcomes the
challenges of anonymizing high-dimensional relational data without sig-
nificantly compromising the data quality (Section 3).

(3) We present two anonymization algorithms to address the problems of
centralized anonymization and distributed anonymization. Both the algo-
rithms achieve LKC-privacy with two different adaptations. The first
adaptation maximizes the information preserved for classification analysis;
the second one minimizes the distortion on the anonymous data for general
data analysis. Minimizing distortion is useful when the particular infor-
mation requirement is unknown during information sharing or the shared
data is used for various kinds of data mining tasks (Sections 4 and 5).

(4) We implement the proposed algorithms and evaluate the performance.
Experiments on real-life data demonstrate that our developed algorithm
is flexible and scalable enough to handle large volumes of blood transfu-
sion data that include both categorical and numerical attributes. Scala-
bility is an important requirement in the BTS project, for example, the
BTS received about 150,000 records from the public hospitals in 2008
(Section 6).

2. RELATED WORK

Data privacy has been an active area of research in statistics, database, and
security communities for the last two decades [Adam and Wortman 1989; Fung
et al. 2010]. In this section, we briefly present various privacy-preserving tech-
niques for both single and multiple data holders scenarios and explain why the
existing techniques are not applicable to the problem studied in this article.

2.1 Privacy-Preserving Methods for Single Data Holder

There is a large body of work on anonymizing relational data. Traditional K-
anonymity [Samarati 2001; Sweeney 2002], �-diversity [Machanavajjhala et al.
2007], and confidence bounding [Wang et al. 2007] are based on a predefined set
of QID attributes. (α, k)-anonymity [Wong et al. 2006] further requires every
QID group to satisfy both K-anonymity and confidence bounding. As discussed
earlier, these single QID-based approaches suffer from the curse of high di-
mensionality [Aggarwal 2005] and render the high-dimensional data useless
for data mining. Xiao and Tao [2006a] propose the notion of personalized pri-
vacy to allow each record owner to specify her own privacy level. This model
assumes that a sensitive attribute has a taxonomy tree and that each record
owner specifies a guarding node in the taxonomy tree. Dwork [2006] proposes
a privacy model called differential privacy, which ensures that the removal or
addition of a single record does not significantly affect the overall privacy of the
database. Most of the works in differential privacy are based on the interactive

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.
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privacy model, where the result of a query is in the form of aggregation [Blum
et al. 2005; Dinur and Nissim 2003; Dwork et al. 2006].

There are some recent works on anonymizing transaction data that model
the adversary’s power by a maximum number of known items as prior knowl-
edge [Ghinita et al. 2008; Terrovitis et al. 2008; Xu et al. 2008]. Although the
assumption is similar, our studied problem is different from these other works.
First, a transaction is a set of items, whereas the health data is relational with
predefined taxonomy trees. Second, we have different privacy and data utility
requirements. The privacy model of Terrovitis et al. [2008] is based on only
K-anonymity and does not consider attribute linkages. Xu et al. [2008] aim
at minimizing data distortion while we aim at preserving classification qual-
ity. Finally, Xu et al. [2008] use suppression, while we use generalization and
discretization for anonymizing various types of attributes.

There are many different techniques which can be used to achieve a privacy
model. Perturbation-based techniques achieve privacy by adding noises, ran-
domizing data, and generating synthetic data. Perturbed data is useful at the
aggregated level (such as average or sum), but not at the record level [Agrawal
and Srikant 2000; Fuller 1993; Kim and Winkler 1995]. Data recipients can no
longer interpret the semantic of individual record, which is important in some
knowledge exploration tasks, such as visual data mining [Zhao et al. 2005].
Instead of perturbing the data, we generalize the data to make information
less precise while preserving the “truthfulness” of information (say, generaliz-
ing Lawyer to Professional). Generalized data is meaningful at the record level
and, therefore, can be utilized to guide the search or interpret the result.

Unlike generalization, Xiao and Tao [2006b] propose a very different ap-
proach, called anatomy, that does not modify the QID and the sensitive at-
tribute (SA), but de-associates the relationship between the two. However, it
disguises the correlation between SA and other attributes, and therefore, hin-
ders data analysis that depends on such correlation. For example, the sensi-
tive attribute is important for classification analysis at BTS. Disguising the
correlation between the class attribute and SA defeats the purpose of releasing
the SA.

Many techniques have been previously proposed to preserve privacy, but only
a few have considered the goal for classification. Iyengar [2002] presents the
anonymity problem for classification and proposes a genetic algorithmic solu-
tion. Bayardo and Agrawal [2005] also address the classification problem using
the same classification metric as Iyengar [2002]. Unlike random genetic evolu-
tion, our approach produces a progressive generalization process that users can
step through to determine a desired trade-off of privacy and accuracy. Recently,
LeFevre et al. [2008] proposed another anonymization technique for classifica-
tion using multidimensional recoding [LeFevre et al. 2006]. Multidimensional
recoding allows a value v to be independently generalized into different parent
values. Mining classification rules from multidimensional recoded data may
result in ambiguous classification rules, for example, White-collar → Class A
and Lawyer → Class B. Moreover, all the proposed models for classification
analysis do not address the problems of high dimensionality and distributed
anonymization, which are primary contribution of this paper.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.
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2.2 Privacy-Preserving Methods for Multiple Data Holders

The primary goal of our study in this paper is to share data. In contrast, tech-
niques based on secure multiparty computation (SMC) allow sharing of the
computed result (e.g., a classifier), but completely prohibit sharing data. An
example is the secure multiparty computation of classifiers [Du et al. 2004; Du
and Zhan 2002; Yang et al. 2005]. Yang et al. [2005] propose a cryptographic
approach to acquire classification rules from a large number of data holders
while their sensitive attributes are protected. Vaidya and Clifton [2002; 2003]
propose privacy-preserving techniques to mine association rules and to com-
pute k-means clustering in a distributed setting without sharing data. When
compared to data mining results sharing, data sharing offers more freedom to
the data recipients to apply their own classifiers and parameters.

Jiang and Clifton [2005] propose an approach to integrate data by main-
taining k-anonymity among the participating parties. However, this approach
does not fulfill the security requirements of a semihonest adversary model. To
satisfy this requirement, Jiang and Clifton [2006] further propose a crypto-
graphic approach to securely integrate two distributed data tables to form an
integrated k-anonymous table, without considering a data mining task. Mo-
hammed et al. [2009b] propose an anonymization algorithm for vertically par-
titioned data from multiple data holders without disclosing data from one party
to another. Unlike the distributed anonymization problem for horizontally par-
titioned data studied in this article, all these methods [Jiang and Clifton 2005,
2006; Mohammed et al. 2009b] generate a k-anonymous table in a distributed
setting for vertically partitioned data. Recently, Jurczyk and Xiong [2009] pro-
posed an algorithm to integrate data for horizontally partitioned data. To the
best of our knowledge, this is the only work that generates a k-anonymous
table in a distributed setting for horizontally partitioned data. However, their
anonymization model does not take into consideration the information require-
ment for classification analysis, which is the ultimate purpose of data sharing
in our context. Moreover, our model addresses the issue of anonymizing high-
dimensional data.

This article is the extension of our previous work [Mohammed et al. 2009a]
which only addressed the centralized anonymization algorithm for the BTS.
In this article, we formally define the distributed anonymization problem and
propose a distributed anonymization algorithm which can be used by hospi-
tals to anonymize their data distributively. This algorithm does not require
a trusted third party (the government health agency) for integrating the data
from different data holders before anonymization. To perform the anonymiza-
tion process distributively, we incorporate secure multiparty techniques with
our anonymization algorithm.

3. PROBLEM DEFINITION

We first describe the privacy and information requirements, followed by the
problem statement.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.
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3.1 Privacy Measure

Suppose a data holder (e.g., the central government health agency) wants to
publish a health data table T(ID, D1, . . . , Dm, Class, Sens) (e.g., Table I) to some
recipient (e.g., the Red Cross BTS) for data analysis. ID is an explicit identi-
fier, such as SSN, and it should be removed before publication. We keep the
ID in our examples for discussion purpose only. Each Di is either a categorical
or a numerical attribute. Sens is a sensitive attribute. A record has the form
〈v1, . . . , vm, cls, s〉, where vi is a domain value of Di, cls is a class value of Class,
and s is a sensitive value of Sens. The data holder wants to protect against link-
ing an individual to a record or some sensitive value in T through some subset
of attributes called a quasi-identifier or QID, where QID ⊆ {D1, . . . , Dm}.

One recipient, who is an adversary, seeks to identify the record or sensitive
values of some target victim patient V in T. As explained in Section 1, we
assume that the adversary knows at most L values of QID attributes of the
victim patient. We use qid to denote such prior known values, where |qid| ≤
L. Based on the prior knowledge qid, the adversary could identify a group of
records, denoted by T[qid], that contains qid. |T[qid]| denotes the number of
records in T[qid]. For example, T[〈Janitor, M〉] = {ID#1, 6} and |T[qid]| = 2.
Then, the adversary could launch two types of privacy attacks:

(1) Identity linkage. Given prior knowledge qid, T[qid] is a set of candidate
records that contains the victim patient V ’s record. If the group size of
T[qid], denoted by |T[qid]|, is small, then the adversary may identify V ’s
record from T[qid] and, therefore, V ’s sensitive value. For example, if qid =
〈Mover, 34〉 in Table I, T[qid] = {ID#5}. Thus, the adversary can easily infer
that V has received a Transgender surgery.

(2) Attribute linkage. Given prior knowledge qid, the adversary can identify
T[qid] and infer that V has sensitive value s with confidence P(s|qid) =
|T[qid∧s]|
|T[qid]| , where T[qid∧ s] denotes the set of records containing both qid and

s. P(s|qid) is the percentage of the records in T[qid] containing s. The pri-
vacy of V is at risk if P(s|qid) is high. For example, given qid = 〈M, 34〉
in Table I, T[qid ∧ Transgender] = {ID#1, 5} and T[qid] = {ID#1, 5}, hence
P(Transgender|qid) = 2/2 = 100%.

To thwart the identity and attribute linkages on any patient in the table
T, we require every qid with a maximum length L in the anonymous table to
be shared by at least a certain number of records, and the ratio of sensitive
value(s) in every group cannot be too high. Our privacy model, LKC-privacy,
reflects this intuition.

Definition 3.1 LKC-privacy. Let L be the maximum number of values of the
prior knowledge. Let S ⊆ Sens be a set of sensitive values. A data table T
satisfies LKC-privacy if and only if for any qid with |qid| ≤ L,

(1) |T[qid]| ≥ K, where K > 0 is an integer anonymity threshold, and
(2) P(s|qid) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real number confidence

threshold. Sometimes, we write C in percentage.
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 4, Article 18, Pub. date: October 2010.



Anonymization for High-Dimensional Healthcare Data · 18: 11

The data holder specifies the thresholds L, K, and C. The maximum length
L reflects the assumption of the adversary’s power. LKC-privacy guarantees
that the probability of a successful identity linkage to be ≤ 1/K and the prob-
ability of a successful attribute linkage to be ≤ C. LKC-privacy has several
nice properties that make it suitable for anonymizing high-dimensional data.
First, it only requires a subset of QID attributes to be shared by at least K
records. This is a major relaxation from traditional K-anonymity, based on a
very reasonable assumption that the adversary has limited power. Second,
LKC-privacy generalizes several traditional privacy models. K-anonymity
[Samarati 2001; Sweeney 2002] is a special case of LKC-privacy with L =
|QID| and C = 100%, where |QID| is the number of QID attributes in the
data table. Confidence bounding [Wang et al. 2007] is also a special case of
LKC-privacy with L = |QID| and K = 1. (α, k)-anonymity [Wong et al. 2006]
is also a special case of LKC-privacy with L = |QID|, K = k, and C = α. Thus,
the data holder can still achieve the traditional models, if needed.

3.2 Utility Measure

The measure of data utility varies depending on the data analysis task to be
performed on the published data. Based on the information requirements spec-
ified by the BTS, we define two utility measures. First, we aim at preserving
the maximal information for classification analysis. Second, we aim at mini-
mizing the overall data distortion when the data analysis task is unknown.

In this BTS project, we propose a top-down specialization algorithm to
achieve LKC-privacy. The general idea is to anonymize a table by a sequence of
specializations starting from the topmost general state in which each attribute
has the topmost value of its taxonomy tree [Fung et al. 2007]. We assume that
a taxonomy tree is specified for each categorical attribute in QID. A leaf node
represents a domain value and a parent node represents a less specific value.
For a numerical attribute in QID, a taxonomy tree can be grown at runtime,
where each node represents an interval, and each nonleaf node has two child
nodes representing some optimal binary split of the parent interval. Figure 2
shows a dynamically grown taxonomy tree for Age.

A specialization, written v → child(v), where child(v) denotes the set of child
values of v, replaces the parent value v with the child value that generalizes the
domain value in a record. A specialization is valid if the specialization results
in a table satisfying the anonymity requirement after the specialization. A
specialization is performed only if it is valid. The specialization process can be
viewed as pushing the “cut” of each taxonomy tree downwards. A cut of the
taxonomy tree for an attribute Di, denoted by Cuti, contains exactly one value
on each root-to-leaf path. Figure 2 shows a solution cut indicated by the dashed
curve representing the anonymous Table II. Our specialization starts from the
topmost cut and pushes down the cut iteratively by specializing some value in
the current cut until violating the anonymity requirement. In other words, the
specialization process pushes the cut downwards until no valid specialization is
possible. Each specialization tends to increase data utility and decrease privacy
because records are more distinguishable by specific values. We define two
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utility measures depending on the information requirement to evaluate the
“goodness” of a specialization. Here, we assume that BTS only receives one
version of the sanitized data for a given dataset anonymized by using one of
the following Score functions.

3.2.1 Case 1: Score for Classification Analysis. For the requirement of clas-
sification analysis, we use information gain, denoted by InfoGain(v), to mea-
sure the goodness of a specialization. Our selection criterion, Score(v), is to
favor the specialization v → child(v) that has the maximum InfoGain(v):

Score(v) = InfoGain(v). (1)

InfoGain(v): Let T[x] denote the set of records in T generalized to the value
x. Let freq(T[x], cls) denote the number of records in T[x] having the class cls.
Note that |T[v]| =

∑
c |T[c]|, where c ∈ child(v). We have

InfoGain(v) = E(T[v]) −
∑

c

|T[c]|
|T[v]| E(T[c]), (2)

where E(T[x]) is the entropy of T[x] [Quinlan 1993]:

E(T[x]) = −
∑

cls

freq(T[x], cls)
|T[x]| × log2

freq(T[x], cls)
|T[x]| , (3)

Intuitively, I(T[x]) measures the mix of classes for the records in T[x], and
InfoGain(v) is the reduction of the mix by specializing v into c ∈ child(v).

For a numerical attribute, the specialization of an interval refers to the op-
timal binary split that maximizes information gain on the Class attribute. See
[Quinlan 1993] for details.

3.2.2 Case 2: Score for General Data Analysis. Sometimes, the data is
shared without a specific task. In this case of general data analysis, we use
discernibility cost [Skowron and Rauszer 1992] to measure the data distortion
in the anonymous data table. The discernibility cost charges a penalty to each
record for being indistinguishable from other records. For each record in an
equivalence group qid, the penalty is |T[qid]|. Thus, the penalty on a group
is |T[qid]|2. To minimize the discernibility cost, we choose the specialization
v → child(v) that maximizes the value of

Score(v) =
∑

qidv

|T[qidv]|2 (4)

over all qidv containing v. Example 3 shows the computation of Score(v).

3.3 Problem Statement

We generalize the problems faced by BTS to the problems of centralized
anonymization and distributed anonymization. The problem of centralized
anonymization models the scenario of the central government health agency
that anonymizes the integrated data before transferring it to BTS. The prob-
lem of distributed anonymization results from the scenario of the hospitals that
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distributively anonymize the data without the need of the central government
health agency.

3.3.1 Centralized Anonymization for Data Analysis. The problem of cen-
tralized anonymization is to transform a given dataset T into an anonymous
version T ′ that satisfies a given LKC-privacy requirement and preserves as
much information as possible for the intended data analysis task. Based on
the information requirements specified by the BTS, we define the problems as
follows.

Definition 3.2 Centralized Anonymization for data analysis. Given a data
table T, a LKC-privacy requirement, and a taxonomy tree for each categori-
cal attribute contained in QID, the problem of centralized anonymization for
data analysis is to generalize T on the attributes QID to satisfy the LKC-
privacy requirement while preserving as much information as possible for data
analysis.

3.3.2 Distributed Anonymization for Data Analysis. Consider n hospi-
tals {Party 1,. . . ,Party n}, where each Party i owns a private table
Ti(ID, D1, . . . , Dm, Class, Sens) over the same set of attributes. Each hospital
owns a disjoint set of records, where recordi ∩ recordj = ∅ for any 1 ≤ i, j ≤ n.
These parties are required to form an integrated table T for conducting a joint
data analysis. The anonymization process is required to ensure two different
privacy requirements: privacy for data subjects (patients) and privacy for data
holders (hospitals).

To protect privacy for data subjects, we require the integrated data to sat-
isfy a given LKC-privacy requirement. However, the integrated data is less
anonymous to the data holders (hospitals) because a data holder can always
remove his own data records from the integrated data and make the remaining
data less anonymous than the LKC-privacy requirement. To protect privacy for
data holders, we require that hospitals should not share more detailed informa-
tion than the final integrated data table during the distributed anonymization
process.

Definition 3.3 Distributed Anonymization for data analysis. When given
multiple private tables T1, . . . , Tn, where each Ti is owned by different Party
i, a LKC-privacy requirement, and a taxonomy tree for each categorical at-
tribute contained in QID, the problem of distributed anonymization for data
analysis is to efficiently produce a generalized integrated table T such that (1)
T satisfies the LKC-privacy requirement, (2) T contains as much information
as possible for data analysis, and (3) each party learns nothing about the other
party more specific than what is in the final generalized integrated table T.

The requirement (3) in Definition 3.3 requires that each party should not
reveal any additional information to other parties than what is in the final
integrated table. This requirement is similar to the secure multiparty com-
putation (SMC) protocols, where no participant learns more information than
the outcome of a function. In the problem of distributed anonymization, we as-
sume that the parties are semihonest. In the semihonest adversary model, each
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Algorithm 1 Centralized Anonymization Algorithm
1: Initialize every value in T to the topmost value;
2: Initialize Cuti to include the topmost value;
3: while some x ∈ ∪Cuti is valid do
4: Find the Best specialization from ∪Cuti;
5: Perform Best on T and update ∪Cuti;
6: Update Score(x) and validity for x ∈ ∪Cuti;
7: end while
8: Output T and ∪Cuti;

party obeys the protocol. However, they may be curious to derive more infor-
mation from the received messages in the course of the protocol execution. This
assumption about participating parties is very common in the SMC problems.

4. CENTRALIZED ANONYMIZATION ALGORITHM

Algorithm 1 provides an overview of our centralized anonymization algorithm
for achieving LKC-privacy. Initially, all values in QID are generalized to the
topmost value in their taxonomy trees, and Cuti contains the topmost value for
each attribute Di. At each iteration, the algorithm finds the Best specializa-
tion, which has the highest Score among the candidates that are valid special-
izations in ∪Cuti (Line 4). Then, apply Best to T and update ∪Cuti (Line 5).
Finally, update the Score of the affected candidates due to the specialization
(Line 6). The algorithm is terminated when there are no more valid candidates
in ∪Cuti. In other words, the algorithm is terminated if any further specializa-
tion would lead to a violation of the LKC-privacy requirement. An important
property of Algorithm 1 is that the LKC-privacy is antimonotone with respect
to a specialization; if a generalized table violates LKC-privacy before a spe-
cialization, it remains violated after the specialization because a specialization
never increases the |T[qid]| and never decreases the maximum P(s|qid). This
antimonotonic property guarantees that the final solution cut is a suboptimal
solution. Algorithm 1 is modified from TDR [Fung et al. 2007], which is orig-
inally designed for achieving only K-anonymity, not LKC-privacy. One major
difference is the validity check in Line 6, which will be discussed in detail in
Section 4.3.

Example 2. Consider the integrated raw patient data in Table I with L = 2,
K = 2, C = 50%, and QID = {Job , Sex, Age}. Initially, all data records
are generalized to 〈A NY Job , A NY Sex, [1-99)〉, and ∪Cuti = {A NY Job ,
A NY Sex, [1-99)}. To find the Best specialization among the candidates in
∪Cuti, we compute Score (A NY Job ), Score(A NY Sex), and Score([1-99)).

A simple yet inefficient implementation of Lines 4–6 is to scan all data
records and recompute Score(x) for all candidates in ∪Cuti. The key to the
efficiency of our algorithm is having direct access to the data records to be spe-
cialized, and updating Score(x) based on some statistics maintained for candi-
dates in ∪Cuti, instead of scanning all data records. In the rest of this section,
we explain our scalable implementation and data structures in detail.
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4.1 Find the Best Specialization

Initially, we compute Score for all candidates x in ∪Cuti. For each subsequent
iteration, information needed to calculate Score comes from the update of the
previous iteration (Line 6). Finding the best specialization Best involves at
most | ∪ Cuti| computations of Score without accessing data records. The proce-
dure for updating Score will be discussed in Section 4.3.

Example 3. Continue from Example 2. We show the computation of
Score(A NY Job ) for the specialization

A NY Job → {Blue-collar, White-collar}.
For classification analysis,
E(T[A NY Job ]) = − 6

11 × log2
6

11 − 5
11 × log2

5
11 = 0.994

E(T[Blue-collar]) = − 1
6 × log2

1
6 − 5

6 × log2
5
6 = 0.6499

E(T[White-collar]) = − 5
5 × log2

5
5 − 0

5 × log2
0
5 = 0.0

InfoGain(A NY Job ) = E(T[A NY Job ]) − ( 6
11×

E(T[Blue-collar]) + 5
11 × E(T[White-collar])) = 0.6396

Score(A NY Job ) = InfoGain(A NY Job ) = 0.6396.

4.2 Perform the Best Specialization

Consider a specialization Best → child(Best), where Best ∈ Di and Di ∈ QID.
First, we replace Best with child(Best) in ∪Cuti. Then, we need to retrieve
T[Best], the set of data records generalized to Best, to tell the child value in
child(Best) for individual data records. We employ a data structure called Tax-
onomy Indexed PartitionS (TIPS) [Fung et al. 2007] to facilitate this operation.
This data structure is also crucial for updating Score(x) for candidates x. The
general idea is to group data records according to their generalized records
on QID.

Definition 4.1 TIPS. TIPS is a tree structure with each root-to-leaf path rep-
resents a generalized record over QID. Each leaf node stores the set of data
records having the same generalized record for all the QID attributes along
the path. Each path is called a leaf partition. For each x in ∪Cuti, Px denotes a
leaf partition whose generalized record contains x, and Linkx denotes the link
of all Px, with the head of Linkx stored with x.

At any time, the generalized data is represented by the leaf partitions of
TIPS, but the original data records remain unchanged. Linkx provides a direct
access to T[x], the set of data records generalized to the value x. Initially,
TIPS has only one leaf partition containing all data records, generalized to the
topmost value on every attribute in QID. In each iteration, we perform the
best specialization Best by refining the leaf partitions on LinkBest.

Updating TIPS. We refine each leaf partition PBest found on LinkBest as fol-
lows. For each value c in child(Best), a new partition Pc is created from PBest,
and data records in PBest are split among the new partitions: Pc contains a data
record in PBest if c generalizes the corresponding domain value in the record.
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Fig. 3. The TIPS data structure.

An empty Pc is removed. Linkc is created to link up all Pc’s for the same c. Also,
link Pc to every Linkx to which PBest was previously linked, except for LinkBest.
We emphasize that this is the only operation in the whole algorithm that re-
quires accessing data records. The overhead of maintaining Linkx is small.
For each attribute in ∪QID j and each leaf partition on LinkBest, there are at
most |child(Best)| “relinkings,” or at most | ∪ QID j| × |LinkBest| × |child(Best)|
“relinkings” in total for applying Best.

Example 4. Initially, TIPS has only one leaf partition containing all data
records and representing the generalized record 〈ANY Job, ANY Sex, [1-99)〉.
Let the best specialization be ANY Job → {White-collar, Blue-collar} on Job.
We create two new partitions under the root partition as in Figure 3, and
split data records between them. Both the leaf partitions are on LinkANY Sex
and Link[1-99). ∪Cuti is updated into {White-collar, Blue-collar, ANY Sex, [1-
99)}. Suppose that the next best specialization is [1-99) → {[1-60), [60-99)},
which specializes the two leaf partitions on Link[1-99), resulting in the TIPS in
Figure 3.

A scalable feature of our algorithm is maintaining some statistical informa-
tion for each candidate x in ∪Cuti for updating Score(x) without accessing data
records. For each new value c in child(Best) added to ∪Cuti in the current itera-
tion, we collect the following count statistics of c while scanning data records in
PBest for updating TIPS: |T[c]|, |T[d]|, freq(T[c], cls), and freq(T[d], cls), where
d ∈ child(c) and cls is a class label. These information will be used in Section 4.3.

TIPS has several useful properties. First, all data records in the same leaf
partition have the same generalized record although they may have different
raw values. Second, every data record appears in exactly one leaf partition.
Third, each leaf partition Px has exactly one generalized qid on QID and con-
tributes the count |Px| towards |T[qid]|. Later, we use the last property to
extract |T[qid]| from TIPS.

4.3 Update Score and Validity

This step updates Score(x) and validity for candidates x in ∪Cuti to reflect the
impact of the Best specialization. The key to the scalability of our algorithm is
updating Score(x) using the count statistics maintained in Section 4.2 without
accessing raw records again.
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4.3.1 Updating Score. The procedure for updating Score is different de-
pending on the information requirement.

Case 1 Classification Analysis. An observation is that InfoGain(x) is not
affected by Best → child(Best), except that we need to compute InfoGain(c) for
each newly added value c in child(Best). InfoGain(c) can be computed from the
count statistics for c collected in Section 4.2.

Case 2 General Data Analysis. Each leaf partition Pc keeps the count
|T[qidc]|. By following Linkc from TIPS, we can compute

∑
qidc

|T[qidc]|2 for
all the qidc on Linkc.

4.3.2 Validity Check. A specialization Best → child(Best) may change the
validity status of other candidates x ∈ ∪Cuti if Best and x are contained in the
same qid with size not greater than L. Thus, in order to check the validity, we
need to keep track of the count of every qid with |qid| = L. Note, we can ignore
qid with size less than L because if a table satisfies LKC-privacy, then it must
satisfy L′KC-privacy where L′ < L.

We present an efficient method for checking the validity of a candidate. First,
given a QID in T, we identify all QID j ⊆ QID with size L. Then, for each
QID j, we use a data structure, called QIDTree j, to index all qidj on QID j.
QIDTree j is a tree, where each level represents one attribute in QID j. Each
root-to-leaf path represents an existing qidj on QID j in the generalized data,
with |T[qidj]| and |T[qidj∧s]| for every s ∈ Sstored at the leaf node. A candidate
x ∈ ∪Cuti is valid if, for every c ∈ child(x), every qidj containing c has |T[qidj]| ≥
K and P(s|qidj) ≤ C for any s ∈ S. If x is invalid, remove it from ∪Cuti.

4.4 Analysis

Each iteration involves two types of work: (1) Accessing data records in T[Best]
for updating TIPS and count statistics (Section 4.2). (2) Updating Score(x) and
validity status for the affected candidates x in ∪Cuti (Section 4.3). Only the
work in (1) involves accessing data records, which is in the order of O(|T|); the
work in (2) makes use of the count statistics without accessing data records
and can be performed in constant time. This feature makes our approach scal-
able. We will empirically evaluate the scalability of the algorithm on a real-life
dataset in Section 6. For one iteration, the computation cost is O(|T|) and the
total number of iterations is bounded by O(log|T|); therefore, the total compu-
tation cost is O(|T|log|T|).

5. DISTRIBUTED ANONYMIZATION ALGORITHM

In the section, we extend the centralized anonymization algorithm to address
the problem of distributed anonymization for data analysis described in Defin-
ition 3.3. Initially the data is located among n different locations. Each Party
i (hospital) owns a private database Ti. The union of the local databases con-
structs the complete view of the data table, T =

⋃
Ti, where 1 ≤ i ≤ n. Note

that the quasi-identifiers are uniform across all the local databases.
As discussed in Section 1.2, if the data holders perform anonymization inde-

pendently before data integration, then it results in higher utility loss than the
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centralized approach. To prevent utility loss, parties need to know whether
a locally identifiable record will or will not satisfy the privacy requirement
after integration. Moreover, to satisfy the utility requirement, all the par-
ties should perform the same sequence of anonymization operations. In other
words, parties need to calculate the Score of the candidates over the integrated
data table. To overcome these problems, each party keeps a copy of the cur-
rent ∪Cuti and generalized T, denoted by Tg, in addition to the private Ti. The
nature of the top-down approach implies that Tg is more general than the fi-
nal answer, therefore, does not violate the requirement (3) in Definition 3.3.
At each iteration, all the parties cooperate to determine the Best specialization
that has the highest Score and perform the same specialization. The exchanged
information for determining the Score does not violate the requirement (3) in
Definition 3.3.

The proposed distributed anonymization algorithm requires one party to act
as a leader. It is important to note that any hospital can act as a leader and
the leader is not necessarily to be more trustworthy than others. Unlike the
centralized approach, hospitals do not share their data with the leader and af-
ter the anonymization the data resides with the respective data holders. The
only purpose of the leader is to synchronize the anonymization process. Al-
gorithms 2 and 3 describe the algorithms for leader and nonleader parties.
Without loss of generality, we assume that Party 1 is the leader in the explana-
tion. The sequence of specialization operations performed by the parties in this
distributed anonymization algorithm is the same as the centralized anonymiza-
tion algorithm. Initially, each party initializes Tg to include one record con-
taining the top most values and ∪Cuti to include the top most value for each
attribute Di (Lines 1–2 of Algorithms 2 and 3). First, the leader collects all the
count statistics from all the parties to determine the Best candidate. The count
statistics are collected through the propagation of the Information message by
using secure sum protocol [Schneier 1995] (Lines 3–4 of Algorithms 2 and 3).
Secure sum protocol ensures that the leader only knows the global count sta-
tistics without the knowledge of the specific individuals’ contribution. Once the
leader determines the Best candidate (Line 6 of Algorithm 2), it informs the
other parties through the propagation of the Instruction message to specialize
the Best on Tg (Line 7 of Algorithm 2 and Lines 6–7 of Algorithm 3). Then
the leader performs Best → child(Best) on its copy of ∪Cuti and Tg (Line 8 of
Algorithm 2). This means specializing each record t ∈ Tg containing the value
of Best into more specialized records, t′1, . . . , t′z containing the child values of
child(Best). Similarly, other parties update their ∪Cuti and Tg, and partition
Tg[t] into Tg[t′1], . . . , Tg[t′z] (Line 8 of Algorithm 3). Finally, the leader again col-
lects global count statistics from the other parties (Lines 9–10 of Algorithms
2 and 3) to update the Score and validity of the candidates (Line 11 of Algo-
rithm 2). The algorithm terminates when there are no more valid candidates
in ∪Cuti.

Example 5. Consider Table I with L = 2, K = 2, C = 50%, and
QID = {Job , Sex, Age}. Initially, all data records are generalized to
〈A NY Job , A NY Sex, [1-99)〉 in Tg, and ∪Cuti = {A NY Job , A NY Sex, [1-99)}.
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Algorithm 2 Distributed Anonymization Algorithm for Leader Party
1: Initialize Tg to include one record containing the top most values;
2: Initialize Cuti to include all the valid top most values;
3: Send Information to Party 2;
4: Read Information from Party n;
5: while some x ∈ ∪Cuti is valid do
6: Find the Best specialization from ∪Cuti;
7: Send Instruction to Party 2 to specialize Best on Tg;
8: Perform Best on Tg and update ∪Cuti;
9: Send Information to Party 2;
10: Read Information from Party n;
11: Update the Score(x) and validity for ∀x ∈ ∪Cuti;
12: end while
13: Send End to Party 2 and terminate;

Algorithm 3 Distributed Anonymization Algorithm for Non-leader Parties
1: Initialize Tg to include one record containing the top most values;
2: Initialize Cuti to include all the valid top most values;
3: Read Information from Party (i − 1);
4: Send Information to Party (i + 1) % n after adding its own information;
5: while received message �= End do
6: Read Instruction from Party (i − 1);
7: Send Instruction to Party (i + 1) % n;
8: Perform specialization on Tg according to the received Instruction;
9: Read Information from Party (i − 1);
10: Send Information to Party (i + 1) % n after adding its own counts;
11: end while
12: Send message End to Party (i + 1) % n and terminate;

To find the Best specialization among the candidates in ∪Cuti, the leader col-
lects the global count statistics to compute Score(A NY Job ), Score(A NY Sex),
and Score([1-99)).

Similar to the centralized algorithm, we describe the key steps as follows:
find the Best candidate, perform the Best specialization, and update the Score
and validity of the candidates. Only the leader determines the Best candidate
and updates the Score and validity of the candidates. All the other parties per-
form the Best specialization according to the instruction of the leader. Finally,
all the parties integrate their local anonymous databases after anonymization.

5.1 Find the Best Candidate

Initially, the leader computes the Score for all candidates x in ∪Cuti to deter-
mine the Best candidate. For each subsequent iteration, Score(x) come from the
update done in the previous iteration (Line 11 of Algorithm 2). To calculate the
Score of a candidate x, the leader needs the value of |T[x]|, |T[c]|, freq(T[x], cls),
and freq(T[c], cls), where c ∈ child(x) and cls is a class label. Refer to Section
3.2 for Score functions. These values can be obtained by summing up the indi-
vidual count statistics from all the parties: |T[x]| =

∑
i |Ti[x]|, |T[c]| =

∑
i |Ti[c]|,
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freq(T[x], cls) =
∑

i f req(Ti[x], cls), and freq(T[c], cls) =
∑

i f req(Ti[c], cls).
However, disclosing these values for summation violates the privacy require-
ment, since a party should not know the count statistics of other parties. To
overcome this problem, we use secure sum protocol.

Secure sum protocol calculates the sum of the values from different parties
without disclosing the value of any individual. Suppose there are n (> 2) dif-
ferent parties each holding a secret number, where Party 1 is the leader. The
leader first generates a random number R, adds it to its local value v1 and sends
the sum R + v1 to Party 2. Thus, Party 2 does not know the value of v1. For the
remaining parties, 2 ≤ i ≤ n − 1, each party receives V = R +

∑i−1
j=1 v j, adds its

own value to the sum and passes it to Party i + 1. Finally, Party n receives the
sum, adds its value, and passes it to Party 1. Since Party 1 (leader) knows the
random number, it can obtain the summation by subtracting R from V. Hence,
the leader can determine the summation without knowing the secret value of
the individual parties. However, secure sum protocol does not work when n = 2
because Party 1 can always know the value of Party 2 by subtracting its own
value from the summation. We further discuss this issue in Section 5.5.

To obtain the global count statistics, the leader first creates an Information
message by adding random numbers to its own local count statistics and passes
the message to Party 2 (Line 3 of Algorithm 2). Similarly, all of the nonleader
parties add their count statistics to the Information and pass it to the next
party (Lines 3–4 of Algorithm 3). Finally, the leader gets the message from
Party n and subtracts the random numbers to get the global count statistics for
computing the Score of the candidates.

Example 6. Continue with Example 5. First, the leader (Party 1) computes
the Information message by its local count statistics. The Information message
has two parts: validity and score. The validity portion contains count statistics
needed to determine the validity of the candidates. Specifically, it contains the
number of records generalized to a particular equivalence group and the size
of the new subgroups if any of the attribute is specialized. Following is the
validity part of an Information message.

Validity = {(ANY Job, ANY Sex, [1-99), 3(1)), (ANY Job, 2(1), 1(0)),
(ANY Sex, 2(1), 1(0)), ([1-99), 3(1), 0(0))}

This means that Party 1 has three records in an equivalence group with
qid = {A NY Job , A NY Sex, [1-99)}, where one of the records contains sensitive
value. If ANY Job is specialized, then it generates two equivalence groups,
where the first group contains two records including one sensitive value and
the other group contains one record with no sensitive value. Similarly, it also
contains the count statistics if ANY Sex and [1-99) are specialized. Note that,
validity part also provides enough count statistics to compute the Score for
general data analysis.

Score part contains count statistics needed to compute the Score for clas-
sification analysis. It contains the number of records for all the class labels
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for each candidate in the ∪Cuti. Following is the score part of an Information
message.

Score = {(ANY Job, 1, 2) (Blue-collar, 1, 1) (White-collar, 0, 1),
(ANY Sex, 1, 2) (M, 1, 1) (F, 0, 1), ([1-99), 1, 2) ([1-60), 1, 2) ([60-99), 0, 0)}
The number of records are one and two for the class labels “Yes” and “No” re-

spectively for the ANY Job. It also provides the detailed counts when ANY Job
is specialized into Blue-collar and White-collar. Blue-collar has one record con-
taining “Yes” and one record containing “No” class label. White-collar has only
one record with “No” class label. Similarly, it provides necessary counts for the
other candidates. After computing the Information message, Party 1 adds a
random number to each of the values and sends the message to Party 2. As
mentioned earlier, all of the parties add their part into the Information and
thus the message comes back to the leader with the global count statistics.
Then the leader subtracts the random numbers to get the real global counts
for computing the Score and validity of the candidates. Figure 4 shows the
information flow among the parties.

5.2 Perform the Best Candidate

Once the Best candidate is determined, the leader instructs all the other parties
to specialize Best → child(Best) on their local Tg (Line 7 of Algorithm 2). The
Instruction message contains the Best attribute and the number of global gen-
eralized records in each new subgroups. Similar to the centralized anonymiza-
tion algorithm, each party uses the Taxonomy Indexed Partitions (TIPS) data
structure to facilitate the operations on Tg. The difference is that in the cen-
tralized approach, one party (central government health agency) specializes the
records, but in the distributed setting, every data holder concurrently special-
ize its own records. If

⋃
Cuti has no valid attributes, then the leader sends the

End message to terminate the anonymization algorithm. Thus, both central-
ized and distributed anonymization algorithms produce the same anonymous
integrated table by performing the same sequence of operations.

Example 7. Continue with Example 6. Initially, TIPS has one partition
(root) representing the most generalized record 〈A NY Job , A NY Sex, [1-99)〉.
Suppose that the Best candidate is

ANY Job → {Blue-collar,White-collar}.
The leader creates two child nodes under the root and partitions Tg[root]

between them resulting in the TIPS in Figure 4 and further instructs Party 2
to perform the same specialization. On receiving this instruction, Party 2 sends
the message to the next party and similarly creates two child nodes under the
root in its copy of TIPS. Thus, all the parties perform the same operation on
their TIPS. This specialization process continues as long as there is a valid
candidate in

⋃
Cuti.

Updating TIPS. Updating TIPS is similar to the centralized approach. Each
party refines its own leaf partition PBest on LinkBest into child partitions Pc.
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Fig. 4. Distributed anonymization.
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Linkc is created to link up the new Pc’s for the same c. Add Pc to every
Linkx other than LinkBest to which PBest was previously linked. While scan-
ning the records in PBest, each Party i also collects the following counts for
updating Score. (1) For each c in child(w): |TA[c]|, |TA[d]|, freq(TA[c], cls), and
freq(TA[d], cls), where d ∈ child(c) and cls is a class label. Refer to Section 3.2
for these notations. |TA[c]| is computed by

∑ |Pc| for Pc on Linkc. (2) For each
Pc on Linkc: |Pd|, where Pd is a child partition under Pc as if c was special-
ized. These count statistics are collected by the leader through Information
message (Lines 9–10 of Algorithms 2 and 3) to update the Score and validity of
the candidates. Thus, updating Score(x) (in Section 5.3) makes use of the count
statistics without accessing raw data records.

5.3 Update Score and Validity

This step is performed only by the leader and is similar to the centralized ap-
proach. All of the count statistics that are needed to update Score(x) and va-
lidity for candidates x in ∪Cuti are collected through the Information message
from all the other parties that they maintained in Section 5.2.

5.4 Data Integration

After executing the distributed anonymization algorithm, each party generates
a local anonymous database which by itself may not satisfy LKC-privacy, while
the union of the local anonymous databases is guaranteed to satisfy the privacy
requirements. The final task is to integrate these local anonymous databases
before giving it to the BTS. A naı̈ve approach could be that each data holder
sends its local anonymous data to the leader for data integration. However, this
approach does not provide effective enough privacy to the data holders because
it reveals the ownership of the records to the leader. To provide better privacy,
secure set union protocol can be used to integrate the data distributively with-
out disclosing any additional information [Clifton et al. 2002]. Secure set union
is a useful SMC technique that determines the union of the items securely from
different parties. We can use the secure set union protocol proposed by Jurczyk
and Xiong [2008] to securely integrate the local anonymous databases from
different data holders.

5.5 Analysis

The distributed anonymization algorithm produces the same anonymous in-
tegrated table as the centralized anonymization algorithm. This claim follows
from the fact that Algorithms 2 and 3 perform exactly the same sequence of spe-
cializations as the centralized anonymization algorithm in a distributed man-
ner where Ti is kept locally at each party.

For the privacy requirement, the only information revealed to the leader is
content found in the global count statistics of Information message. The count
statistics are needed for the calculation of Score and validity of the candidates.
The validity part of the Information message determines whether a candidate
can be further specialized or not. However, such information can also be deter-
mined from the final integrated table because a specialization should take place
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as long as it is valid. The disclosure of the score part does not breach privacy
because it contains only the frequency of the class labels for the candidates.
These values only indicate how good a candidate is for classification analysis,
and does not provide any information for a particular record. Moreover, the
Score is computed by the leader over the global count statistics without the
knowledge of the individual local counts.

The computation cost of the distributed algorithm is similar to the central-
ized approach. Each party only scans its own data in every iteration. As a
result, the computational cost for each party is bounded by O(|Ti|log|T|). How-
ever, distributed algorithm has some additional communication overhead. In
every iteration, each party sends one Instruction and one Information message.
The Instruction message contains the Best candidate that needs to be special-
ized. The Information message contains different count statistics for every
candidate in the ∪Cuti. Thus, these messages are compact. Moreover, there is
a synchronization delay in every iteration, which is proportional to the number
of parties n since the parties form a ring topology.

Due to the limitation of the employed secure sum protocol in our proposed
distributed anonymization algorithm, the present solution is applicable only
if there are more than two parties. A distributed anonymization algorithm for
two parties requires a different cryptographic technique, which is not as simple
as the secure sum protocol [Du 2001]. The solution for the two-party case is
beyond the scope of this article because in the BTS scenario, the number of
hospitals is more than two.

6. EXPERIMENTAL EVALUATION

In this section, our objectives are to study the impact of enforcing various LKC-
privacy requirements on the data quality in terms of classification error and
discernibility cost, and to evaluate the efficiency and scalability of our proposed
centralized and distributed anonymization methods by varying the thresholds
of maximum adversary’s knowledge L, minimum anonymity K, and maximum
confidence C.

We employ two real-life datasets, Blood and Adult. Blood is a real-life blood
transfusion dataset owned by an anonymous health institute. Blood has 62
attributes after removing explicit identifiers; 41 of them are QID attributes.
Blood Group represents the Class attribute with 8 possible values. Diagnosis
Codes, which has 15 possible values representing 15 categories of diagnosis, is
considered to be the sensitive attribute. The remaining attributes are neither
quasi-identifiers nor sensitive. Blood contains 10,000 blood transfusion records
in 2008. Each record represents one incident of blood transfusion. The publicly
available Adult dataset [Newman et al. 1998] is a de facto benchmark for test-
ing anonymization algorithms [Bayardo and Agrawal 2005; Fung et al. 2007;
Iyengar 2002; Machanavajjhala et al. 2007; Wang et al. 2007]. Adult has 45,222
census records on 6 numerical attributes, 8 categorical attributes, and a binary
Class column representing two income levels, ≤50K or >50K. See Fung et al.
[2007] for the description of attributes. We consider Divorced and Separated
in the attribute Marital-status as sensitive, and the remaining 13 attributes as
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QID. All experiments were conducted on an Intel Core2 Quad Q6600 2.4GHz
PC with 2GB RAM.

6.1 Data Utility

To evaluate the impact on classification quality (Case 1 in Section 3.2.1), we
use all records for generalization, build a classifier on 2/3 of the generalized
records as the training set, and measure the classification error (CE) on 1/3 of
the generalized records as the testing set. For classification models, we use the
well-known C4.5 classifier [Quinlan 1993]. To better visualize the cost and ben-
efit of our approach, we measure additional errors: Baseline Error (BE) is the
error measured on the raw data without generalization. BE − CE represents
the cost in terms of classification quality for achieving a given LKC-privacy
requirement. A naı̈ve method to avoid identity and attributes linkages is to
simply remove all QID attributes. Thus, we also measure upper bound error
(UE), which is the error on the raw data with all QID attributes removed.
UE − CE represents the benefit of our method over the naı̈ve approach.

To evaluate the impact on general analysis quality (Case 2 in Section 3.2.2),
we use all records for generalization and measure the discernibility ratio (DR)

on the final anonymous data. DR =
∑

qid |T[qid]|2
|T|2 . DR is the normalized dis-

cernibility cost, with 0 ≤ DR ≤ 1. Lower DR means higher data quality.
Sections 6.1.1 and 6.1.2 discuss the experimental results for centralized and
distributed anonymization, respectively.

6.1.1 Centralized Anonymization. Figure 5(a) depicts the classification
error CE with adversary’s knowledge L = 2, 4, 6, anonymity threshold 20 ≤
K ≤ 100, and confidence threshold C = 20% on the Blood dataset. This set-
ting allows us to measure the performance of the centralized algorithm against
identity linkages for a fixed C. CE generally increases as K or L increases.
However, the increase is not monotonic. For example, the error drops slightly
when K increases from 20 to 40 for L = 4. This is due to the fact that general-
ization has removed some noise from the data, resulting in a better classifica-
tion structure in a more general state. For the same reason, some test cases on
L = 2 and L = 4 have CE < BE, implying that generalization not only achieves
the given LKC-privacy requirement but sometimes may also improve the clas-
sification quality. BE = 22.1% and UE = 44.1%. For L = 2 and L = 4, CE − BE
spans from -2.9% to 5.2% and UE − CE spans from 16.8% to 24.9%, suggesting
that the cost for achieving LKC-privacy is small, but the benefit is large when
L is not large. However, as L increases to 6, CE quickly increases to about
40%, the cost increases to about 17%, and the benefit decreases to 5%. For a
greater value of L, the difference between LKC-privacy and K-anonymity is
very small in terms of classification error since more generalized data does not
necessarily worse classification error. This result confirms that the assumption
of an adversary’s prior knowledge has a significant impact on the classification
quality. It also indirectly confirms the curse of high dimensionality [Aggarwal
2005].
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Fig. 5. Blood dataset.

Figure 5(b) depicts the discernibility ratio DR with adversary’s knowledge
L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and a fixed confidence thresh-
old C = 20%. DR generally increases as K increases, so it exhibits some trade-
off between data privacy and data utility. As L increases, DR increases rapidly
because more generalization is required to ensure each equivalence group has
at least K records. To illustrate the benefit of our proposed LKC-privacy model
over the traditional K-anonymity model, we measure the discernibility ratio,
denoted DRTradK , on traditional K-anonymous solutions produced by the TDR
method in Fung et al. [2007]. DRTradK − DR, representing the benefit of our
model, spans from 0.1 to 0.45. This indicates a significant improvement on
data quality by making a reasonable assumption on limiting the adversary’s
knowledge within L known values. Note, the solutions produced by TDR do
not prevent attribute linkages although they have higher discernibility ratio.

Figure 6(a) depicts the classification error CE with adversary’s knowledge
L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C =
20% on the Adult dataset. BE = 14.7% and UE = 24.5%. For L = 2, CE − BE
is less than 1% and UE − CE spans from 8.9% to 9.5%. For L = 4 and L = 6,
CE − BE spans from 1.1% to 4.1%, and UE − CE spans from 5.8% to 8.8%.
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Fig. 6. Adult dataset.

These results suggest that the cost for achieving LKC-privacy is small, while
the benefit of our method over the naı̈ve method is large.

Figure 6(b) depicts the CE with adversary’s knowledge L = 2, 4, 6, confi-
dence threshold 5% ≤ C ≤ 30%, and anonymity threshold K = 100. This set-
ting allows us to measure the performance of the algorithm against attribute
linkages for a fixed K. The result suggests that CE is insensitive to the change
of confidence threshold C. CE slightly increases as the adversary’s knowledge
L increases.

Figure 7(a) depicts the discernibility ratio DR with adversary’s knowledge
L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C =
20%. DR sometimes has a drop when K increases. This is a result of the
greedy algorithm only identifying the suboptimal solution. DR is insensitive
to the increase of K and stays close to 0 for L = 2. As L increases to 4, DR
increases significantly and finally equals traditional K-anonymity when L = 6
because the number of attributes in Adult is relatively smaller than in Blood.
Yet K-anonymity does not prevent attribute linkages, while our LKC-privacy
provides this additional privacy guarantee.

Figure 7(b) depicts the DR with adversary’s knowledge L = 2, 4, 6, confi-
dence threshold 5% ≤ C ≤ 30%, and anonymity threshold K = 100. In general,
DR increases as L increases due to a more restrictive privacy requirement.
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Fig. 7. Adult dataset.

Similar to Figure 6b, the DR is insensitive to the change of confidence thresh-
old C. It implies that the primary driving forces for generalization are L and
K, not C.

6.1.2 Distributed Anonymization. The distributed anonymization algo-
rithm achieves same data utility as the centralized anonymization algorithm
and thus all the previous results also hold for distributed anonymization algo-
rithm. Here, we show the benefit of our distributed anonymization algorithm
over the naı̈ve “generalize-then-integrate” approach. We divide the 45, 222
records of Adult dataset equally among three parties. In the naı̈ve approach,
parties first generalizes their data to satisfy LKC-privacy. Classification error
and discernibility ratio are then calculated on the integrated anonymous data
collected from the parties.

Figure 8(a) depicts the classification error CE with adversary’s knowledge
L = 4, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20%
on the Adult dataset. For the naı̈ve approach, CE − BE spans from 3.8% to
8.2%, and UE − CE spans from 1.7% to 6.1%. This result confirms that the
naı̈ve approach loses a significant amount of data due to prior generalization
before integration.
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Fig. 8. Adult dataset.

Figure 8(b) depicts the discernibility ratio DR with adversary’s knowledge
L = 4, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20%.
For both the approaches, DR generally increases as K increases. However, the
naı̈ve approach has a higher discernibility ratio for all the values of K, con-
firming the benefit of the distributed anonymization algorithm over the naı̈ve
approach.

6.2 Efficiency and Scalability

One major contribution of our work is the development of an efficient and
scalable algorithm for achieving LKC-privacy on high-dimensional healthcare
data. Every previous test case can finish the entire anonymization process
within 30 seconds. We further evaluate the scalability of our algorithm with
respect to data volume by blowing up the size of the Adult dataset. First, we
combined the training and testing sets, giving 45,222 records. For each original
record r in the combined set, we created α − 1 “variations” of r, where α > 1 is
the blowup scale. Together with all original records, the enlarged dataset has
α × 45, 222 records.

Figure 9 depicts the runtime of the centralized anonymization algorithm
from 200,000 to 1 million records for L = 4, K = 20, C = 100%. The total
runtime for anonymizing 1 million records is 107s, where 50s are spent on
reading raw data, 33s are spent on anonymizing, and 24s are spent on writing
the anonymous data. Our algorithm is scalable due to the fact that we use the
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Fig. 9. Scalability (L = 4, K = 20, C = 100%).

count statistics to update the Score, and thus it only takes one scan of data per
iteration to anonymize the data. As the number of records increases, the total
runtime increases linearly.

6.3 Summary

The experimental results on the two real-life datasets can be summarized as
follows: (1) Our anonymization methods can effectively preserve both privacy
and data utility in the anonymous data for a wide range of LKC-privacy re-
quirements. There is a trade-off between data privacy and data utility with
respect to K and L, but the trend is less obvious on C. (2) Our proposed LKC-
privacy model retains more information than the traditional K-anonymity
model and provides the flexibility to adjust privacy requirements according to
the assumption of adversary’s background knowledge. (3) The proposed meth-
ods are highly scalable for large datasets. These characteristics make our algo-
rithms a promising component for anonymizing healthcare data.

7. CONCLUSION AND LESSON LEARNED

We have proposed two anonymization algorithms to address the centralized
and distributed anonymization problems for healthcare institutes with the
objective of supporting data mining. Motivated by the BTS’s privacy and
information requirements, we have formulated the LKC-privacy model for
high-dimensional relational data. Moreover, our developed algorithms can ac-
commodate two different information requirements according to the BTS’ in-
formation need. Our proposed solutions are different from privacy-preserving
data mining (PPDM) due to the fact that we allow data sharing instead of data
mining result sharing. This is an essential requirement for the BTS since they
require the flexibility to perform various data analysis tasks. We believe that
our proposed solutions could serve as a model for data sharing in the healthcare
sector.

Finally, we would like to share our collaborative experience with the health-
care sector. Health data is complex, often a combination of relational data,
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transaction data, and textual data. Thus, our project focuses only on the re-
lational data, but we notice that some recent works [Gardner and Xiong 2009;
Ghinita et al. 2008; Terrovitis et al. 2008; Xu et al. 2008], are applicable to solve
the privacy problem on transaction and textual data in the BTS case. Besides
the technical issue, it is equally important to educate health institute manage-
ment and medical practitioners about the latest privacy-preserving technology.
When management encounters the problem of privacy-aware information shar-
ing as presented in this paper, their initial response is often to set up a tradi-
tional role-based secure access control model. In fact, alternative techniques,
such as privacy-preserving data mining and data publishing [Aggarwal and Yu
2008; Fung et al. 2010], are available provided that the data mining quality
does not significantly degrade.
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