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ABSTRACT
Recently, trajectory data mining has received a lot of at-
tention in both the industry and the academic research. In
this paper, we study the privacy threats in trajectory data
publishing and show that traditional anonymization meth-
ods are not applicable for trajectory data due to its chal-
lenging properties: high-dimensional, sparse, and sequential.
Our primary contributions are (1) to propose a new privacy
model called LKC-privacy that overcomes these challenges,
and (2) to develop an efficient anonymization algorithm to
achieve LKC-privacy while preserving the information util-
ity for trajectory pattern mining.

Categories and Subject Descriptors
H.2.7 [Database Administration]: [Security, integrity,
and protection]

General Terms
Algorithms, Performance, Security

Keywords
Privacy, anonymity, trajectory data

1. INTRODUCTION
In recent years, there has been an explosive growth of

location-aware devices such as RFID tags, GPS-based de-
vices, cell phones, and PDAs. The use of these devices facil-
itates new and exciting location-based applications that con-
sequently generate a huge collection of trajectory data. Re-
cent research reveals that these trajectory data can be used
for various data analysis purposes such as city traffic control,
mobility management, urban planning, and location-based
service advertisements. Clearly, publication of these tra-
jectory data threatens individuals’ privacy since these raw
trajectory data provide location information that identifies
individuals and, potentially, their sensitive information. We
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Table 1: Raw trajectory and health data
ID Path Diagnosis ...

1 〈b2→ d3→ c4→ f6→ c7〉 AIDS ...
2 〈f6→ c7→ e8〉 Flu ...
3 〈d3→ c4→ f6→ e8〉 Fever ...
4 〈b2→ c5→ c7→ e8〉 Flu ...
5 〈d3→ c7→ e8〉 Fever ...
6 〈c5→ f6→ e8〉 Diabetes ...
7 〈b2→ f6→ c7→ e8〉 Diabetes ...
8 〈b2→ c5→ f6→ c7〉 AIDS ...

Table 2: Anonymous data with L = 2, K = 2, C = 50%
ID Path Diagnosis ...

1 〈d3→ f6→ c7〉 AIDS ...
2 〈f6→ c7→ e8〉 Flu ...
3 〈d3→ f6→ e8〉 Fever ...
4 〈c5→ c7→ e8〉 Flu ...
5 〈d3→ c7→ e8〉 Fever ...
6 〈c5→ f6→ e8〉 Diabetes ...
7 〈f6→ c7→ e8〉 Diabetes ...
8 〈c5→ f6→ c7〉 AIDS ...

use an example to illustrate the privacy threats and chal-
lenges of publishing trajectory data.

Example 1.1. A hospital wants to release the patient-
specific trajectory and health data (Table 1) to a data miner
for research purposes. Each record contains a path and some
patient-specific information, where the path is a sequence of
pairs (lociti) indicating the patient’s visited location loci at
time ti. For example, ID#2 has a path 〈f6 → c7 → e8〉,
meaning that the patient has visited locations f , c, and e
at time 6, 7, and 8, respectively. Without loss of generality,
we assume that each record contains only one sensitive at-
tribute, namely, diagnosis, in this example. We address two
types of privacy threats:

Identity linkage: If a path in the table is so specific that
not many patients match it, releasing the trajectory data
may lead to linking the victim’s record and, therefore, her
diagnosed disease. Suppose the adversary knows that the
data record of a target victim, Alice, is in Table 1, and
Alice has visited b2 and d3. Alice’s record, together with her
sensitive value (AIDS in this case), can be uniquely identified
because ID#1 is the only record that contains b2 and d3.
Besides, the adversary can also determine the other visited
locations of Alice, such as c4, f6 and c7.

Attribute linkage: If a sensitive value occurs frequently
together with some sequence of pairs, then the sensitive in-
formation can be inferred from such sequence even though
the exact record of the victim cannot be identified. Suppose
the adversary knows that Bob has visited b2 and f6. Since
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two out of the three records (ID#1,7,8) containing b2 and
f6 have sensitive value AIDS, the adversary can infer that
Bob has AIDS with 2/3 = 67% confidence.

Many privacy models, such as K-anonymity [7] and its
extensions [5][11], have been proposed to thwart privacy
threats caused by identity and attribute linkages in the con-
text of relational databases. These privacy models are ef-
fective for anonymizing relational data, but they are not
applicable to trajectory data due to two special challenges.

(1) High dimensionality: Traditional K-anonymity re-
quires every path to be shared by at least K records. Due to
the curse of high dimensionality [2], most of the data have
to be suppressed in order to achieve K-anonymity. For ex-
ample, to achieve 2-anonymity on the path data in Table 1,
all instances of {b2, d3, c4, c5} have to be suppressed.

(2) Data sparseness: Consider patients in a hospital or
passengers in a public transit system. They usually visit
only a few locations compared to all available locations.
Anonymizing these little-overlapping paths poses a signif-
icant challenge for traditional anonymization techniques be-
cause it is difficult to identify and group the paths together.
Enforcing traditional K-anonymity on high-dimensional and
sparse data would render the data useless.

1.1 Privacy and Utility
Traditional K-anonymity and its extended privacy mod-

els assume that an adversary could potentially use any or
even all of the QID attributes as background knowledge to
perform identity or attribute linkages. However, in real-life
privacy attacks, it is very difficult for an adversary to acquire
all the visited locations and timestamps of a victim because
it requires non-trivial effort to gather each piece of back-
ground knowledge from so many possible locations at differ-
ent times. Thus, it is reasonable to assume that the adver-
sary’s background knowledge is bounded by at most L pairs
of (lociti) that the victim has visited. Based on this assump-
tion, we define a new privacy model called LKC-privacy [6]
for anonymizing high-dimensional and sparse spatio-temporal
data.

While protecting privacy is a critical element in data pub-
lishing, it is equally important to preserve the utility of the
published data because this is the primary reason for pub-
lication. In this paper, we aim at preserving the maximal
frequent sequences (MFS) because MFS often serves as the
information basis for different primitive data mining tasks
on sequential data, such as trajectory pattern mining [4].

1.2 Contributions
Our contributions can be summarized as follows. First,

based on the practical assumption that an adversary has
only limited background knowledge, we formally present a
new privacy model, called LKC-privacy, to address the spe-
cial challenges of anonymizing high-dimensional, sparse, and
sequential trajectory data (Section 3). Second, we present
an efficient anonymization algorithm to achieve LKC-privacy
while preserving maximal frequent sequences in the anony-
mous trajectory data (Section 4). Experimental results are
omitted due to space limitation.

2. RELATED WORK
Anonymizing High-Dimensional Data. There are

some recent works on anonymizing high-dimensional trans-

action data [9][12][13]. The methods presented in [9][12]
[13] model the adversary’s power by a maximum number of
known items as background knowledge. This assumption is
similar to ours, However, a transaction is a set of items, but
a moving object’s path is a sequence of visited location-time
pairs. Sequential data drastically increases the computa-
tional complexity for counting the support counts as com-
pared to transaction data because 〈a → b〉 is different from
〈b → a〉. Hence, their proposed models are not applicable
to spatio-temporal data.

Anonymizing Moving Objects. Some recent works
[1][8][14] address the anonymity of moving objects. In [1],
the authors assume that every trajectory is continuous. This
assumption is valid for GPS-like devices where the object
can be traced all the time, but it does not hold for RFID-
based moving objects. The privacy model proposed in [8]
assumes that different adversaries have different background
knowledge and thus the data holder needs to have the back-
ground knowledge of all the adversaries. In reality, such
information is difficult to obtain. Yarovoy et al. [14] con-
sider time as a QID attribute. However, there is no fixed
set of time for all moving objects, or rather each trajectory
has its own set of times as its QID. It is unclear how the
data holder can determine the QID attributes for each tra-
jectory. Again, none of these works [1][8][14] aim at achiev-
ing anonymity and preserving maximal frequent sequences
of the trajectories, which is the main theme of our paper.

3. PROBLEM DEFINITION
A trajectory database T is a collection of records in the

form 〈(loc1t1) → . . . → (locntn)〉 : s1, . . . , sp : d1, . . . , dm,
where 〈(loc1t1) → . . . → (locntn)〉 is the path, si ∈ Si are
the sensitive values, and di ∈ Di are the quasi-identifying
(QID) values of an object. Identity and attribute linkages
via the QID attributes can be avoided by applying exist-
ing anonymization methods for relational data [3][5][10]. In
this paper, we focus on eliminating identity and attribute
linkages via trajectory data as illustrated in Example 1.1.

3.1 Privacy Model
As explained in Section 1.1, we assume that the adversary

knows at most L pairs of location and timestamp that victim
has previously visited. We use q to denote such an a priori
known sequence of pairs, where |q| ≤ L. T (q) denotes a
group of records that contains q. A record in T contains q
if q is a subsequence of the path in the record. For example
in Table 1, ID#1, 2, 7, 8 contains q = 〈f6 → c7〉, written
as T (q) = {ID#1, 2, 7, 8}. Based on background knowledge
q, the adversary could launch identity and attribute linkage
privacy attacks (Example 1.1). To thwart the identity and
attribute linkages, we require that every sequence with a
maximum length L in the trajectory database has to be
shared by at least a certain number of records, and the ratio
of sensitive value(s) in every group cannot be too high. Our
privacy model, LKC-privacy, reflects this intuition.

Definition 3.1 (LKC-privacy). Let L be the maxi-
mum length of the background knowledge. Let S be a set
of sensitive values. A trajectory database T satisfies LKC-
privacy if and only if for any sequence q with |q| ≤ L,

1. |T (q)| ≥ K, where K > 0 is an integer anonymity
threshold, and
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2. P (s|q) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real
number confidence threshold.

LKC-privacy generalizes several traditional privacy mod-
els. K-anonymity [7] is a special case of LKC-privacy with
C = 100% and L = |d|, where |d| is the number of di-
mensions, i.e., number of distinct pairs, in the trajectory
database. Confidence bounding [10] is a special case of
LKC-privacy with K = 1 and L = |d|. (α, k)-anonymity [11]
is also a special case of LKC-privacy with L = |d|, K = k,
and C = α. Thus, the data holder can still achieve the
traditional models, if needed.

3.2 Utility Measure
The measure of data utility varies depending on the data

mining task to be performed on the published data. In this
paper, we aim at preserving the maximal frequent sequences.

Definition 3.2 (Maximal frequent sequence). For
a given minimum support threshold K′ > 0, a sequence x is
maximal frequent in a trajectory database T if x is frequent
and no super sequence of x is frequent in T .

The set of MFS in T is denoted by U(T ). Our data utility
goal is to preserve as many MFS as possible, i.e., maximize
|U(T )|, in the anonymous trajectory database.

3.3 Problem Statement
LKC-privacy can be achieved by performing a sequence

of suppressions on selected pairs from T . In this paper, we
employ global suppression, meaning that if a pair p is cho-
sen to be suppressed, all instances of p in T are suppressed.
Global suppression retains exactly the same support counts
of the preserved MFS in the anonymous trajectory database
as there were in the raw data. In contrast, a local suppres-
sion scheme may delete some instances of the chosen pair
and, therefore, change the support counts of the preserved
MFS. The property of data truthfulness is vital in some data
analysis, such as traffic analysis.

Definition 3.3 (Trajectory Anonymity for MFS).
Given a trajectory database T , a LKC-privacy requirement,
a minimum support threshold K′, a set of sensitive values
S, the problem of trajectory anonymity for maximal frequent
sequences (MFS) is to identify a transformed version of T
that satisfies the LKC-privacy requirement while preserving
the maximum number of MFS with respect to K′.

Finding an optimum solution for LKC-privacy is NP-
hard. Thus, we propose a greedy algorithm to efficiently
identify a reasonably “good” sub-optimal solution.

4. ANONYMIZATION ALGORITHM
Given a trajectory database T , our first step is to identify

all sequences that violate the given LKC-privacy require-
ment. Section 4.1 describes a method to identify violating
sequences efficiently. Section 4.2 presents a greedy algorithm
to eliminate the violating sequences with the goal of preserv-
ing as many maximal frequent sequences as possible.

4.1 Identifying Violating Sequences
An adversary may use any sequence with length not greater

than L as background knowledge to launch a linkage attack.

Algorithm 1 MVS Generator

Input: Raw trajectory database T
Input: Thresholds L, K, and C
Input: Sensitive values S
Output: Minimal violating sequence V (T )
1: X1 ← set of all distinct pairs in T ;
2: i = 1;
3: while i ≤ L or Xi 6= ∅ do

4: Scan T to compute |T (q)| and P (s|q), for ∀q ∈ Xi, ∀s ∈ S;
5: for ∀q ∈ Xi where |T (q)| > 0 do

6: if |T (q)| < K or P (s|q) > C then

7: Add q to Vi;
8: else
9: Add q to Wi;

10: end if

11: end for

12: Xi+1 ←Wi 1 Wi;
13: for ∀q ∈ Xi+1 do

14: if q is a super sequence of any v ∈ Vi then

15: Remove q from Xi+1;
16: end if

17: end for

18: i++;
19: end while
20: return V (T ) = V1 ∪ . . . ∪ Vi−1;

Thus, any non-empty sequence q with |q| ≤ L in T is a vi-
olating sequence if its group T (q) does not satisfy condition
1, condition 2, or both in LKC-privacy in Definition 3.1.

Example 4.1. Let L = 2, K = 2, C = 50%, and S =
{AIDS}. In Table 1, a sequence q1 = 〈b2 → c4〉 is a vio-
lating sequence because |T (q1)| = 1 < K. A sequence q2 =
〈b2 → f6〉 is a violating sequence because P (AIDS|q2) =
67% > C. However, a sequence q3 = 〈b2 → c5 → f6 → c7〉
is not a violating sequence even if |T (q3)| = 1 < K and
P (AIDS|q3) = 100% > C because |q3| > L.

A trajectory database satisfies a given LKC-privacy re-
quirement, if all violating sequences with respect to the pri-
vacy requirement are removed, because all possible chan-
nels for identity and attribute linkages are eliminated. A
naive approach is to first enumerate all possible violating se-
quences and then remove them. This approach is infeasible
because of the huge number of violating sequences. Consider
a violating sequence q with |T (q)| < K. Any super sequence
of q, denoted by q′′, in the database T is also a violating
sequence because |T (q′′)| ≤ |T (q)| < K.

To overcome this bottleneck of violating sequence enu-
meration, our insight is that there exists some “minimal”
violating sequences among the violating sequences, and it
is sufficient to achieve LKC-privacy by removing only the
minimal violating sequences.

Definition 4.1 (Minimal violating sequence). A vi-
olating sequence q is a minimal violating sequence (MVS) if
every proper subsequence of q is not a violating sequence.

Example 4.2. In Table 1, given L = 3, K = 2, C = 50%,
S = {AIDS}, the sequence q = 〈b2 → d3〉 is a MVS because
〈b2〉 and 〈d3〉 are not violating sequences. The sequence
q = 〈b2 → d3 → c4〉 is a violating sequence but not a MVS
because its subsequence 〈b2 → d3〉 is a violating sequence.

Every violating sequence is either a MVS or it contains
a MVS. Thus, if T contains no MVS, then T contains no
violating sequences.
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Table 3: Initial Score
b2 d3 c4 f6 c7 e8

PrivGain 3 1 3 1 1 1
UtilityLoss (+1) 4 4 2 5 6 5
Score 0.75 0.25 1.5 0.2 0.16 0.2

Table 4: Score after suppressing c4
b2 d3 f6

PrivGain 2 1 1
UtilityLoss (+1) 4 3 4
Score 0.5 0.33 0.25

Algorithm 1 presents a method to efficiently generate all
MVS. Line 1 puts all the size-1 sequences, i.e., all distinct
pairs, as candidates X1 of MVS. Line 4 scans T once to
compute |T (q)| and P (s|q) for each sequence q ∈ Xi and for
each sensitive value s ∈ S. If the sequence q violates the
LKC-privacy requirement in Line 6, then we add q to the
MVS set Vi (Line 7); otherwise, add q to the non-violating
sequence set Wi (Line 9) for generating the next candidate
set Xi+1, which is a self-join of Wi (Line 12). Two sequences
qx = 〈(locx

1 tx
1) → . . . → (locx

i tx
i )〉 and qy = 〈(locy

1ty
1) →

. . . → (locy

i ty

i )〉 in Wi can be joined only if the first i−1 pairs
of qx and qy are identical and tx

i < ty

i . The joined sequence is
〈(locx

1 tx
1) → . . . → (locx

i tx
i ) → (locy

i ty

i )〉. Lines 13-17 remove
a candidate q from Xi+1 if q is a super sequence of any
sequence in Vi because any proper subsequence of a MVS
cannot be a violating sequence. The set of MVS, denoted
by V (T ), is the union of all Vi.

Example 4.3. Consider Table 1 with L = 2, K = 2, C =
50%, and S = {AIDS}. X1 = {b2, d3, c4, c5, f6, c7, e8}.
After scanning T , we divide X1 into V1 = ∅ and W1 =
{b2, d3, c4, c5, f6, c7, e8}. Next, from W1 we generate the
candidate set X2 = {b2d3, b2c4, b2c5, b2f6, b2c7, b2e8, d3c4,
d3c5, d3f6, d3c7, d3e8, c4c5, c4f6, c4c7, c4e8, c5f6, c5c7,
c5e8, f6c7, f6e8, c7e8}. We scan T again to determine
V2 = {b2d3, b2c4, b2f6, c4c7, c4e8}. We do not further
generate X3 because L = 2.

4.2 Eliminating Violating Sequences
We propose a greedy algorithm to transform the raw tra-

jectory database T to an anonymous table T ′ with respect
to a given LKC-privacy requirement by a sequence of sup-
pressions. In each iteration, the algorithm selects a pair
p for suppression based on a greedy selection function. In
general, a suppression on a pair p in T increases privacy
because it removes minimal violating sequences (MVS), and
decreases data utility because it eliminates maximal frequent
sequences (MFS) in T . Therefore, we define the greedy func-
tion, Score(p), to select a suppression on a pair p that max-
imizes the number of MVS removed but minimizes the num-
ber of MFS removed in T . Score(p) is defined as follows:

Score(p) =
PrivGain(p)

UtilityLoss(p) + 1
(1)

where PrivGain(p) and UtilityLoss(p) are the number of
minimal violating sequence (MVS) and the number of max-
imal frequent sequence (MFS) containing the pair p, respec-
tively. A pair p may not belong to any MFS, resulting in
|UtilityLoss(p)| = 0. To avoid dividing by zero, we add 1
to the denominator. The pair p with the highest Score(p)
is called the winner pair, denoted by w.

Table 3 shows the initial Score(p) of every candidate pair
for Table 1. Initially, c4 is suppressed since it has the high-

est score. After suppressing c4, we update the score of the
remaining candidate pairs (Table 4). In the next iteration,
b2 is suppressed and thus all the remaining MVS are re-
moved. Table 2 shows the resulting anonymized table T ′ for
(2, 2, 50%)-privacy. Due to space limitation, we do not elab-
orate how we efficiently calculate and update the Score(p)
of the candidate pairs.

5. CONCLUSION
We proposed a new LKC-privacy model based on the as-

sumption that an adversary has limited background knowl-
edge about the victim. We also presented an efficient algo-
rithm for achieving LKC-privacy with the goal of preserv-
ing maximal frequent sequences, which serves as the basis
of many data mining tasks on sequential data.
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