
H4rm0ny: A Competitive Zero-Sum Two-Player
Markov Game for Multi-Agent Learning on Evasive

Malware Generation and Detection

Christopher Molloy∗, Steven H. H. Ding∗, Benjamin C. M. Fung†, and Philippe Charland‡
∗School of Computing, Queen’s University, Kingston, Canada. Emails: {chris.molloy, steven.ding}@queensu.ca

†School of Information Studies, McGill University, Montreal, Canada. Email: ben.fung@mcgill.ca
‡Mission Critical Cyber Security Section, Defence R&D Canada - Valcartier, Quebec, QC, Canada.

Email: philippe.charland@drdc-rddc.gc.ca

Abstract—To combat the increasingly versatile and mutable
modern malware, Machine Learning (ML) is now a popular and
effective complement to the existing signature-based techniques
for malware triage and identification. However, ML is also
a readily available tool for adversaries. Recent studies have
shown that malware can be modified by deep Reinforcement
Learning (RL) techniques to bypass AI-based and signature-
based anti-virus systems without altering their original malicious
functionalities. These studies only focus on generating evasive
samples and assume a static detection system as the enemy.

Malware detection and evasion essentially form a two-party
cat-and-mouse game. Simulating the real-life scenarios, in this
paper we present the first two-player competitive game for
evasive malware detection and generation, following the zero-sum
Multi-Agent Reinforcement Learning (MARL) paradigm. Our
experiments on recent malware show that the produced malware
detection agent is more robust against adversarial attacks. Also,
the produced malware modification agent is able to generate more
evasive samples fooling both AI-based and other anti-malware
techniques.

Keywords: Adversarial learning, Malware analysis, Neural
networks, Reinforcement learning, Markov decision process

I. INTRODUCTION

Each day, more than 500,000 new and never-before-seen
malware samples are recorded [1]. Development in recent years
seen by malware researchers is the application of adversarial
learning on malware. Adversarial learning is the domain of
research focusing on the techniques for evading learning
models. With the growing reliance on machine learning in
malware detection, evasion techniques have become a popular
tool used by malware developers. During 2019, the rate at
which evasive malware was detected rose from 35% to over
66% by WatchGuard [2]. One example was the Cylance
PROTECT system’s evasive vulnerability. In 2019, it was
shown that by appending benign strings from video games, a
piece of malware could evade the AI detection system [3]. The
company quickly resolved the problem and released patches

to the endpoint systems. This brings us to think about the
possibility of a more proactive and robust solution: designing
a detection model already foreseeing this specific move by the
adversary as well as other possible moves, so as to prevent
similar vulnerabilities in the first place.

Malware development and detection have become a never-
ending cat and mouse game. Adversarial learning on malware
is still a relatively new research area, and many successful
adversarial techniques that evade anti-malware engines are
manually generated on a per-sample basis, such as in the
previous Cylance example. Recent research has shown that
by using reinforcement learning, systems can be created that
modify malware to be evasive on a massive scale [4]. These
reinforcement learning systems do not only work against
signature-based methods, but also work well against machine
learning malware detection systems [4], [5]. To address the
challenges of adversarial malware attacks, typical solutions
include recognizing file specific features within the dataset and
training anti-malware engines with adversarial samples. These
solutions can be seen in the Cylace PROTECT system and
recent work proposed by Zhang et al1 [6].

In contrast to static adversarial training, we propose a
different direction simulating a real-life scenario: a dynamic
and competitive game between two agents. One agent is tasked
with producing functional adversarial samples of Microsoft
Portable Executable (PE) malware. The other agent is an anti-
malware agent, classifying malware generated by the first agent
and learning the malware. In our game, one agent (modifica-
tion agent) will be given a set of tools to modify malware
and the other agent (detection agent) will be tasked with
learning the modification methods. Our multi-agent learning
system, H4rm0ny, consists of a convolution neural network
and a Markov decision process reinforcement learning model.
H4rm0ny builds on top of the models proposed by Raff et
al. and Anderson et al. [4], [7]. The model proposed by
Raff et al. is a gated convolution neural network that has
been designed for Microsoft PE malware detection [7]. The
Markov decision process proposed by Anderson et al. is a
reinforcement learning application that is trained to modify
malware to be miss-classified against a specified malware
detection system [4]. These malware modifications occur in the
problem space to keep the malware functional as the original.

1Adversarial ML: How Artificial Intelligence is Enabling Cyber Resilience

978-1-6654-9952-1/22/$31.00 ©2022 IEEE

Malware

Malware
Modification
Sampler

a2

Malware
Modification
Sampler

Malware
Modification
Sampler

Malware
Modification
Sampler

DDQN

ACER

Function-agnostic Binary Modification Actions

...

Malware
Detection/Triage

Agent

...

Step t=0 Step t=1 Step t=2 Step t=3

a0 a1 a3

Sampling
Probability

Sample a
Single Action

s0 s1 s2 s3 s4

gOpenAI Learning Gym

D
et

ec
tio

n
R

ew
ar

d
Evasion
Reward

Sample from
Malware
Repository

Fig. 1: The H4rm0ny training process for a single episode. Results from all system configurations are also shown. A sample
piece of malware is chosen from our dataset. It is then sent through a process of modifications. If any modification produces
an evasive sample of the malware, that sample is trained into the detection agent. Once the sample has been up-trained into the
detection agent, the modification agent policy is updated with the set of actions performed on the malware sample and the state
of the detection agent.

The modifications that we are using have been shown to keep
the functionality of the malware [4]. The main contributions
of this paper are as follows:

• This is the first work that designs and implements
a two-party competitive gameplay environment for
evasive malware generation and detection.

• We proposed a custom reward loss function with a
special up-training function to balance the gameplay
for the agents to learn from both benign and malicious
samples. Integrated with Actor-Critic with Experi-
ence Replay (ACER) and Double Deep Q-Network
(DDQN) for the malware generation agent [8], [9],
and MalConv for continuous action space malware
detection agent, the gameplay becomes stable and
starts converging.

• We evaluate different agent designs on recent malware
samples and show that the malware generation agent
can generate more evasive samples, and the detection
agent is now more robust against adversarial samples.

II. METHODOLOGY

The H4rm0ny system consists of a malware modification
agent and a malware detection agent. These two agents com-
pete with each other in a game of modifying and detecting
malware. This game is played in a gym environment, where

the modification agent is given a toolbox of functionality-
preserving modifications that it can make to the incoming
malware sample. In each turn of the game, the modification
agent has multiple attempts to obfuscate a single malware
sample to evade the detection agent. If the malware sample
evades the detection agent, the detection agent will be up-
trained with the sample, the modification agent will be trained
with the information of the turn, and the turn will end. If the
maximum number of attempts is reached, the detection agent
is up-trained with the sample and the modification agent will
then be trained with the turn information, and the turn will end.
This format of gameplay is in line with a turn-based zero sum
game, this will be further elaborated on in the next subsection.
A turn-based zero-sum game was chosen to give both agents
an equal impact in the outcome of the game. At the end of
the game, the modification agent will create a training set of
malware which will be trained into the detection agent. The
resulting models that are produced from this game are better
at their designed task than models trained statically.

A. A Turn-based Zero-Sum Game

In game theory, a zero-sum game is when one player’s
gain is equivalent to another player’s loss. We define our zero-
sum game as a tuple (X,Y, f), where X and Y represent the
respective action space to be taken by Player X and Player
Y [10]. We set Player X as the malware modification agent
that aims at generating evasive malware samples and Player Y,
as the malware detection agent that classifies a given sample.

Therefore, X is the set of possible modifications that Player X
can make to a sample without changing its original behaviors
and Y is a set of discrete values {0, 1} indicating if the given
sample is benign or malicious. Function f : X × Y → R
represents the mapping from any combination of actions taken
to a real-valued reward for Player X at a certain time step.
In this game, each of the learning agents is always confronted
with an opponent learning agent that is of comparable strength,
and the goal of the learning system is to find an equilibrium
state of the min-max game. The convergence of the learning
system, finding the optimal equilibrium state, is not guaran-
teed. Instead, the learning system in practices may reach an
approximate equilibrium state with a probability [10].

In the context of the H4rm0ny system, the mapping f will
go to the reward function of the malware modification agent
Rt at time t. The game will play in episodes. In each episode,
the game is given a random malware sample. The modification
agent tries to make it evasive and the detection tries to detect
it as malicious. Time t represents the time at which a specific
turn has occurred in an episode. A single turn is defined as the
modification agent making a specified amount of modifications
to the sample based on the output of the detection agent at each
modification step. In our game, there are two possible values
for our reward function Rt. The values are −10 and 10. Our
modification agent will receive a reward of −1 multiplied by
the reward given to the detection agent. If our modification
agent is given a reward of 10, then our detection agent
will be given a reward of −10. The reward is given to our
detection agent by a scalar multiplied by the classification of
the malware sample and multiplied by the loss of the malware
detection agent during the up-training process of the malware
sample. As described above, the convergence of H4rm0ny to
an equilibrium state is not guaranteed. We have ensured the
highest probability of equilibrium through empirical testing
and defining the game rules as shown above. At equilibrium,
the generation agent is able to produce malware more evasive
than statically generated evasive sample, and the detection
agent is able to detect adversarial samples better than the same
detection agent that has not played the game.

B. Markov Decision Process and Q-Learning

Our malware modification agent is a reinforcement learn-
ing framework that builds on the architecture proposed by
Andersen et al. [4]. Our reinforcement learning agent has a
set of functionality-preserving operations that it may perform
on the PE file. Our malware modification agent is trained by
attempting to generate malware that can evade our malware
detection agent. The learning framework used by Anderson
et al. is a Markov decision process. The Markov decision
processes consist of the tuple (S,A, γ,R(S,A)). S: a set of
environment states. Our environment state is the malicious-
ness prediction that our sample PE is given by the malware
detection agent. Our state set is the set of continuous values
between 0 and 1. A: a set of actions. Our H4rm0ny system
has an action space which is a set of functionality-preserving
actions that can be used by the malware modification agent to
modify a piece of malware. γ: the discounted factor γ ∈ [0, 1).
The discount factor is used to control the importance of
immediate and future rewards [8]. R(S,A): the set of rewards
to give to the modification agent depending on the state of
the environment and actions used. st ∈ S is the returned

state at time t, and at ∈ A is the action at time t. In the
Markov decision process, the chosen agent sends an action
to obfuscate the malware before it is sent through the anti-
malware engine. The action at and a vector describing the state
of environment st are then sent back to the agent to be trained.
This is a process of sequentially training the network directly
based on the previous result. The agent is trained through a
specified policy algorithm. The policy algorithm is the method
chosen for updating the probability distribution of the action
set A. When our modification agent is given the output of a
training step, R(S,A), the policy algorithm will update the
probability distribution of the action set A. This distribution is
the probability that each action a ∈ A has of being chosen by
the modification agent to modify the current sample PE.

The objective of our malware modification agent is as
follows. Through sequentially training and updating our policy
algorithm, a model will be produced that achieves the highest
expected reward rt+1 = R(st, at) given our current policy
algorithm πθ. This will hold for all time steps t up until the
terminating time T − 1. The objective function is formulated
in (1). Here, θ are the parameters of our policy algorithm.

J(θ) = E[
T−1∑
t=0

rt+1|πθ] (1)

We update our policy algorithm parameters by taking the
gradient ascent of our objective function.

θ ← θ +
∂

∂θ
J(θ) (2)

From this, our policy gradient can be derived as follows.

5θ J(θ) = Eτ [
T−1∑
t=0

5θlogπθ(at|st])Gt] (3)

In (3), Gt is the learning agent specific function and τ is
used to represent our given trajectory from st and at. Once
optimized by (3), the parameters that form our objective
function are then updated into a neural network, which is
representing the policy algorithm.

The objectives of the H4rm0ny system are as follows. First,
create a malware modification agent that modifies malware to
maximize the false-negative rate of malware against an anti-
malware engine. The second objective is to create a malware
detection agent such that the classification error against adver-
sarially obfuscated malware is minimized.

C. Evasive Malware Generation Agent

The purpose of the evasion malware generation agent in our
game is to learn how to make evasive malware. For each turn in
the game, our generation agent is given a number of attempts
to modify the malware to evade the detection agent. Depending
on the outcome of the turn, the generation agent will be given
a reward. If the agent can produce a piece of evasive malware,
it will be given a larger reward than if it cannot. Our generation
agent is trained to maximize the reward. It is important to note
that we do not change the reward based on how many episodes
are needed to produce the evasive sample. When the game is
over, our modification agent can be used to modify unseen
malware with a specified number of modifications.

Our action space is a set of modifications that can be chosen
by our modification agent when modifying a malware sample.
These modifications have been chosen for our action space,
because they do not change the form or function of the sample
they are being acted on [4]. The number of total modifications
has been kept low, because the larger the action space in a
reinforcement learning system, the more time an agent will
take to fully converge in training [11]. Additionally, it was
known that similar actions are sufficient to generate evasive
malware against anti-virus engines [4]. First, our modification
agent will parse through the incoming malware file. It will then
begin testing the modifications against the detection agent. The
modifications are described as follows: Rename section: A
random section from the PE sample is chosen and replaced
with a random section from a list of common benign section
names. Add bytes to section cave: If any byte cave exist in
the PE sample, fill the cave with a random byte value. Modify
machine type: The machine type of the PE sample is changed
to a random machine type. Modify timestamp: The time date
stamp in the PE header is changed to a value from a random
selection. Pad overlay: A random byte value is appended
at the end of the malware sample 100,000 times. Append
benign data overlay: The .text section of a randomly
chosen benign PE file is appended at the end of the PE sample.
Append benign binary overlay: A random benign PE file
is read as bytes and appended at the end of the PE sample.
Add section benign data: An unused section is created in
our PE sample and the contents of a random benign file .text
are added to the new section. Add section strings: A string
is selected from a random set of benign strings and set as
the section contents of a newly generated section in our PE
sample. Add string overlay: A string is randomly selected
from a set of benign strings and appended at the end of the
PE sample. Add imports: A random library is chosen from a
set of libraries commonly used by benign files and added to the
PE sample if it does not already exist. Remove debug: If a data
directory debug exists in the PE sample, it is deleted. Modify
optional header: A random value for a random optional
header is chosen and added to the optional header list of the
PE sample. Break optional header checksum: The optional
header checksum of the PE sample is set to 0. UPX unpack:
The bytes of the PE sample are unpacked using UPX. UPX
pack: The bytes of the PE sample are packed using UPX.

There are many deep reinforcement learning agents that
we could have applied for this task. We adopted two recent
works: Actor critic with experience replay (ACER) and the
Double Deep Q-Network (DDQN). ACER is a deep rein-
forcement learning agent that has been shown to perform
remarkably well in challenging environments [8]. ACER was
the agent used by Anderson et al. in their work showing that
reinforcement learning could be used for adversarial sample
generation against static networks [4]. We chose ACER due
to the algorithm already being shown to succeed at creating
adversarial samples in the work proposed by Anderson et
al. [4]. DDQN is a Q-learning algorithm similar to ACER, but
has been specifically adapted to combat overestimating action
values that Q-learning algorithms are known to cause [9]. This
overestimation is reduced by changing the max operation in
the target to action selection and action evaluation [9]. The
DDQN algorithm has higher sample efficiency over ACER at
the cost of a longer convergence time. These two algorithms

σ

05

b2

28

94

92

54

09

54

b2

9d

12

Raw
Bytes

Sequence

Embedding Matrix
1.525, ..., 1.349

0.067, ..., -1.533

0.63 , ..., 0.281

1.449, ..., 1.349

1.748, ..., 0.561

0.515, ..., -0.171

0.011, ..., 0.381

1.135, ..., -0.272

1.771, ..., 0.818

0.322, ..., 1.119

0.067, ..., -1.533

1-D
 C

onvolution
1-D

 C
onvolution

+

1-D
 M

ax Pooling
D

ense Sigm
oid

Prediction

Fig. 2: Malware Detection Agent Architecture. The input of
the detection agent is the raw modified malware sample and
the output is the real-valued prediction by the detection agent.

where chosen to compare if higher sample efficiency can beat
the current state-of-the-art within the same training time.

Both the ACER and the DDQN networks use experience
replay [8], [9]. Experience replay is the strategy of period-
ically reminding the reinforcement learning algorithm of its
past experiences [12]. When complicated tasks are involved,
reinforcement learning is a delicate game of trial and error.
Experience replay strengthens reinforcement learning systems
by uniformly sampling past observations made by the network.
This sampling has shown to greatly raise the performance
of reinforcement learning systems and reduce sample corre-
lation [12], [9]. Most malware are designed to be unique from
other malware, as an attempt to evade static anti-malware
engines. Because of this, there may be malware samples that
poison the training of the reinforcement learning system. With
experience replay, the chance of network poisoning is greatly
reduced, due to the reintroduction of past experiences.

D. Malware Detection Agent

As discussed above, the state-of-the-art MalConv network
is the foundation for the malware detection agent in our game.
MalConv is a gated Convolution neural network (CNN) that
analyses raw files for malware detection [7]. Its ability to scan
a PE sample without any feature extraction greatly reduces the
computation time for the H4rm0ny system.

Figure 2 shows the architecture of our CNN model. The
input of the MalConv is the raw bytes extracted from the first
megabyte of the PE sample. Our MalConv network that has
an input of a single vector of length 1048576 and an output of
a single real value between 0 and 1. This number denotes the
probability for the detection agent to take an action of flagging
the sample as malicious. Then, we sample the final action
for the detection agent in {0, 1} following this probability. It
should be noted that we do not use the threshold to derive the
final decision, since this number is interpreted as the action
probability for getting a certain reward.

Algorithm 1: H4rm0ny training algorithm
Input: malware samples S, benign samples B,

malware classifier f , modification policy
function p, modification set M , max actions
on single sample max episodes, total
samples to train on max steps, empty set A,
empty set S′

Output: evasive samples S′, malware classifier f ′
1 for s in randomSelect(S, max steps) do
2 s′ = s
3 A = []
4 for in {1, ...,max episodes} do
5 action = p.selectAction(s′, M)
6 A.add(action)
7 s′ = p.applyAction(s′, action)
8 r = −10
9 if f .Score(s′) = 0 then

10 r = 10
11 S′.addSample(s′)
12 break
13 end
14 end
15 p.updatePolicy(s, action, r)
16 b = randomSelect(B, 1)
17 f = f .up-trainSamples(s′,f .Score(s′), b)
18 end
19 f ′ = f
20 return S′,f ′

E. Gameplay Environment

As Algorithm 1 shows, the malware detection agent and the
malware modification agent have been combined into the zero-
sum game H4rm0ny. The inputs to H4rm0ny are the malware
samples that will be used as the training set S, a malware
classifier f , a modification policy function p, a set of benign
samples for up-training B, and the set of modifications M .
Parameters for the algorithm are the maximum actions the
modification agent can make for each sample PE, the number
of total samples to train on, the empty set of actions that are
performed on a malware sample, and the empty set that will
return the modified samples. The outputs to H4rm0ny are the
new malware detection agent and the set of modified samples.
For each step in H4rm0ny, a single sample is chosen and for
each of the given number of modification attempts, H4rm0ny
runs as follows. An action is chosen by the modification agent
based on the sample (line 5) and that action is added to our list
of actions (line 6). The chosen action is applied to the sample
(line 7). The reward is set to the default value of −10 (line
8). At line 9, the score of the malware sample is chosen from
the set of 0 and 1, based on the probability of maliciousness
given by the malware detection agent. If the modified sample is
evasive, the reward is set to 10 and the evasive sample is added
to our evasive set (lines 9 and 10). The training process is then
terminated and the training step of the game begins (line 12).
The policy of the modification agent is trained based on the
evasive sample, the set of actions performed on the sample, and
the reward for the modification agent (line 15). The detection
agent is then up-trained with the malware sample, the score
of the given sample, as well as a randomly selected benign

sample (line 17). The up-training of the detection agent ends
with with both a malicious and benign sample, to ensure our
detection agent is not biased towards predicting all incoming
samples as malicious. If the sample cannot be made evasive
within the given episodes, the policy is then updated to the
modifications made to the sample, and the modification agent
moves on to train on the next sample. Once the training of the
modification agent has terminated, the evasive set and the new
detection agent are returned (line 20).

We will describe in detail the algorithm for up-training
samples into our detection agent. Our detection agent is first
up-trained with a benign sample. As described above, up-
training with a benign sample reduces any bias that the detec-
tion agent will gain from training with only one classification
as data. This up-training is not a part of the game, so the
traditional loss algorithm for MalConv, binary cross entropy, is
used. For the malware sample, we have derived the maximum
likelihood malware loss function for the game. The maximum
likelihood malware loss function is a product of the agent
reward and the maximum likelihood loss function.

r =

{
−10 s = 0
10 s = 1

(4)

The reward for the detection agent is derived in Equation 4.
As per the definition of a zero-sum game, the reward for
the detection agent is the opposite of the reward for the
modification agent, thus the sum of the rewards is 0.

p =

{
ŷ s = 0

1− ŷ s = 1
(5)

The probability of the sample classification is then calculated
in 5, where ŷ is the predicted probability of maliciousness
from the detection agent training, and s is the score of the
malware sample from gameplay. Our classification is set up
like this, due to the use of the predicted score being used
as the correct classification of the malware sample during
training. For example, if our sample is successfully evasive,
it will then be up-trained into the detection agent with the
true classification as 0, so the probability that the sample is
malicious based on the training is 1− ŷ.

maximum likelihood(m) = −log(p) ∗ r (6)

Maximum likelihood malware loss is finally derived in 6.

F. Building the Final Detection Agent

While the evasive agent and the detection agent constantly
improve each other throughout the gameplay, there is no
guarantee who will be the final winner. Despite the fact that
the evasive agent may be stronger by the end of the game, our
ultimate goal is to have a robust detection agent. To achieve
this, we can combine both agents by up-training.

The final winner is the malware detection agent that has
been up-trained with a dataset generated by the malware
detection agent, to combine the knowledge learned by both
agents. The final winner is built once we have completed the
training cycle of the H4rm0ny system. Once the detection
agent training has been terminated, a separate dataset will run
through the modification agent, and the modification agent will
be allowed a specific number of modifications it can make to
each malware sample. Here, the modification agent is not given

TABLE I: Results for evaluating the evasive agents. ⇑ denotes the higher the better and ⇓ denotes the lower the better. It should
noted that ClamAV is not included in the learning process and is used for evaluation purpose only. #FN denotes the number
of false positives which implies the number of successful evasions. Since a method can have a lower AUC by simply increasing
#FP (such as the random method below), #FN is a more applicable metric for agent evaluation.

MalConv Trained on EMBER (>1M samples) [13] ClamAV Scanning Result
Testing set modified by different agents AUC ⇓ Accuracy ⇓ # FN ⇑ % Rise in FN ⇑ AUC ⇓ Accuracy ⇓
Original 0.8434 0.7720 342 - 0.5751 0.5714
Randomly modified data 0.7995 0.6653 502 46% 0.5657 0.5619
Agent (tzm-acer) 0.7927 0.6460 531 55% 0.5174 0.5140
Agent (spg-acer) 0.7957 0.6547 518 51% 0.5420 0.5380
Agent (tzm-ddqn) 0.8236 0.7273 409 20% 0.5664 0.5628
Agent (spg-ddqn) 0.8009 0.6693 496 45% 0.5630 0.5595

any result from the detection agent for each modification. The
modification agent determines the modifications based on the
sample PE alone. Once the dataset has been generated by the
modification agent, it is split into a training and testing set.
The training set is then completely up-trained into the malware
detection agent.

III. EXPERIMENTS

There are two experiments that we conducted in order to
validate the performance of H4rm0ny. The dataset used in
the experiments consisted of approximately 100,000 samples
of Microsoft PE malware and 100,000 samples of benign
Microsoft PE software. The first experiment evaluated the
modification agent and the second, the detection agent. We
evaluated the modification agent by training the H4rm0ny
system with a set of different modification agents. These
modification agents then generated training and testing sets that
were run against the original MalConv network. Whichever
modification agent had the highest evasion rate (highest total
number of false positives) was the best modification agent. For
benchmarking, we also evaluate our results on the unmodified
data, as well as randomly modified data.

Evaluating the Evasive Agents. For the ACER and
DDQN policy algorithms, two malware modification agents
are trained. The first agent is trained by playing a single-
player-game, and the second agent is trained in a turn-based
zero-sum Markov game. We use spg to indicate single player
game, and we use tzm to indicate turn-based zero-sum Markov
game. This gives us a total of four malware modification
agents: Agent (spg-acer), Agent (tzm-acer), Agent (spg-ddqn),
and Agent (tzm-ddqn). For each of these configurations, the
modification agent and results datasets are the same. However,
they may be differences in the benign data chosen for mod-
ification, while training the modification agent. Along with
these four configurations, the dataset of original data, as well
as the dataset of randomly modified data, are compared. Along
with testing the strength of our different datasets against the
MalConv model, we also scanned the testing sets with the open
source anti-malware engine ClamAV. ClamAV is a widely used
anti-malware engine developed by Cisco for commercial and
private internet security.2 We conducted our experiments with
ClamAV version 0.103.3 and the daily database version 26211.

2https://www.clamav.net/about

The results of this evaluation are described above in I.
As can be seen, the agent that produced the testing set with
the highest number of false negatives is the turn-based zero-
sum Markov game ACER agent. The inverse of this can be
seen with the different DDQN agents, where the single-player
game produced more false negatives than the turn-based zero-
sum Markov game. This indicates that the detection agent was
the winner of the turn-based zero-sum Markov game. This
shows that the turn-based zero-sum Markov game does not
only improve modification agents within the game, but it also
improves modification agents against state-of-the-art consumer
anti-malware systems. Figure 3 shows the distribution of steps
needed in a game to successfully generate an evasive sample.
For both the DDQN and ACER agents, the game type does not
cause a significant difference in the number of turns needed
to produce an evasive sample. but the mean steps for DDQN
is significantly higher than the mean steps for ACER. This
continues to support the observation that ACER is a better
policy algorithm for the modification agent. We found that
the most frequent modification made to successfully evasive
samples were benign data overlay followed by benign binary
overlay.

Evaluating the Detection Agents. The malware detection
agent used for our experiments was trained on the EMBER
dataset. The EMBER dataset consists of 1.1 million benign
and malicious Microsoft PE files. [13]. This initial training on
the Microsoft PEs gives our malware detection agent a very
strong foundation for malware detection. An explanation of the
models is as follows. MalConv. The MalConv model is the
original malware detection agent that has not been trained on
any of the newly generated evasive malware. MalConv (tzm-
acer). The tzm-acer detection model is the detection model
that was up-trained with all evasive samples generated by the
Agent (tzm-acer) modification model. MalConv (tzm-ddqn).
Similar to the tzm-acer detection model, the tzm-ddqn model
is the malware detection agent that was up-trained with the
evasive samples generated from the tzm-ddqn modification
agent. Along with these three detection agents, these agents
have been up-trained with specific training datasets for our
experiments. An explanation of these up-trained datasets is as
follows. MalConv (up-trained with original). This detection
agent is the original malware detection agent that has been
trained on the unmodified training set. MalConv (up-trained
with random). This detection agent is the original malware
detection agent that has been trained on a randomly modified

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Agent (tzm-acer) (cdf) Agent (tzm-acer) Agent (spg-acer) (cdf) Agent (spg-acer) Agent (tzm-ddqn) (cdf) Agent (tzm-ddqn) Agent (spg-ddqn) (cdf) Agent (spg-ddqn)

2.52.2 15.712.0

Fig. 3: The number of modifications needed in order to generate an evasive sample. Left: histogram and CDF for the modification
agent sgp-acer and tzm-acer. Right: histogram and CDF for agent spg-ddqn and tzm-ddqn. The X axis shows the number of
modifications, and the Y axis shows the CDF.

TABLE II: Results of detection agents on more evasive datasets. ⇑ denotes the higher the better and ⇓ denotes the lower the
better.

Evaluate on
more evasive
datasets

Agent tzm-acer Agent tzm-ddqn Random

Models AUC ⇑ FN ⇓ AUC ⇑ FN ⇓ AUC ⇑ FN ⇓
MalConv 0.7927 531 0.8236 409 0.7995 502
MalConv (up-trained with original) 0.8075 276 0.8326 148 0.7462 250
MalConv (up-trained with random) 0.8434 318 0.8479 227 0.8134 294
MalConv (tzm-acer) 0.6988 3 0.8467 57 0.7513 7
MalConv (tzm-acer, up-trained) 0.8570 77 0.8270 465 0.8268 164
MalConv (tzm-ddqn) 0.6239 4 0.6964 7 0.6184 4
MalConv (tzm-ddqn, up-trained) 0.8668 40 0.8983 45 0.8512 38

Evaluate on
Less evasive
datasets

original Agent spg-acer Agent spg-ddqn

Models AUC ⇑ FN ⇓ AUC ⇑ FN ⇓ AUC ⇑ FN ⇓
MalConv 0.8434 342 0.7957 518 0.8009 496
MalConv (up-trained with original) 0.9466 108 0.8341 258 0.8239 251
MalConv (up-trained with random) 0.9419 181 0.8666 323 0.8624 298
MalConv (tzm-acer) 0.9141 100 0.7124 5 0.7610 16
MalConv (tzm-acer, up-trained) 0.8731 522 0.8764 91 0.8405 179
MalConv (tzm-ddqn) 0.8950 20 0.6449 7 0.6781 7
MalConv (tzm-ddqn, up-trained) 0.9531 54 0.8764 52 0.8907 52

training set. MalConv (tzm-acer, up-trained). This detection
agent is the resulting detection agent from the turn-based zero-
sum Markov game with the ACER policy algorithm. It has
been up-trained on the training set, which has been modified by
the agent (tzm-acer). MalConv (tzm-ddqn, up-trained). This
detection agent is the same as MalConv (tzm-acer, up-trained),
but from the turn-based zero-sum Markov game involving the
DDQN policy algorithm.

As can be seen in Table II, the strongest detection agent is
MalConv (tzm-ddqn, up-trained). MalConv (tzm-ddqn) + tzm-
ddqn training has the highest AUC on all the datasets that
have been generated for experimentation. Although MalConv
(tzm-ddqn, up-trained) does not have a lower number of false
negatives than MalConv (tzm-acer) and MalConv (tzm-ddqn),
the lower AUC of those two models against the training data
indicates a lower total performance. This result is expected due
to malicious content having more weight than benign content

in gameplay. Although we cannot claim that our system gener-
ates a malware detection agent that is robust against all current
and future adversarial learning techniques, we have shown that
multi-agent learning can be used to further strengthen malware
detection systems against reproducible adversarial attacks. The
most evasive testing set against the MalConv detection agent,
Agent (tzm-acer) continued to have a high false positive rate
against the detection agents. Although it was the most evasive
testing set against MalConv, it was not the most evasive
against MalConv (tzm-ddqn, up-trained). The agents with the
highest false-negative rates against the MalConv (tzm-ddqn,
up-trained) detection agent are the original, spg-acer, and spg-
ddqn agents.

IV. RELATED WORK

Generating Adversarial Malware. One of the biggest vul-
nerabilities of neural networks is their statistical bias towards

their training set. In the context of malware detection, this can
lead to many problems, such as the bias that the networks
have towards certain features indicating if a piece of software
is benign. Adversaries take advantage of this fact by modifying
their malware with benign features to evade detection [14], [4].
Other works proposing an RL-based framework for adversarial
malware detection include work by Bai et al [15]. In the
work proposed by Bai et al. adversarial samples are generated
against a static surrogate of a detection system [15]. The
anti-malware engines used for their experiments are based on
recurrent neural networks [15]. The framework proposed by
Bai et al. is similar to the one proposed by Anderson et al.
due to both training frameworks having generating adversarial
samples against a static malware classifier [15], [4]. Unlike
these two works H4rm0ny does not train against a static
malware detection system, but a dynamic system that is learn-
ing how to detect the adversarial samples that are generated
during the generation agent training time.Neural Networks
for Malware Detection. Our review on networks is limited
to Microsoft PE malware. One method for malware detection
using neural networks is to extract feature vectors from the
file being analyzed. For example, this is done by Anderson
et al. in their work proposing a gradient-boosted decision tree
model using LightGBM for malware detection [16]. The use
of feature extraction for malware detection is a popular and
very successful method for malware detection [17], [16], [18].
In these networks, before the networks can analyze a file, it
is run through a strenuous prepossessing pipeline that extracts
features from the file for analysis. Some related works include:
a gradient-boosted decision tree model using LightGBM for
PE malware detection [16], a Multi-Naı̈ve Bayes classifier
based on features extracted from the PE libBFD [18], and a
malware classifier that enforces monotonicity on the extracted
feature vector [17]. Multi-Agent Learning. Similar to our
work, Hu et al. propose an adversarial sample generation
system based on a multi-agent learning system [19]. Their
work uses a generative adversarial network (GAN) for creating
feature space adversarial samples for a network that models
a black-box malware detector [19]. Unlike their system ours
generates real adversarial malware samples instead of just
feature vectors.

V. CONCLUSION

In this study, we studied the problem of malware detection
networks being vulnerable to adversarial attacks. We mitigated
this problem by designing and implementing the first multi-
agent learning environment for evasive malware generation
and detection. We then showed that through self-play policy
optimization, the resulting generation agent is able to produce
highly evasive but still functional malware, and the detection
agent is more robust against adversarial samples.

VI. ACKNOWLEDGEMENTS

This research is supported by Defence Research and De-
velopment Canada (contract no. W7701-176483).

REFERENCES

[1] B. Jovanović. (2021) A not-so-common cold: Malware statistics in 2021.
[Online]. Available: https://dataprot.net/statistics/malware-statistics/#:
∼:text=Every%20day%2C%20there%20are%20at,they%20stay%
20installed%20long%20enough.

[2] H. N. Security. (2020) Evasive malware increasing, evading
signature-based antivirus solutions. [Online]. Available: https:
//www.helpnetsecurity.com/2020/03/26/evasive-malware-increasing/

[3] (2019) Cylance, i kill you! [Online]. Available: https://skylightcyber.
com/2019/07/18/cylance-i-kill-you/

[4] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static PE machine learning malware models via reinforcement
learning,” CoRR, vol. abs/1801.08917, 2018.

[5] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ML attacks in the problem space,” in 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020. IEEE, 2020.

[6] J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and M. Kankan-
halli, “Attacks which do not kill training make adversarial learning
stronger,” in Proceedings of the 37th International Conference on
Machine Learning, 2020.

[7] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, “Malware detection by eating a whole EXE,” in The
Workshops of the The Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, ser.
AAAI Workshops, vol. WS-18. AAAI Press, 2018.

[8] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in Neural Information Processing Systems 12, [NIPS Conference, Den-
ver, Colorado, USA, November 29 - December 4, 1999], S. A. Solla,
T. K. Leen, and K. Müller, Eds. The MIT Press, 1999.

[9] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, D. Schuurmans and M. P. Wellman, Eds. AAAI Press, 2016.

[10] Y. Zhong, Y. Zhou, and J. Peng, “Efficient competitive self-play policy
optimization,” 2020.

[11] G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin, “Reinforcement
learning in large discrete action spaces,” CoRR, vol. abs/1512.07679,
2015. [Online]. Available: http://arxiv.org/abs/1512.07679

[12] L. J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Mach. Learn., vol. 8, pp. 293–321,
1992. [Online]. Available: https://doi.org/10.1007/BF00992699

[13] H. S. Anderson and P. Roth, “EMBER: an open dataset for
training static PE malware machine learning models,” CoRR, vol.
abs/1804.04637, 2018.

[14] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin,
“Automatic generation of adversarial examples for interpreting malware
classifiers,” CoRR, vol. abs/2003.03100, 2020.

[15] S. Bai, J. Z. Kolter, and V. Koltun, “Trellis networks for sequence mod-
eling,” in 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[16] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
2017.

[17] I. Incer, M. Theodorides, S. Afroz, and D. A. Wagner, “Adversarially
robust malware detection using monotonic classification,” in
Proceedings of the Fourth ACM International Workshop on Security and
Privacy Analytics, IWSPA@CODASPY 2018, Tempe, AZ, USA, March
19-21, 2018, R. M. Verma and M. Kantarcioglu, Eds. ACM, 2018, pp.
54–63. [Online]. Available: https://doi.org/10.1145/3180445.3180449

[18] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in 2001 IEEE
Symposium on Security and Privacy, Oakland, California, USA May
14-16, 2001. IEEE Computer Society, 2001.

[19] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan.”

