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Secure Two-Party Differentially Private Data
Release for Vertically Partitioned Data
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Abstract—Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information.
Among the existing privacy models, e-differential privacy provides one of the strongest privacy guarantees. In this paper, we address
the problem of private data publishing, where different attributes for the same set of individuals are held by two parties. In particular, we
present an algorithm for differentially private data release for vertically partitioned data between two parties in the semihonest

adversary model. To achieve this, we first present a two-party protocol for the exponential mechanism. This protocol can be used as a
subprotocol by any other algorithm that requires the exponential mechanism in a distributed setting. Furthermore, we propose a two-
party algorithm that releases differentially private data in a secure way according to the definition of secure multiparty computation.
Experimental results on real-life data suggest that the proposed algorithm can effectively preserve information for a data mining task.

Index Terms—Differential privacy, secure data integration, classification analysis

1 INTRODUCTION

HUGE databases exist today due to the rapid advances in
communication and storing systems. Each database is
owned by a particular autonomous entity, for example,
medical data by hospitals, income data by tax agencies,
financial data by banks, and census data by statistical
agencies. Moreover, the emergence of new paradigms such
as cloud computing increases the amount of data distrib-
uted between multiple entities. These distributed data can
be integrated to enable better data analysis for making
better decisions and providing high-quality services. For
example, data can be integrated to improve medical
research, customer service, or homeland security. However,
data integration between autonomous entities should be
conducted in such a way that no more information than
necessary is revealed between the participating entities. At
the same time, new knowledge that results from the
integration process should not be misused by adversaries
to reveal sensitive information that was not available before
the data integration. In this paper, we propose an algorithm
to securely integrate person-specific sensitive data from two
data providers, whereby the integrated data still retain the
essential information for supporting data mining tasks. The
following real-life scenario further illustrates the need for
simultaneous data sharing and privacy preservation of
person-specific sensitive data.

o N. Mohammed is with the School of Computer Science, McGill
University, 845 Sherbrook Street West, Montreal, QC H3A 0G4,
Canada. E-mail: noman.mohammed@mail.mcgill.ca.

o D. Alhadidi, and M. Debbabi are with CIISE, Concordia University,
1455 de Maisonneuve Blvd. West, Montreal, QC H3G 1MS8, Canada.
E-mail: {dm_alhad, debbabi}@ciise.concordia.ca.

e B.CM. Fung is with the School of Information Studies, McGill
University, 845 Sherbrook Street West, Montreal, QC H3A 0G4,
Canada. E-mail: ben.fung@mcgill.ca.

Manuscript received 9 Jan. 2012; revised 23 Jan. 2013; accepted 1 May 2013;
published online 16 May 2013.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2012-01-0004.
Digital Object Identifier no. 10.1109/TDSC.2013.22.

1545-5971/14/$31.00 © 2014 IEEE

This research problem was discovered in a collaborative
project with the financial industry. We generalize their
problem as follows: A bank A and a loan company B have
different sets of attributes about the same set of individuals
identified by the common identifier attribute (ID), such that
bank A owns D4(ID, Job, Balance), while loan company B
owns Dp(ID, Sex, Salary). These parties want to integrate
their data to support better decision making such as loan or
credit limit approvals. In addition to parties A and B, their
partnered credit card company C also has access to the
integrated data, so all three parties A, B, and C are data
recipients of the final integrated data. Parties A and B have
two concerns. First, simply joining D4 and Dp would reveal
sensitive information to the other party. Second, even if D4
and Djp individually do not contain person-specific or
sensitive information, the integrated data can increase the
possibility of identifying the record of an individual. The
next example illustrates this point.

Example 1. Party A owns the data table D4(ID, Job,...,
Class), while Party B owns the data table Dp(ID,
Sex, Salary, ..., Class) as shown in Table 1. Each row in
the table represents the information of an individual. The
attribute Class contains the class label Y or N, representing
whether or not the loan has been approved. Both parties
want to integrate their data and use the integrated data to
build a classifier on the Class attribute. After integrating
the two data tables (by matching the ID field), the female
lawyer becomes unique and, therefore, vulnerable to be
linked to sensitive information such as salary. In other
words, linking attack is possible on the fields Job and Sex.
To prevent such linking attacks, Jiang and Clifton [26]

and Mohammed et al. [39] have proposed algorithms

that enable two parties to integrate their data satisfying the
k-anonymity privacy model [48], [49]. The k-anonymity
model requires that an individual should not be identifi-
able from a group of size smaller than k based on the
quasi-identifier (QID), where QID is a set of attributes that
may serve as an identifier in the data set. For example, in
Table 1 Engineer and Lawyer can be generalized [48], [49] to

Published by the IEEE Computer Society



60 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11,

TABLE 1
Original Tables

Shared Party A Party B
ID | Class Job Sex Salary
1 N Writer Male 30K
2 N Dancer Male 25K
3 Y Writer Male 35K
4 N Dancer Female 37K
5 Y Engineer Female 65K
6 Y Engineer Female 35K
7 Y Engineer Male 30K
8 N Dancer Female 44K
9 Y Lawyer Male 44K
10 Y Lawyer Female 44K

Professional according to the taxonomy presented in Fig. 1
(ignore the dotted line for now) so that this individual
becomes one of many female professionals. However,
Machanavajjhala et al. [34] have pointed out that with
additional knowledge about the victim, k-anonymous data
are vulnerable to background knowledge attacks. To
prevent such attacks, (-diversity requires that every QID
group should contain at least ¢ “well-represented” values
for the sensitive attribute. Similarly, there are a number of
other partition-based privacy models such as (a,k)-
anonymity [56], (c,k)-safety [35], and t-closeness [32] that
differently model the adversary and have different
assumptions about her background knowledge. However,
recent research has indicated that these privacy models are
vulnerable to various privacy attacks [54], [60], [19], [28]
and provide insufficient privacy protection.

In this paper, we adopt differential privacy [14], a
recently proposed privacy model that provides a provable
privacy guarantee. Differential privacy is a rigorous privacy
model that makes no assumption about an adversary’s
background knowledge. A differentially private mechanism
ensures that the probability of any output (released data) is
equally likely from all nearly identical input data sets and,
thus, guarantees that all outputs are insensitive to any
individual’s data. In other words, an individual’s privacy is
not at risk because of the participation in the data set.

In this paper, we present an algorithm for differentially
private data release for vertically partitioned data between
two parties.! We take the single-party algorithm for
differential privacy that has been recently proposed by
Mohammed et al. [38] as a basis and extend it to the two-
party setting. Additionally, the proposed algorithm satisfies
the security definition of the semihonest adversary model.
In this model, parties follow the algorithm but may try to
deduce additional information from the received messages.
Therefore, at any time during the execution of the
algorithm, no party should learn more information about
the other party’s data than what is found in the final
integrated table, which is differentially private. The main
contribution of our paper can be summarized as follows:

e We present a two-party protocol for the exponential
mechanism. We use this protocol as a subprotocol of
our main algorithm, and it can also be used by any
other algorithm that uses the exponential mechan-
ism in a distributed setting.

1. This is very different from private record linkage [24], where the goal
is to identify records that represent the same real-world entity from two
given data sets.
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Fig. 1. Taxonomy tree for attributes Job, Sex, and Salary. The dotted
line represents a “solution cut”; a concept elaborated in Section 6.

e We present the first two-party data publishing
algorithm for vertically partitioned data that gen-
erate an integrated data table satisfying differential
privacy. The algorithm also satisfies the security
definition in the secure multiparty computation
(SMQ) literature.

e We experimentally show that the differentially
private integrated data table preserve information
for a data mining task. In particular, taking the
decision-tree induction classifier [45] as an example,
we show that the proposed two-party algorithm
provides similar data utility for classification analy-
sis when compared to the single-party algorithm
[38], and it performs better than the recently
proposed two-party algorithm [39].

The rest of the paper is organized as follows: Section 2
presents related work. In Section 3, we present an overview
of e-differential privacy. In Section 4, we briefly review the
security definition in the semihonest adversary model and
the required cryptographic primitives. In Section 5, we
describe the two-party protocol for the exponential mechan-
ism and provide a detailed analysis of the protocol. The
two-party data publishing algorithm for vertically parti-
tioned data is presented in Section 6. In Section 7, we
present the experimental results and estimate the computa-
tion and communication costs of the algorithm for a real
data set. In Section 8, we answer some frequently raised
questions. Finally, concluding remarks and a discussion of
future work are presented in Section 9.

2 REeLATED WORK

Data privacy has been an active research topic in the
statistics, database, and security communities for the last
three decades [17]. The proposed methods can be roughly
categorized according to two main scenarios:

e Interactive versus noninteractive. In an interactive
framework, a data miner can pose queries through
a private mechanism, and a database owner answers
these queries in response. In a noninteractive frame-
work, a database owner first anonymizes the raw
data and then releases the anonymized version for
data analysis. Once the data are published, the data
owner has no further control over the published
data. This approach is also known as privacy-
preserving data publishing (PPDP) [17].

e  Single versus multiparty. Data may be owned by a
single party or by multiple parties. In the distributed
(multiparty) scenario, data owners want to achieve
the same tasks as single parties on their integrated
data without sharing their data with others.
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TABLE 2
Related Work

Data Owner

Privacy Model

Algorithms Single I Multi Differential Privacy [ Partition-based Privacy
| Horizontally [ Vertically

LeFevre et al. [30], Fung et al. [18], etc v v

Xiao et al. [58], Mohammed et al. [38], etc. v v

Jurczyk and Xiong [27], Mohammed ef al. [41] v v

Jiang and Clifton [26], Mohammed ef al. [39] v v

Our proposal v v

Our proposed algorithm addresses the distributed and
noninteractive scenario. Below, we briefly review the most
relevant research works.

Single-party scenario. We have already discussed different
privacy models in Section 1. Here, we provide an overview
of some relevant anonymization algorithms. Many algo-
rithms have been proposed to preserve privacy, but only a
few have considered the goal for classification analysis [17].
Iyengar [25] has presented the anonymity problem for
classification and proposed a genetic algorithmic solution.
Bayardo and Agrawal [3] have also addressed the classifi-
cation problem using the same classification metric of [25].
Fung et al. [18] have proposed a top-down specialization
(TDS) approach to generalize a data table. LeFevre et al. [31]
have proposed another anonymization technique for
classification using multidimensional recoding [30]. More
discussion about the partition-based approach can be found
in the survey of Fung et al. [17].

Differential privacy [14] has recently received consider-
able attention as a substitute for partition-based privacy
models for PPDP. However, so far most of the research on
differential privacy concentrates on the interactive setting
with the goal of reducing the magnitude of the added noise
[11], [14], [47], releasing certain data mining results [4], [8],
[9], [16], or determining the feasibility and infeasibility
results of differentially-private mechanisms [5], [53], [36].
Research proposals [2], [23], [38], [58] that address the
problem of noninteractive data release only consider the
single-party scenario. Therefore, these techniques do not
satisfy the privacy requirement of our data integration
application for the financial industry. A general overview of
various research works on differential privacy can be found
in the survey of Dwork [12].

Distributed interactive approach. This approach is also
referred to as privacy preserving distributed data mining
(PPDDM) [10]. In PPDDM, multiple data owners want to
compute a function based on their inputs without sharing
their data with others. This function can be as simple as a
count query or as complex as a data mining task such as
classification, clustering, and so on. For example, multiple
hospitals may want to build a data mining model for
predicting disease based on patients’ medical history
without sharing their data with each other. In recent years,
different protocols have been proposed for different data
mining tasks including association rule mining [50],
clustering [51], and classification [33], [6]. However, none
of these methods provide any privacy guarantee on
the computed output (i.e., classifier, association rules). On
the other hand, Dwork et al. [13], and Narayan and
Haeberlen [43] have proposed interactive algorithms to
compute differentially private count queries from both
horizontally and vertically partitioned data, respectively.

However, when compared to an interactive approach, a
noninteractive approach gives greater flexibility because
data recipients can perform their required analysis and
data exploration, such as mining patterns in a specific
group of records, visualizing the transactions containing a
specific pattern, or trying different modeling methods and
parameters.

Distributed noninteractive approach. This approach allows
anonymizing data from different sources for data release
without exposing the sensitive information. Jurczyk and
Xiong [27] have proposed an algorithm to securely
integrate horizontally partitioned data from multiple data
owners without disclosing data from one party to another.
Mohammed et al. [41] have proposed a distributed
algorithm to integrate horizontally partitioned high-
dimensional health care data. Unlike the distributed
anonymization problem for vertically partitioned data
studied in this paper, these methods [27], [41] propose
algorithms for horizontally partitioned data.

Jiang and Clifton [26] have proposed the Distributed
k-Anonymity (DkA) framework to securely integrate two
data tables while satisfying the k-anonymity requirement.
Mohammed et al. [39] have proposed an efficient anonymi-
zation algorithm to integrate data from multiple data
owners. To the best of our knowledge, these are the only
two methods [26], [39] that generate an integrated anon-
ymous table for vertically partitioned data. However, both
methods adopt k-anonymity [48], [49] or its extensions [34],
[52] as the underlying privacy principle and, therefore, both
are vulnerable to the recently discovered privacy attacks
[54], [19], [28], [55]. Table 2 summarizes the different
characteristics of the PPDP algorithms discussed above.

3 PRIivacYy MODEL

Differential privacy is a recent privacy definition that
provides a strong privacy guarantee. It guarantees that an
adversary learns nothing more about an individual,
regardless of whether her record is present or absent in
the data.

Definition 3.1 (e-Differential Privacy) [14]. A randomized
algorithm Ag is differentially private if for all data sets D and
D', where their symmetric difference contains at most one
record (i.e.,|DAD'| <1), and for all possible anonymized
data sets D:

Pr[Ag(D) = D] < e x Pr[Ag(D') = D), (1)

where the probabilities are over the randomness of Ag.
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A standard mechanism to achieve differential privacy is
to add a random noise to the true output of a function. The
noise is calibrated according to the sensitivity of the
function. The sensitivity of a function is the maximum
difference of its outputs from two data sets that differ only
in one record.

Definition 3.2 (Sensitivity) [14]. For any function
f: D — TRY, the sensitivity of f is

Af = max | £(D) = F(D) @)
for all D, D’ differing in at most one record.

For example, let f be the count function. The Af is 1
because f(D) can differ at most by 1 due to the addition or
removal of a single record.

Dwork et al. [14] have proposed the Laplace mechanism.
The mechanism takes a data set D, a function f, and the
parameter A that determines the magnitude of noise as
inputs. It first computes the true output f(D), and then
perturbs the output by adding noise. The noise is generated
according to a Laplace distribution with probability density
function Pr(z|\) = 5;exp(—|z|/\); its variance is 2)\? and
its mean is 0. The Laplace mechanism guarantees
that perturbed output f(D) = f(D) + Lap(Af/e) satisfies
e-differential privacy, where Lap(Af/e) is a random
variable sampled from the Laplace distribution.

McSherry and Talwar [37] have proposed the exponen-
tial mechanism to achieve differential privacy whenever it
makes no sense to add noise to outputs. The exponential
mechanism can choose an output ¢ € 7 that is close to the
optimum with respect to a utility function while preserving
differential privacy. It takes as inputs a data set D, an
output range 7, a privacy parameter ¢, and a utility
function w: (D x 7) — IR that assigns a real valued score
to every output ¢ € 7, where a higher score means better
data utility. In this paper, we measure the data utility in
terms of classification accuracy (CA). The mechanism
induces a probability distribution over the range 7 and
then samples an output ¢. Let Au = maxy p plu(D,t) —
u(D',t)] be the sensitivity of the utility function. The
probability associated with each output is proportional to

eu(D,t)y, . . . .
exp(5x.7); that is, the output with a higher score is
exponentially more likely to be chosen.

4 SEecuRriTY MoODEL

In this section, we briefly present the security definition in
the semihonest adversary model. Additionally, we intro-
duce the required cryptographic primitives that are
instrumented inside the proposed algorithm in this paper.

4.1 Secure Multiparty Computation

In the following, we present the security definition in the
semi-honest adversary model according to Goldreich [21]:

Definition 4.1 (Security with respect to semihonest
bahvior) [21]. Let f:{0,1}" x {0,1}"—{0,1}" x {0,1}"
be a probabilistic polynomial-time functionality, where
filz,y) (fo(z,y), respectively) denotes the first (second,
respectively) element of f(x,y). Let II be a two-party protocol
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for computing f. Let the view of the first (second, respectively)
party during an execution of protocol II on (z,y) denoted
m’ewllT (Uz'ewgl, respectively) be (z,ri,mq,...,m) ((y,ra,
ma,...,my), respectively), where ry represents the outcome of
the first (ry the second, respectively) party’s internal coin
tosses and m; represents the ith message the first (second,
respectively) party has received. The output of the first
(second, respectively) party during an execution of Il on (z,y)
denoted output!!(x,y) (outputl(z,y), respectively) is implicit
in the party’s view of the execution. We say that II securely
computes f if there exist probabilistic polynomial time
algorithms denoted Sy and Sy such that

{(Si(z, fi(z,9)), fo(,9) }oyetony
= {(view)' (z,y), outputy (2,9)) }, 101
{(f (3:7 y)7 SQ(:Ea fl (l’, y)))}m,ye{ﬂ,l}'

{ (outputy (z,y), viewy (z,9)) }, 01y

=

[Mlo

where = denotes computational indistinguishability.

Two probability distributions are computationally indis-
tinguishable if no efficient algorithm can tell them apart.
Namely, the output distribution of every efficient algorithm
is oblivious whether the input is taken from the first
distribution or from the second distribution [20]. Many of
the protocols, as in the case of the proposed algorithm in
this paper, involve the composition of secure subprotocols
in which all intermediate outputs from one subprotocol are
inputs to the next subprotocol. These intermediate outputs
are either simulated given the final output and the local
input for each party or computed as random shares.
Random shares are meaningless information by themselves.
However, shares can be combined to reconstruct the result.
Using the composition theorem [21], it can be shown that if
each subprotocol is secure, then the resulting composition is
also secure.

4.2 Cryptographic Primitives
We now list all the required cryptographic primitives.

Yao’s Protocol [59]. It is a constant-round protocol for
secure computation of any probabilistic polynomial-time
function in the semihonest model. Let us assume that we
have two parties, P, and P, with their inputs z and y,
respectively. Both parties want to compute the value of the
function f(z,y). Then, P; needs to send P, an encrypted
circuit computing f(x,.). The received circuit is encrypted
and accordingly P, learns nothing from this step. After-
wards, P, computes the output f(z,y) by decrypting the
circuit. This can be achieved by having P, obtaining a series
of keys corresponding to its input y from P, such that the
function f(z,y) can be computed given these keys and the
encrypted circuit. However, P, must obtain these keys from
P, without revealing any information about y. This is done by
using the oblivious transfer protocol [21].

Random Value Protocol (RVP) [7]. This protocol allows
two parties to generate a random value R € Z,, where R
has been chosen uniformly and @ € Zy is not known by
either party but it is shared between them. More specifi-
cally, P, has R, € Zyn, and P, has Ry € Zy such that
R =Ry + Ry mod N € [0,Q — 1], where N is the public key
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for the additive homomorphic scheme utilized in this
protocol, namely, Paillier’s scheme [44].

Secure Scalar Product Protocol (SSPP) [26], [57]. It securely
computes the scalar product of two binary vectors Z; =
(a1,...,a,) and Zy = (by,...,b,) owned by two parties P
and P, respectively. At the end of this protocol, P, and P
have random shares of the result.

5 Two-PARTY PROTOCOL FOR EXPONENTIAL
MECHANISM

In this section, we present a two-party protocol for the
exponential mechanism together with a detailed analysis.
As discussed in Section 3, the exponential mechanism
chooses a candidate that is close to optimum with respect to
a utility function while preserving differential privacy. In
the distributed setting, the candidates are owned by two
parties and, therefore, a secure mechanism is required to
compute the same output while ensuring that no extra
information is leaked to any party.

5.1 Distributed Exponential Mechanism (DistExp)

The distributed exponential mechanism presented in Algorithm 1
takes the following items as input:

e Finite discrete alternatives ((vi,u1),...,(Un,un)),
where a pair (v;,u;) is composed of the candidate
v; and its score u;. Parties P, and P, own (v, uq),. ..,
(vj,u;) and (vjt1,ujt1) .. . (Un, un), respectively.

e Privacy budget e.

Algorithm 1. Distributed Exponential Mechanism.
Input: Candidate-score pairs ((vi, 1), .., (Un, Uy))
owned by the parties, and the privacy budget e
Output: Winner w

1: P evaluates s, < >/ _1 exp(3A5);

2: P, evaluates sy «— ZZ:J 1 9%P(3A5);

3: P and P, execute RVP to compute random shares

Ry and R,, where (R; + Ry) €

(51+Sz);

4: fork=1ton do

5: if k£ < j then

6: P, evaluates L «+ Zle exp(sis);

7: P, evaluates Ly « 0;

8: else

9: P, evaluates L; — Y/, exp(5x-);
10: P, evaluates Ly — > i+1 ©XP(3a5)
11: end if
12: P, and P, execute COMPARISON(R;, Ry, L1, Ls);
13: if b = 0 then
14: w — Vg,
15: return w;
16: end if
17: end for

Algorithm 2. COMPARISON.
Input: Random shares R; and R, and values Ly and Lo
Output: b

1: R= add(Rl,RQ);

2: L= add(Ll, Lz);

3: b= compare(R, L);

4. return b;

The protocol outputs a winner candidate depending on
its score using the exponential mechanism. The scores of
the candidates can be calculated using different utility
functions [38]. Given the scores of all the candidates,
exponential mechanism selects the candidate v; with the
following probability, where Au is the sensitivity of the
chosen utility function:

exp(3xy)
2 i1 exp(aay)

The distributed exponential mechanism can be summar-
ized as follows:

Computing (3). A simple implementation of the exponen-
tial mechanism is to have the interval [0, 1] partitioned into
segments according to the probability mass defined in (3)
for the candidates. Next, we sample a random number
uniformly in the range [0, 1] and the partition in which the
random number falls determines the winner candidate.
However, this method involves computing a secure divi-
sion (3). Unfortunately, we are not aware of any secure
division scheme that fits our scenario, where the numerator
value is less than the denominator value.

Alternatively, we solve this problem without a secure
division protocol. We first partition the interval [0,
>, exp(335)] into n segments, where each segment
corresponds to a candidate v; and has a subinterval of
length equal to exp(5z;). We then sample a random
number uniformly in the range [0,> ", exp(3x-)] and the
segment in which the random number falls determines the
winner candidate.

Picking a Random Number R. Each party first computes
individually exp(;53-) for its candidates. Then, both P, and
P, compute s; = Z{ exp(zxy) and sy =370 exp(gxy),
respectively. P, and P, need to pick a random number
uniformly in the range [0,s; + s3], where s + 55 =
> i1 €xp(5i=). This can be achieved by using the random
value protocol [7]. RVP takes s; and s, from the parties as
input and outputs the random value shares R, and R; to the
respective parties, where R = R; + R;. However, RVP
works only in an integer setting but s; and s; can be
decimal numbers because of the exponential function exp.
In this case, scaling is needed and consequently the
accuracy of the exponential mechanism could be slightly
affected unless the scaling factor is very large. However, if
the scaling factor is very large the total cost in terms of bits
will increase. We experimentally measure the impact of
scaling in Section 7.

We address the scaling issue by taking the floor value
of exp(5x) x 10'. Here, [ is a predefined number between
the parties that indicates the number of the considered
digits after the decimal point. For example, the value
2718281828 of exp(3z-) can be scaled in different ways
according to the considered digits after the decimal point,
as shown in Table 3. The parties should agree on a specific
value for ! and only consider the integer portion using the
floor function. The higher accuracy (in terms of the
number of the considered digits after the decimal point)
we demand, the higher cost we pay (in terms of bits), as
also shown in Table 3. These extra bits result in additional
computation and communication costs. More details are

(3)
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TABLE 3
Cost Analysis

[ 1] Scaling | Floor Value [ Cost (Extra Bits) |
1 | 2.718281828 x 107 27 log210T
2 | 2.718281828 x 102 271 log210?
3 | 2.718281828 x 103 2718 log2103
4 | 2.718281828 x 10* 27182 log210%

provided in Section 7. Notice that restricting the values of
exp(55-) to a finite range is completely natural as
calculations performed on computers are handled in this

manner due to memory constraints.

Example 2. Suppose P, has two candidates and the values
of exp(53-) for these candidates are 54.59815003 and
403.4287935, respectively; % has one candidate with a
value of 7.389056099. After deciding that the value of [ is
one and considering the floor value, P, ends up with the
integer values 545 and 4,034, whereas P, ends up with
the value 73. Both parties then pick a random number in
the range [0, 4,652] using the RVP where 4,652 = 545 +
4,034 + 73. Similarly, if the parties decide that the value
of [ is two, P, ends up with the integer values 5,459 and
40,342, whereas P, ends up with the value 738. The two
parties then pick a random number in the range [0,
46,539] using the RVP, where 46,539 = 5,459 + 40,
342 4 738.

Picking a winner. The two parties engage in a simple
secure circuit evaluation process using Yao’s Protocol [59]
in Line 12. The circuit COMPARISON compares their random
number R with the sum (L; + L) provided by P, and 7,
respectively. The winner v; is the first candidate such that
R < Ly + Ls, where

J €u;
L) = ;exp (ﬁ) and Ly = 0,0r

Ly =35 and Ly = Z exp(QEZ )
u

i=j+1

Example 3 (Continued from Example 2). Suppose the two
parties pick a random number in [0, 4,652] using RVP.
The circuit first checks if the random number is less than
or equal to 545. If so, the first candidate of P, is the
winner; otherwise, the circuit checks again if the random
number is less than or equal to 4,579 (545 4 4,034). If so,
the second candidate of P, is the winner; otherwise, the
candidate of P is the winner because the random
number must be within the range [0, 4,652] according to
RVP [7].

Remark. The proposed distributed exponential mechanism
takes (candidate, score) pairs as inputs. The score is
calculated using a utility function. The proposed
distributed exponential mechanism is, therefore, inde-
pendent of the choice of the utility function. In the case of
vertically partitioned data, we can use two types of
utility functions: 1) utility functions such as information
gain, maximum function, and the widest (normalized)
range of values that can be calculated locally by each
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party or 2) utility functions that cannot be computed
locally. In the latter case, secure function evaluation
techniques can be used by the parties to compute these
utility functions. Once the scores of the candidates are
computed using the utility functions in either case, they
are ready to be used as inputs to execute the distributed
exponential mechanism.

5.2 Analysis

In this section, we first prove that Algorithm 1 correctly
implements the exponential mechanism. Then, we analyze
the security and the efficiency of the algorithm.

Proposition 5.1 (Correctness). Assuming both parties are
semihonest, Algorithm 1 correctly implements the exponential
mechanism for two parties.

Proof. Algorithm 1 selects a candidate v; with probability

o exp(33-)). Each party computes exp(zz.) for its
candidates. Then, parties build an interval in the range
[0,> "1 exp(335)] and partition it among the candidates,
where each subinterval has a length equal to exp(5x5)-
Since the random value lies uniformly between
[0,>7)_; exp(335)] and a candidate is chosen according
to this value, the probability of choosing any candidate is

€u;

eXp(ZAu) )

> j—1 €XP (2%1)
Therefore, according to [37], Algorithm 1 correctly
implements the exponential mechanism. O

Proposition 5.2 (Security). Algorithm 1 is secure under the
semihonest adversary model.

Proof. The communication between P, and P; takes place in
the random value protocol and in the COMPARISON
circuit. Algorithm 1 is secure if both the RVP and the
COMPARISON circuit are secure due to the composition
theorem [21]. Since RVP [7] and COMPARISON [21] have
been proven to be secure, Algorithm 1 is also secure. O

Proposition 5.3 (Complexity). The encryption and the com-
munication costs of Algorithm 1 are bounded by O(nlogC)
and O(nKlogC), respectively.

Proof. In Line 3, both parties run RVP where O({) and O(()
are the encryption and the communication costs of RVP,
respectively. The add and the compare circuits
determine the complexity of the COMPARISON circuit.
Since the number of gates for add and compare circuits
is linear to their input size, the protocol COMPARISON
requires evaluation of O(logC) gates, where C =
D Lexp(%) x 10']. Hence, the number of the encryp-
tions and the communication complexity of COMPAR-
ISON are bounded by O(logC) and O(KlogC),
respectively, where K is the size of the encryption
and the decryption keys [22]. The COMPARISON protocol
is called at most n times in Line 12. Therefore, the
encryption and the communication costs are bounded
by O£+ nlogC) and O(¢+ nKlogC), respectively.
Assuming, nlogC > ¢ and nKlogC > (, the total en-
cryption and communication costs of Algorithm 1 are
bounded by O(nlogC) and O(nKlogC), respectively. O
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6 Two-PARTY DIFFERENTIALLY PRIVATE DATA
RELEASE ALGORITHM

In this section, we first define some notations, state the
problem, and present our assumptions. We then describe
the two-party algorithm for differentially private data
release for vertically partitioned data.

6.1 Preliminaries

Suppose two parties P, and P, own data table D; and D,
respectively. Both parties want to release an integrated
anonymous data table D(AY", ... A7 A%) to the public for
classification analysis. The attributes in D; and D, are
classified into three categories: 1) An explicit identifier
attribute A’ that explicitly identifies an individual, such as
SSN and Name. These attributes are removed before
releasing the data. 2) A class attribute A”* that contains the
class value, and the goal of the data miner is to build a
classifier to accurately predict the value of this attribute. 3) A
set of predictor attributes A" = {A", ..., A"}, whose values
are used to predict the class attribute. The explicit identifier
and the class attribute are shared among the two parties.

Given a table D; owned by P, a table D, owned by P
and a privacy parameter ¢, our objective is to generate an
integrated anonymous data table D such that 1) D
satisfies e-differential privacy and 2) the algorithm to
generate D satisfies the security definition of the semi-
honest adversary model.

We require the class attribute to be categorical. However,
the values of a predictor attribute can be either numerical v,
or categorical v.. Further, we require that for each
categorical-predictor attribute A!", a taxonomy tree is
provided. We assume that there is no trusted third party
who computes the output table D and the parties are
semihonest. We also require that both the private tables D,
and D, contain the same set of records (individuals), where
each party holds different set of attributes. This can be
achieved by executing a secure set intersection protocol on
the explicit identifiers (ID) (see [39, Section 2.2] for details).
Therefore, private data tables need to be preprocessed, if
needed, to identify the common records. The proposed
algorithm uses the common records to generate an
integrated anonymous data table.

6.2 Two-Party Algorithm

In this section, we present our Distributed Differentially
private anonymization algorithm based on Generalization
(DistDiffGen) for two parties as shown in Algorithm 3. The
algorithm first generalizes the raw data and then adds noise
to achieve e-differential privacy.

Algorithm 3. Two-Party Algorithm (DistDiffGen).
Input: Raw data set D;, privacy budget ¢, and number of
specializations h
Output: Anonymized data set D
1: Initialize D, with one record containing top
most values;
2: Initialize Cut; to include the topmost value;
3 € < oramn;
4: Determine the split value for each v" € UCut; with
probability o exp(Q‘A'uu(D, ou));

5: Compute the score Vv € UCut;;

6: for/=1to h do

7:  Determine the winner candidate w by
Algorithm 1 (DistExp);

8: if w is local then
9: Specialize w on Dy;
10: Replace w with child(w) in the local copy of UCut;;
11: Instruct P, to specialize and update UCut;;
12: Determine the split value for each new v" € UCut;
with probability o exp(ﬁ/u u(D,v"));
13: Compute the score for each new v € UCut;;
14: else
15: Wait for the instruction from P;
16: Specialize w and update UCut; using
the instruction;
17: end if
18: end for

19: for each leaf node of D, do

20:  Execute the SSPP Protocol to compute the shares C;
and C5 of the true count C;

21:  Generate two gaussian random variables
Y ~ N(0,/1/¢) for i € {1,2};

22:  Compute X; = Cy + Y? — Y},

23:  Exchange X; with P, to compute (C' + Lap(2/¢));

24: end for

25: return Each leaf node with count (C + Lap(2/¢))

The general idea is to anonymize the raw data by a
sequence of specializations starting from the topmost
general state. A specialization, written v — child(v), where
child(v) denotes the set of child values of v, replaces the
parent value v with child values. The specialization process
can be viewed as pushing the “cut” of each taxonomy tree
downwards. A cut of the taxonomy tree for an attribute A!",
denoted by Cut;, contains exactly one value on each root-to-
leaf path. Fig. 1 shows a solution cut indicated by the dotted
line. The specialization starts from the topmost cut and
pushes down the cut iteratively by specializing a value in
the current cut.

Algorithm 3 is executed by the party P; (same for the
party P») and can be summarized as follows:

Generalizing raw data. Each party keeps a copy of the
current UCut; and a generalized table D, as shown in Fig. 2,
in addition to the private table D; or D,. Here, UCut; is the
set of all candidate values for specialization. Initially, all
values in A" are generalized to the topmost value in their
taxonomy trees (Line 1), and Cut; contains the topmost
value for each attribute A" (Line 2). At each iteration, the
algorithm uses the distributed exponential mechanism
(Algorithm 1) to select a candidate w € UCut;, which is
owned by either P, or P, for specialization (Line 7).

Candidates are selected based on their score values, and
different utility functions can be used to determine the scores
of the candidates. Once a winner candidate is determined,
both parties specialize the winner w on D, by splitting their
records into child partitions according to the provided
taxonomy trees. If the winner w is one of P,’s candidates, P
specializes w on D, (Line 9), updates its local copy of UCut;
(Line 10), and instructs P to specialize and update its local
copy of UCut; accordingly (Line 11). P, also calculates the
scores of the new candidates due to the specialization
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Job |

Sex [ Salary |

Any_Sex | [18-99) |

[ Any Job |
[

UCut; = {Any_Job, Any_Sex, [18-99)}
Any_Job —» {Professional, Artist}

[ Professional [ Any_Sex [ [18-99) | [ Artist | Any Sex] [18-99) |
U Cut; = {Professional,Artist, Any_Sex, [18-99)}
Any_Sex — {Male, Female}
[ Professional [ M [[18-99) | [ Professional | F [[18-99) | 18-99 [ Arist [ F [[18-99) |
Noisy count
[ Professional] M [ [18-99) | 2+1=3 | [ Professional [ F [[18-99) [ 3-1=2 | [ Artist | M [ [18-99) [ 3+1=4 | [ Artist | F | [18-99) [ 2+0=2 |

Fig. 2. Generalized data table (D,). Distributed exponential mechanism is used for specializing the predictor attributes in a top-down manner
using half of the privacy budget. Laplace noise is added at leaf nodes to the true count using the second half of the privacy budget to ensure

overall e-differentially private output.

(Line 13). If the winner w is not one of P,’s candidates, P;
waits for instruction from P, to specialize w and to update its
local copy of UCut; (Lines 15 and 16). This process is
repeated according to the number of the specializations h.

Example 4. Consider the data of Table 1. Initially, D,
contains one root node representing all the records that
are generalized to (Any_Job, Any_Sex,[18-99)). UCut; is
represented as {Any_Job, Any_Sex,[18-99)} and includes
the initial candidates. To find the winner candidate, both
parties run Dist Exp. Suppose the winning candidate w is
Any_Job — {Professional, Artist}. The party P first
creates two child nodes under the root node as shown
in Fig. 2 and updates UCut; to {Professional, Artist,
Any_Sex, [18-99)}. Then, P; sends instruction to P». On
receiving this instruction, P, creates the two child nodes
under the root node in its copy of D, and updates the
UCut;. Suppose that the next winning candidate is
Any_Sex — {Male, Female}. Similarly, the two parties
cooperate to create further specialized partitions resulting
in the generalized table in Fig. 2. We do not show the class
attribute in Fig. 2.

The split value of a categorical attribute is determined
according to the taxonomy tree of the attribute. Since the
taxonomy tree is fixed, splitting the records according to the
taxonomy tree does not violate differential privacy. For
numerical attributes, a split value cannot be directly chosen
from the attribute values that appear in the data table D
because the probability of selecting the same split value
from a different data table D' not containing this value is 0.
Therefore, Algorithm 3 uses the exponential mechanism
(same as [38]) to determine the split value for each
numerical candidate v" € UCut; (Lines 4 and 12).

Computing the count. For each leaf node in the resulted D,
from the previous step, parties need to compute the true
count C' before adding noise. Using the Secure Scalar
Product Protocol [26], [57] (Line 20), parties securely
compute the product of the binary vectors Z; and 2
provided by P, and P, respectively, to produce the shares
Cy and Cy of the true count C such that C = C; + Cs. For
each leaf node, the first party P, (similarly ) computes the
binary vector Z; such that |Z;| = |D;| = |Ds| and Z;[i] = 1 if
D[i] matches the generalized value of the leaf node;
otherwise, Z;[i] = 0.

Example 5 (Continued from Example 4). Consider the
bottom most left leaf in Fig. 2, where the count of all male
professionals whose salaries in the range [18-99) is
needed. P, generates the binary vector Z; = [0,0,0,0,
1,1,1,0,1,1], whereas P, generates the binary vector
Zy=11,1,1,0,0,0,1,0,1,0], as detailed in Table 4. In the
secure scalar product protocol, the goal is to securely
compute the scalar product Z; * Z5 such that

10
Zyx Zy =Y (Zii] x Zai])
=1
=0+0+0+0+0+0+14+0+1+0=2.

At the end of the protocol, the two parties have random
shares of the result Z; * Z,, which is equal to 2.

Computing the noisy count. To compute the overall noisy
count, the first party P, generates two gaussian random
variables Y; ~ N (0, /1/e) for i € {1,2} that are distributed
normally with mean 0 and variance \/ﬁg (Line 21). To
clarify why we choose these values for the mean and the
variance, we state the following Lemma:

Lemma 6.1 [46]. Let Y; ~ N(0,\) for ¢ € {1,2,3,4} be four
Gaussian random wvariables. Then, the random variable
Lap(2X?) is equal to Y? + Y} — Y} — Y.

To produce a random variable sampled from a Laplace
distribution with parameter 2/¢, that is, Lap(2/¢), we need
to choose the variance of the Gaussian distribution equal to
V/1/e. This can be easily verified from Lemma 6.1 by

TABLE 4
Binary Vectors
Shared Party A Party B
1D Job Z1[d] Sex Salary | Z5[{]
1 Artist 0 Male [18-99)K 1
2 Artist 0 Male 18-99)K 1
3 Artist 0 Male 18-99)K 1
4 Artist 0 Female 18-99)K 0
5 Professional 1 Female 18-99)K 0
6 Professional 1 Female 18-99)K 0
7 Professional 1 Male [18-99)K 1
8 Artist 0 Female | [18-99)K 0
9 Professional 1 Male [18-99)K 1
10 Professional 1 Female | [18-99)K 0
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substituting A\ = \/1/e. This gives 2)\> =2/e. Thus, P,
computes C; + Y? — Y7 to produce its noisy count share
X1, whereas P, computes C; + Y3 — Y to produce its noisy
count share X, (Line 22). The two parties exchange these
values to compute the noisy count C + Lap(2/e) = X; +
Xo=C1+ Y —Y?+Co+Y] - Y] (Line 23).

This simple and efficient method makes the final noisy
count (X; + X,) differentially private. However, the ex-
changed noisy count shares X; and X, between the parties
are not differentially private. The addition of two random
Gaussian variables provides some privacy protection
against the other party; however, these noisy count shares
cannot be differentially private without Laplace noise. We
can use instead the proposed technique of Dwork et al. [13]
to achieve a flow of information between the parties that is
differentially private. Their proposed method uses a simple
circuit and takes around 5 seconds for two parties to
generate a Laplace noise securely in a collaborative fashion
[43]. Thus, a data owner may want to tradeoff privacy for
efficiency for noise addition.

6.3 Analysis

We next discuss the correctness, security, and efficiency of
Algorithm 3.

Proposition 6.1 (Correctness). Assuming both parties are
semihonest, Algorithm 3 releases e-differentially private data
when two parties hold different attributes for the same set
of individuals.

Proof. Algorithm 3 performs exactly the same sequence of
operations as in the single-party algorithm DiffGen but
in a distributed setting. DiffGen is e-differentially private
[38]. Therefore, we prove the correctness of Algorithm 3
by just proving the steps that are different from DiffGen:

e  Candidate selection. Algorithm 3 selects a candi-
date for specialization. This step correctly uses
the exponential mechanism as stated in Proposi-
tion 5.1; therefore, the candidate selection step
guarantees ¢-differential privacy.

o  Updating the tree D, and UCut;. Each party has its
own copy of D, and UCut;. Each party updates
these items exactly like DiffGen either by using
the local information or by using the instruction
provided by the other party.

o Computing the noisy count. Algorithm 3 also outputs
the noisy count of each leaf node (Line 25), where
the noise is equal to Lap(2/e¢). Thus, it guarantees
€/2-differential privacy.

In summary, Algorithm 3 uses half of the privacy
budget to generalize the data (Lines 6-18), where each
individual operation is ¢'-differential privacy; it uses the
remaining half of the privacy budget to ensure overall
e-differential privacy. ]

Proposition 6.2 (Security). Algorithm 3 is secure under the
semihonest adversary model.

Proof. The security of Algorithm 3 depends on the steps
where the two parties exchange information, and it is
conducted as follows:

e Line 7. The algorithm DistExp is proven to be
secure in Section 5.

e Lines 11 and 15. The party that owns the winner
candidate instructs the other party to specialize w
and update its local copy of UCut;. The nature of
the top-down approach implies that D, is more
general than the final answer and, therefore, does
not leak any additional information.

e Line 20. The secure scalar product protocol is
proven to be secure [57].

e Line 23. The two parties exchange the noisy count
shares to compute the noisy count. According to
Definition 4.1, the exchange process is secure in a
semihonest environment if the additional leakage
due to the Gaussian noise is incorporated as a
part of the final output. The alternative circuit-
based approach is proven to be secure [13].

Therefore, due to composition theorem [21], Algo-

rithm 3 is secure. o

Proposition 6.3 (Complexity). The encryption and the com-
munication costs of Algorithm 3 are bounded by O(hnlogC') +
2" D|) and O(hnKlogC + 2"e|D)|), respectively.

Proof. Most of the encryptions and the communications
occur in Line 7 and Line 20 of Algorithm 3. In Line 7, both
parties execute distributed exponential mechanism to
select a winner candidate. This occurs in a total of & times.
Then, according to Proposition 5.3, the number of
encryptions and the communication complexity of Line 7
are O(hnlogC) and O(hnKlogC), respectively. In Line 20,
parties run SSPP to compute the count of each leaf node.
The total number of leaf nodes is 2". The encryption and
the communication costs of SSPP are O(|D|) and O(e|D|),
where e is the bit length of an encrypted item [57].
Therefore, the costs of this step are O(2"|D|) and O(2"¢| D|)
for encryption and communication, respectively. Thus,
the total costs of the encryption and the communication of
Algorithm 3 are bounded by O(hnlogC + 2"|D|) and
O(hnKlogC + 2"e|D|), respectively. O

7 PERFORMANCE ANALYSIS

In this section, we evaluate the scaling impact on the data
utility in terms of classification accuracy. We then compare
DistDiffGen with DiffGen [38] and with the distributed
algorithm for k-anonymity [39], which we, henceforth, refer
to as DAKA. The algorithm DAKA integrates and publishes
distributed data with k-anonymity privacy guarantee for
classification analysis. Finally, we estimate the computation
and the communication costs of DistDiffGen. We employ
the publicly available data set Adult [15], [18], a real-life
census data set that has been used for testing many
anonymization algorithms [3], [18], [25], [26], [34], [52],
[40]. It has 45,222 census records with six numerical
attributes, eight categorical attributes, and a binary class
column representing two income levels, <50K or >50K.
All experiments are conducted on an Intel Core 7 2.7-GHz
PC with 12-GB RAM.
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Fig. 3. Classification accuracy for Adult, where the number of
specialization is h = 10. The bottom and top lines stand for Lower-
bound Accuracy and Baseline Accuracy, respectively. For LA, the
values of the predictor attributes of all the records are generalized to the
topmost value in the taxonomy tree. For BA, we use the raw data set
without any generalization.

7.1 Experiments

To evaluate the impact on classification quality, we divide
the data into training and testing sets. First, we apply our
algorithm to anonymize the training set and to determine
the UCut;. Then, the same UC'ut; is applied to the testing set
to produce a generalized testing set. Next, we build a
classifier on the anonymized training set and measure the
classification accuracy on the generalized records of the
testing set. We notice that different partitioning of
the attributes among the parties does not have any impact
on the classification accuracy, as the winner candidate is
chosen from all the candidates of both parties. To compute
the score of each candidate v € UCut;, we adopt the Max
utility function [38]:

Max(D,v) = Z

(max (ID2))), (4)
cechild(v)

cls

where |D¢*| denotes the number of records in D having
generalized value ¢ and the class value cls. Thus, Max(D, v)
is the summation of the highest class frequencies over all
child values. The sensitivity Au of the Max function is 1
because the value Max(D,v) can vary at most by 1 due to a
record change.

For classification models, we use the well-known C4.5
classifier [45]. To better visualize the cost and the benefits of
our approach, we provide additional measures:

1. Baseline accuracy (BA) is the classification accuracy
measured on the raw data without anonymization;

2. BA-CA represents the cost in terms of classification
quality for achieving a given e-differential privacy
requirement;

3. Lower-bound accuracy (LA) is the accuracy on the
raw data with all attributes (except for the Class
attribute) removed—that is, all the predictor attri-
butes for all the records are generalized to the
topmost value; and

4. CA-LA represents the benefit of our method over the
naive nondisclosure approach.

Fig. 3 depicts the classification accuracy CA for the utility
function Max, where the privacy budget e € {0.1,0.25,0.5,1}
and the number of considered digits after the decimal point
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Fig. 4. Comparison of DistDiffGen with DiffGen and DAKA. For
DistDiffGen with DiffGen, we vary the privacy budget between
0.1 < e < 2. For DAKA, we fix the anonymity threshold & = 5.

2 <1<10 (ie., scaling as described in Section 5). The BA
and LA are 85.3 and 75.5 percent, respectively, as shown in
the figure by the dotted lines. We use 2/3 of the records
(i.e., 30,162) to build the classifier and measure the accuracy
on the remaining 1/3 of the records (i.e., 15,060). For each
experiment, we execute 10 runs and average the results over
the runs. The number of specializations h is 10 for all the
experiments. For e=1 and [ =10, BA-CA is around
3 percent, whereas CA-LA is 6.7 percent. For € = 0.5, BA-
CA spans from 3.58 to 4.18 percent, whereas CA-LA spans
from 5.62 to 6.22 percent. However, as € decreases to 0.1, CA
quickly decreases to about 78.9 percent (highest point), the
cost increases to about 6.4 percent, and the benefit decreases
to about 3.4 percent.

We observe two general trends from the experiments.
First, the privacy budget has a direct impact on the
classification accuracy. A higher budget results in better
accuracy because it ensures better attribute partitioning,
and it lowers the magnitude of noise that is added to the
count of each equivalence group. This observation also
holds for DiffGen. Second, the classification accuracy is
insensitive to the scaling (the number of the considered
digits after the decimal points) for the Max function. This is
because the value of exp(ZFT'uu(D7 v,)) is large due to the
score of the Max function, which is usually a large integer.
Therefore, scaling has hardly any impact on the data utility
for classification analysis.

Fig. 4 shows the classification accuracy CA of DistDiffGen,
DiffGen, and DAKA. For DiffGen, we use the utility function
Max and fix the number of specializations i = 10. For DAKA,
we fix the anonymity threshold k=5. The accuracy of
DistDiffGen is clearly comparable to the one of DiffGen for
privacy budget 0.1 < € < 2. The difference of the classifica-
tion accuracy is due to the randomness introduced by both
the exponential and the Laplace mechanisms. The experi-
mental result also shows that DistDiffGen performs better
than DAKA for e > 1. For a higher anonymity threshold %, the
accuracy of DAKA will be lower. This is also expected as
DiffGen performed better than TDS [18], a single-party
algorithm adopting the k-anonymity privacy model.

In summary, the experimental results demonstrate that
the proposed two-party algorithm has properties similar to
the single-party algorithm, and the impact of scaling is
insignificant.
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7.2 Cost Estimate

Most of the computation and the communication take place
during the execution of DistExp (Line 7) and SSPP (Line 20).
The runtime of the other steps is less than 30 seconds for
Adult data set. Hence, we only elaborate the runtime of
DistExp and SSPP.

7.2.1 Distributed Exponential Mechanism

As discussed in Section 5, the computation and the
communication complexity of the distributed exponential
mechanism are dominated by the cost of the COMPARISON
circuit. In the following, we provide an estimate for the
computation and the communication costs of evaluating the
COMPARISON circuit. Here, we assume that P, encodes and
P, evaluates the encrypted circuit. The roles of P, and P,
can be swapped.

Computation. For each input bit, P, needs to execute a
l-out-of-2 oblivious transfer protocol to get the corre-
sponding encryption key. This is the major computational
overhead of the distributed exponential mechanism. The
computation cost of an oblivious transfer protocol is
roughly equal to the cost of a modular exponentiation,
denoted by C,,. Therefore, the computation overhead is
equal to the number of input bits of » times C,,. Each
input of the circuit is bounded by [log, C'] bits, where

c=5%r, Lexp(ﬁu(D, v;)) x 10]:
[log, C] = logg ( {exp( u(D vz)> X IOZJ)-‘
< Zlogg (Lexp(—u (D v1)> X 10’J>“
< ZQZH 4o, 101
= 2Au/1n22 u(D,v;) (3.3219><l)—‘.
Here, Au =1, ¢ = 2<6+2X10> = 0.02, >0, u(D,v) is

bounded by the number of the records |D|= 30,162 for
the Max function, and ! = 10 suffices the desired accuracy.
Hence, we have [log, C'] = 469 bits. The inputs of P, are
Ry and L, which are 469-bit numbers. As mentioned in
Section 6.3, there are at most h X n invocations of each
circuit. Here, n is the total number of candidates, which is
24 at most for the Adult data set. Hence, the total
computational cost is h x n x 2[log, C'] x C,, =10 x 24 x
2 x 469 x 0.02s =~ 75 minutes, assuming the cost of C,, is
0.02 second for 1,024-bit numbers on a Pentium III
processor [42].

Communication. P, needs to send a table of size 4K for each
gate of the COMPARISON circuit, where we assume the key
size K is 128 bits. This is the major communication overhead
of the distributed exponential mechanism. In Algorithm 2,
we describe the COMPARISON circuit that includes two add
and one compare circuits. However, two additions and one
compare operation can be realized into one circuit. For
example, the first two [log, C']-bit numbers can be added
using 2 x [log, C| binary gates. Thus, we need 4 x [log, C
gates to add R;, Ry, and L, L,. After the additions, we can
compare R and L, which are [log, C-bit numbers, using

5 x [log, C'] — 3 binary gates [1]. Thus, the total number of
gates needed to implement the COMPARISON circuit is T, =
9[log, C'] — 3 = 4,218. Therefore, the communication cost of
sending the tables is h x n x 4K x T, ~ 5.18 x 10° bits,
taking approximately 5.5 minutes using a T1 line with
1.544 Mbits /second bandwidth.

Remark. Our estimation ignores the computational cost of
evaluating the circuit and the communication cost of the
oblivious transfer protocol. The evaluation of the circuit
involves decrypting a constant number of ciphertexts
(symmetric encryption) for every gate, which is very
efficient compared to the oblivious transfer (modular
exponentiations) because the number of gates of the
circuit is linear to the number of input bits. Also, the
communication cost of the oblivious transfer protocol is
negligible compared to the cost of sending the tables.

7.2.2 Secure Scalar Product Protocol

We adopt the Secure Scalar Product Protocol of [26] and
use its reported running time to estimate the cost of this
step for our algorithm. The primary cost of SSPP depends
on the number of homomorphic encryptions that is equal
to |D|, the size of the data set. As reported in [26], the
estimated cost of the homomorphic encryptions is 19.5 s on
average when |D| = 30162 (the size of our data set) on Intel
Xeon 3-GHz processor. The computation cost of Line 20 is
2" x 19.55s =2 x 19.5 s ~ 5.5 hours. Notice that Line 20
is easily parallelizable because each leaf node pair is
independent. Assuming we have 10 processors, this cost
can be reduced to 33 minutes. Finally, the communication
cost is 2" x e x |D| = 2! x 1,024 x 30,162 = 3.16 x 10! bits,
assuming e = 1,024 bits. Thus, the communication over-
head of Line 20 is around 5.6 hours using a T1 line. This
time can be reduced to 15 minutes by using a T3 line with
35 Mbits/second bandwidth.

8 DISCUSSION

Is differential privacy good enough? What changes are
required if there are more than two parties? How reason-
able is it to assume that the parties are semihonest? In this
section, we provide answers to these questions.

Differential Privacy. Differential privacy is a strong
privacy definition. However, Kifer and Machanavajjhala
[29] have shown that if the records are not independent or
an adversary has access to aggregate level background
knowledge about the data, then privacy attack is possible.
In our application scenario, each record is independent of
the other records and we assume that no deterministic
statistics of the raw database have ever been released.
Hence, differential privacy is appropriate for our problem.

More than two parties. The proposed algorithm is only
applicable for the two-party scenario because the distrib-
uted exponential algorithm and the other primitives (e.g.,
random value protocol, secure scalar product protocol) are
limited to a two-party scenario. The proposed algorithm can
be extended for more than two parties by modifying all the
subprotocols while keeping the general top-down structure
of the algorithm.
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Semihonest Adversary Model. This is the common security
definition used in the SMC literature [26]; it is realistic in
our problem scenario because different organizations are
collaborating to securely share their data for mutual
benefits. Hence, it is reasonable to assume that parties will
not deviate from the defined protocol. However, they may
be curious to learn additional information from the
messages they received during the protocol execution. To
extend the algorithm for malicious parties, all subprotocols
should be extended and must be secure under the malicious
adversary model.

9 CONCLUSION

In this paper, we have presented the first two-party
differentially private data release algorithm for vertically
partitioned data. We have shown that the proposed
algorithm is differentially private and secure under the
security definition of the semihonest adversary model.
Moreover, we have experimentally evaluated the data
utility for classification analysis. The proposed algorithm
can effectively retain essential information for classification
analysis. It provides similar data utility compared to the
recently proposed single-party algorithm [38] and better
data utility than the distributed k-anonymity algorithm for
classification analysis [39].
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