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Abstract—Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information.

Among the existing privacy models, �-differential privacy provides one of the strongest privacy guarantees. In this paper, we address

the problem of private data publishing, where different attributes for the same set of individuals are held by two parties. In particular, we

present an algorithm for differentially private data release for vertically partitioned data between two parties in the semihonest

adversary model. To achieve this, we first present a two-party protocol for the exponential mechanism. This protocol can be used as a

subprotocol by any other algorithm that requires the exponential mechanism in a distributed setting. Furthermore, we propose a two-

party algorithm that releases differentially private data in a secure way according to the definition of secure multiparty computation.

Experimental results on real-life data suggest that the proposed algorithm can effectively preserve information for a data mining task.

Index Terms—Differential privacy, secure data integration, classification analysis

Ç

1 INTRODUCTION

HUGE databases exist today due to the rapid advances in
communication and storing systems. Each database is

owned by a particular autonomous entity, for example,
medical data by hospitals, income data by tax agencies,
financial data by banks, and census data by statistical
agencies. Moreover, the emergence of new paradigms such
as cloud computing increases the amount of data distrib-
uted between multiple entities. These distributed data can
be integrated to enable better data analysis for making
better decisions and providing high-quality services. For
example, data can be integrated to improve medical
research, customer service, or homeland security. However,
data integration between autonomous entities should be
conducted in such a way that no more information than
necessary is revealed between the participating entities. At
the same time, new knowledge that results from the
integration process should not be misused by adversaries
to reveal sensitive information that was not available before
the data integration. In this paper, we propose an algorithm
to securely integrate person-specific sensitive data from two
data providers, whereby the integrated data still retain the
essential information for supporting data mining tasks. The
following real-life scenario further illustrates the need for
simultaneous data sharing and privacy preservation of
person-specific sensitive data.

This research problem was discovered in a collaborative
project with the financial industry. We generalize their
problem as follows: A bank A and a loan company B have
different sets of attributes about the same set of individuals
identified by the common identifier attribute (ID), such that
bank A owns DAðID; Job;BalanceÞ, while loan company B
owns DBðID; Sex; SalaryÞ. These parties want to integrate
their data to support better decision making such as loan or
credit limit approvals. In addition to parties A and B, their
partnered credit card company C also has access to the
integrated data, so all three parties A, B, and C are data
recipients of the final integrated data. Parties A and B have
two concerns. First, simply joining DA and DB would reveal
sensitive information to the other party. Second, even if DA

and DB individually do not contain person-specific or
sensitive information, the integrated data can increase the
possibility of identifying the record of an individual. The
next example illustrates this point.

Example 1. Party A owns the data table DAðID; Job; . . . ;
ClassÞ, while Party B owns the data table DBðID;
Sex; Salary; . . . ; ClassÞ as shown in Table 1. Each row in
the table represents the information of an individual. The
attribute Class contains the class label Y or N, representing
whether or not the loan has been approved. Both parties
want to integrate their data and use the integrated data to
build a classifier on the Class attribute. After integrating
the two data tables (by matching the ID field), the female
lawyer becomes unique and, therefore, vulnerable to be
linked to sensitive information such as salary. In other
words, linking attack is possible on the fields Job and Sex.

To prevent such linking attacks, Jiang and Clifton [26]
and Mohammed et al. [39] have proposed algorithms
that enable two parties to integrate their data satisfying the
k-anonymity privacy model [48], [49]. The k-anonymity
model requires that an individual should not be identifi-
able from a group of size smaller than k based on the
quasi-identifier (QID), where QID is a set of attributes that
may serve as an identifier in the data set. For example, in
Table 1 Engineer and Lawyer can be generalized [48], [49] to
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Professional according to the taxonomy presented in Fig. 1
(ignore the dotted line for now) so that this individual
becomes one of many female professionals. However,
Machanavajjhala et al. [34] have pointed out that with
additional knowledge about the victim, k-anonymous data
are vulnerable to background knowledge attacks. To
prevent such attacks, ‘-diversity requires that every QID
group should contain at least ‘ “well-represented” values
for the sensitive attribute. Similarly, there are a number of
other partition-based privacy models such as ð�; kÞ-
anonymity [56], ðc; kÞ-safety [35], and t-closeness [32] that
differently model the adversary and have different
assumptions about her background knowledge. However,
recent research has indicated that these privacy models are
vulnerable to various privacy attacks [54], [60], [19], [28]
and provide insufficient privacy protection.

In this paper, we adopt differential privacy [14], a
recently proposed privacy model that provides a provable
privacy guarantee. Differential privacy is a rigorous privacy
model that makes no assumption about an adversary’s
background knowledge. A differentially private mechanism
ensures that the probability of any output (released data) is
equally likely from all nearly identical input data sets and,
thus, guarantees that all outputs are insensitive to any
individual’s data. In other words, an individual’s privacy is
not at risk because of the participation in the data set.

In this paper, we present an algorithm for differentially
private data release for vertically partitioned data between
two parties.1 We take the single-party algorithm for
differential privacy that has been recently proposed by
Mohammed et al. [38] as a basis and extend it to the two-
party setting. Additionally, the proposed algorithm satisfies
the security definition of the semihonest adversary model.
In this model, parties follow the algorithm but may try to
deduce additional information from the received messages.
Therefore, at any time during the execution of the
algorithm, no party should learn more information about
the other party’s data than what is found in the final
integrated table, which is differentially private. The main
contribution of our paper can be summarized as follows:

. We present a two-party protocol for the exponential
mechanism. We use this protocol as a subprotocol of
our main algorithm, and it can also be used by any
other algorithm that uses the exponential mechan-
ism in a distributed setting.

. We present the first two-party data publishing
algorithm for vertically partitioned data that gen-
erate an integrated data table satisfying differential
privacy. The algorithm also satisfies the security
definition in the secure multiparty computation
(SMC) literature.

. We experimentally show that the differentially
private integrated data table preserve information
for a data mining task. In particular, taking the
decision-tree induction classifier [45] as an example,
we show that the proposed two-party algorithm
provides similar data utility for classification analy-
sis when compared to the single-party algorithm
[38], and it performs better than the recently
proposed two-party algorithm [39].

The rest of the paper is organized as follows: Section 2
presents related work. In Section 3, we present an overview
of �-differential privacy. In Section 4, we briefly review the
security definition in the semihonest adversary model and
the required cryptographic primitives. In Section 5, we
describe the two-party protocol for the exponential mechan-
ism and provide a detailed analysis of the protocol. The
two-party data publishing algorithm for vertically parti-
tioned data is presented in Section 6. In Section 7, we
present the experimental results and estimate the computa-
tion and communication costs of the algorithm for a real
data set. In Section 8, we answer some frequently raised
questions. Finally, concluding remarks and a discussion of
future work are presented in Section 9.

2 RELATED WORK

Data privacy has been an active research topic in the
statistics, database, and security communities for the last
three decades [17]. The proposed methods can be roughly
categorized according to two main scenarios:

. Interactive versus noninteractive. In an interactive
framework, a data miner can pose queries through
a private mechanism, and a database owner answers
these queries in response. In a noninteractive frame-
work, a database owner first anonymizes the raw
data and then releases the anonymized version for
data analysis. Once the data are published, the data
owner has no further control over the published
data. This approach is also known as privacy-
preserving data publishing (PPDP) [17].

. Single versus multiparty. Data may be owned by a
single party or by multiple parties. In the distributed
(multiparty) scenario, data owners want to achieve
the same tasks as single parties on their integrated
data without sharing their data with others.
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TABLE 1
Original Tables

Fig. 1. Taxonomy tree for attributes Job, Sex, and Salary. The dotted
line represents a “solution cut”; a concept elaborated in Section 6.

1. This is very different from private record linkage [24], where the goal
is to identify records that represent the same real-world entity from two
given data sets.



Our proposed algorithm addresses the distributed and
noninteractive scenario. Below, we briefly review the most
relevant research works.

Single-party scenario. We have already discussed different
privacy models in Section 1. Here, we provide an overview
of some relevant anonymization algorithms. Many algo-
rithms have been proposed to preserve privacy, but only a
few have considered the goal for classification analysis [17].
Iyengar [25] has presented the anonymity problem for
classification and proposed a genetic algorithmic solution.
Bayardo and Agrawal [3] have also addressed the classifi-
cation problem using the same classification metric of [25].
Fung et al. [18] have proposed a top-down specialization
(TDS) approach to generalize a data table. LeFevre et al. [31]
have proposed another anonymization technique for
classification using multidimensional recoding [30]. More
discussion about the partition-based approach can be found
in the survey of Fung et al. [17].

Differential privacy [14] has recently received consider-
able attention as a substitute for partition-based privacy
models for PPDP. However, so far most of the research on
differential privacy concentrates on the interactive setting
with the goal of reducing the magnitude of the added noise
[11], [14], [47], releasing certain data mining results [4], [8],
[9], [16], or determining the feasibility and infeasibility
results of differentially-private mechanisms [5], [53], [36].
Research proposals [2], [23], [38], [58] that address the
problem of noninteractive data release only consider the
single-party scenario. Therefore, these techniques do not
satisfy the privacy requirement of our data integration
application for the financial industry. A general overview of
various research works on differential privacy can be found
in the survey of Dwork [12].

Distributed interactive approach. This approach is also
referred to as privacy preserving distributed data mining
(PPDDM) [10]. In PPDDM, multiple data owners want to
compute a function based on their inputs without sharing
their data with others. This function can be as simple as a
count query or as complex as a data mining task such as
classification, clustering, and so on. For example, multiple
hospitals may want to build a data mining model for
predicting disease based on patients’ medical history
without sharing their data with each other. In recent years,
different protocols have been proposed for different data
mining tasks including association rule mining [50],
clustering [51], and classification [33], [6]. However, none
of these methods provide any privacy guarantee on
the computed output (i.e., classifier, association rules). On
the other hand, Dwork et al. [13], and Narayan and
Haeberlen [43] have proposed interactive algorithms to
compute differentially private count queries from both
horizontally and vertically partitioned data, respectively.

However, when compared to an interactive approach, a
noninteractive approach gives greater flexibility because
data recipients can perform their required analysis and
data exploration, such as mining patterns in a specific
group of records, visualizing the transactions containing a
specific pattern, or trying different modeling methods and
parameters.

Distributed noninteractive approach. This approach allows

anonymizing data from different sources for data release

without exposing the sensitive information. Jurczyk and

Xiong [27] have proposed an algorithm to securely

integrate horizontally partitioned data from multiple data
owners without disclosing data from one party to another.

Mohammed et al. [41] have proposed a distributed

algorithm to integrate horizontally partitioned high-

dimensional health care data. Unlike the distributed
anonymization problem for vertically partitioned data

studied in this paper, these methods [27], [41] propose

algorithms for horizontally partitioned data.
Jiang and Clifton [26] have proposed the Distributed

k-Anonymity (DkA) framework to securely integrate two

data tables while satisfying the k-anonymity requirement.
Mohammed et al. [39] have proposed an efficient anonymi-

zation algorithm to integrate data from multiple data

owners. To the best of our knowledge, these are the only

two methods [26], [39] that generate an integrated anon-
ymous table for vertically partitioned data. However, both

methods adopt k-anonymity [48], [49] or its extensions [34],

[52] as the underlying privacy principle and, therefore, both

are vulnerable to the recently discovered privacy attacks

[54], [19], [28], [55]. Table 2 summarizes the different
characteristics of the PPDP algorithms discussed above.

3 PRIVACY MODEL

Differential privacy is a recent privacy definition that

provides a strong privacy guarantee. It guarantees that an

adversary learns nothing more about an individual,
regardless of whether her record is present or absent in

the data.

Definition 3.1 (�-Differential Privacy) [14]. A randomized

algorithm Ag is differentially private if for all data sets D and

D0, where their symmetric difference contains at most one

record ði:e:; jD4D0j � 1Þ, and for all possible anonymized

data sets D̂:

Pr½AgðDÞ ¼ D̂� � e� � Pr½AgðD0Þ ¼ D̂�; ð1Þ

where the probabilities are over the randomness of Ag.
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A standard mechanism to achieve differential privacy is
to add a random noise to the true output of a function. The
noise is calibrated according to the sensitivity of the
function. The sensitivity of a function is the maximum
difference of its outputs from two data sets that differ only
in one record.

Definition 3.2 (Sensitivity) [14]. For any function
f : D! IRd, the sensitivity of f is

�f ¼ max
D;D0
kfðDÞ � fðD0Þk1; ð2Þ

for all D;D0 differing in at most one record.

For example, let f be the count function. The �f is 1
because fðDÞ can differ at most by 1 due to the addition or
removal of a single record.

Dwork et al. [14] have proposed the Laplace mechanism.
The mechanism takes a data set D, a function f , and the
parameter � that determines the magnitude of noise as
inputs. It first computes the true output fðDÞ, and then
perturbs the output by adding noise. The noise is generated
according to a Laplace distribution with probability density
function Prðxj�Þ ¼ 1

2� expð�jxj=�Þ; its variance is 2�2 and
its mean is 0. The Laplace mechanism guarantees
that perturbed output fðD̂Þ ¼ fðDÞ þ Lapð�f=�Þ satisfies
�-differential privacy, where Lapð�f=�Þ is a random
variable sampled from the Laplace distribution.

McSherry and Talwar [37] have proposed the exponen-
tial mechanism to achieve differential privacy whenever it
makes no sense to add noise to outputs. The exponential
mechanism can choose an output t 2 T that is close to the
optimum with respect to a utility function while preserving
differential privacy. It takes as inputs a data set D, an
output range T , a privacy parameter �, and a utility
function u : ðD� T Þ ! IR that assigns a real valued score
to every output t 2 T , where a higher score means better
data utility. In this paper, we measure the data utility in
terms of classification accuracy (CA). The mechanism
induces a probability distribution over the range T and
then samples an output t. Let �u ¼ max8t;D;D0 juðD; tÞ �
uðD0; tÞj be the sensitivity of the utility function. The
probability associated with each output is proportional to
expð�uðD;tÞ2�u Þ; that is, the output with a higher score is
exponentially more likely to be chosen.

4 SECURITY MODEL

In this section, we briefly present the security definition in
the semihonest adversary model. Additionally, we intro-
duce the required cryptographic primitives that are
instrumented inside the proposed algorithm in this paper.

4.1 Secure Multiparty Computation

In the following, we present the security definition in the
semi-honest adversary model according to Goldreich [21]:

Definition 4.1 (Security with respect to semihonest

bahvior) [21]. Let f : f0; 1g� � f0; 1g�7!f0; 1g� � f0; 1g�
be a probabilistic polynomial-time functionality, where
f1ðx; yÞ (f2ðx; yÞ, respectively) denotes the first (second,
respectively) element of fðx; yÞ. Let � be a two-party protocol

for computing f . Let the view of the first (second, respectively)
party during an execution of protocol � on ðx; yÞ denoted
view�

1 (view�
2 , respectively) be ðx; r1;m1; . . . ; mtÞ (ðy; r2;

m1; . . . ;mtÞ, respectively), where r1 represents the outcome of
the first (r2 the second, respectively) party’s internal coin
tosses and mi represents the ith message the first (second,
respectively) party has received. The output of the first
(second, respectively) party during an execution of � on ðx; yÞ
denoted output�1 ðx; yÞ (output�2 ðx; yÞ, respectively) is implicit
in the party’s view of the execution. We say that � securely
computes f if there exist probabilistic polynomial time
algorithms denoted S1 and S2 such that

fðS1ðx; f1ðx; yÞÞ; f2ðx; yÞÞgx;y2f0;1g
�c
��
view�

1 ðx; yÞ; output�2 ðx; yÞ
��

x;y2f0;1g�

fðf1ðx; yÞ; S2ðx; f1ðx; yÞÞÞgx;y2f0;1g�

�c
��
output�1 ðx; yÞ; view�

2 ðx; yÞ
��

x;y2f0;1g�;

where �c denotes computational indistinguishability.

Two probability distributions are computationally indis-
tinguishable if no efficient algorithm can tell them apart.
Namely, the output distribution of every efficient algorithm
is oblivious whether the input is taken from the first
distribution or from the second distribution [20]. Many of
the protocols, as in the case of the proposed algorithm in
this paper, involve the composition of secure subprotocols
in which all intermediate outputs from one subprotocol are
inputs to the next subprotocol. These intermediate outputs
are either simulated given the final output and the local
input for each party or computed as random shares.
Random shares are meaningless information by themselves.
However, shares can be combined to reconstruct the result.
Using the composition theorem [21], it can be shown that if
each subprotocol is secure, then the resulting composition is
also secure.

4.2 Cryptographic Primitives

We now list all the required cryptographic primitives.
Yao’s Protocol [59]. It is a constant-round protocol for

secure computation of any probabilistic polynomial-time
function in the semihonest model. Let us assume that we
have two parties, P1 and P2, with their inputs x and y,
respectively. Both parties want to compute the value of the
function fðx; yÞ. Then, P1 needs to send P2 an encrypted
circuit computing fðx; :Þ. The received circuit is encrypted
and accordingly P2 learns nothing from this step. After-
wards, P2 computes the output fðx; yÞ by decrypting the
circuit. This can be achieved by having P2 obtaining a series
of keys corresponding to its input y from P1 such that the
function fðx; yÞ can be computed given these keys and the
encrypted circuit. However, P2 must obtain these keys from
P1 without revealing any information about y. This is done by
using the oblivious transfer protocol [21].

Random Value Protocol (RVP) [7]. This protocol allows
two parties to generate a random value R 2 ZZQ, where R
has been chosen uniformly and Q 2 ZZN is not known by
either party but it is shared between them. More specifi-
cally, P1 has R1 2 ZZN , and P2 has R2 2 ZZN such that
R ¼ R1 þR2 mod N 2 ½0; Q� 1�, where N is the public key
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for the additive homomorphic scheme utilized in this
protocol, namely, Paillier’s scheme [44].

Secure Scalar Product Protocol (SSPP) [26], [57]. It securely
computes the scalar product of two binary vectors Z1 ¼
ða1; . . . ; anÞ and Z2 ¼ ðb1; . . . ; bnÞ owned by two parties P1

and P2, respectively. At the end of this protocol, P1 and P2

have random shares of the result.

5 TWO-PARTY PROTOCOL FOR EXPONENTIAL

MECHANISM

In this section, we present a two-party protocol for the
exponential mechanism together with a detailed analysis.
As discussed in Section 3, the exponential mechanism
chooses a candidate that is close to optimum with respect to
a utility function while preserving differential privacy. In
the distributed setting, the candidates are owned by two
parties and, therefore, a secure mechanism is required to
compute the same output while ensuring that no extra
information is leaked to any party.

5.1 Distributed Exponential Mechanism (DistExp)

The distributedexponential mechanismpresented inAlgorithm 1
takes the following items as input:

. Finite discrete alternatives hðv1; u1Þ; . . . ; ðvn; unÞi,
where a pair ðvi; uiÞ is composed of the candidate
vi and its score ui. Parties P1 and P2 own ðv1; u1Þ; . . . ;
ðvj; ujÞ and ðvjþ1; ujþ1Þ . . . ðvn; unÞ, respectively.

. Privacy budget �.

Algorithm 1. Distributed Exponential Mechanism.

Input: Candidate-score pairs hðv1; u1Þ; . . . ; ðvn; unÞi
owned by the parties, and the privacy budget �
Output: Winner w

1: P1 evaluates s1  
Pj

i¼1 expð �ui2�uÞ;
2: P2 evaluates s2  

Pn
i¼jþ1 expð �ui2�uÞ;

3: P1 and P2 execute RVP to compute random shares

R1 and R2, where ðR1 þR2Þ 2 ðS1þS2Þ;

4: for k ¼ 1 to n do

5: if k � j then

6: P1 evaluates L1  
Pk

i¼1 expð �ui2�uÞ;
7: P2 evaluates L2  0;

8: else

9: P1 evaluates L1  
Pj

i¼1 expð �ui2�uÞ;
10: P2 evaluates L2  

Pk
i¼jþ1 expð �ui2�uÞ;

11: end if

12: P1 and P2 execute COMPARISONðR1; R2; L1; L2Þ;
13: if b ¼ 0 then

14: w vk;
15: return w;

16: end if

17: end for

Algorithm 2. COMPARISON.

Input: Random shares R1 and R2, and values L1 and L2

Output: b

1: R ¼ add(R1,R2);

2: L ¼ add(L1, L2);

3: b ¼ compare(R;L);

4: return b;

The protocol outputs a winner candidate depending on
its score using the exponential mechanism. The scores of
the candidates can be calculated using different utility
functions [38]. Given the scores of all the candidates,
exponential mechanism selects the candidate vj with the
following probability, where �u is the sensitivity of the
chosen utility function:

expð �uj2�uÞPn
i¼1 expð �ui2�uÞ

: ð3Þ

The distributed exponential mechanism can be summar-
ized as follows:

Computing (3). A simple implementation of the exponen-
tial mechanism is to have the interval [0, 1] partitioned into
segments according to the probability mass defined in (3)
for the candidates. Next, we sample a random number
uniformly in the range [0, 1] and the partition in which the
random number falls determines the winner candidate.
However, this method involves computing a secure divi-
sion (3). Unfortunately, we are not aware of any secure
division scheme that fits our scenario, where the numerator
value is less than the denominator value.

Alternatively, we solve this problem without a secure
division protocol. We first partition the interval [0,Pn

i¼1 expð �ui2�uÞ] into n segments, where each segment
corresponds to a candidate vi and has a subinterval of
length equal to expð �ui2�uÞ. We then sample a random
number uniformly in the range ½0;

Pn
i¼1 expð �ui2�uÞ� and the

segment in which the random number falls determines the
winner candidate.

Picking a Random Number R. Each party first computes
individually expð �ui2�uÞ for its candidates. Then, both P1 and
P2 compute s1 ¼

Pj
i¼1 expð �ui2�uÞ and s2 ¼

Pn
i¼jþ1 expð �ui2�uÞ,

respectively. P1 and P2 need to pick a random number
uniformly in the range [0; s1 þ s2], where s1 þ s2 ¼Pn

k¼1 expð �uk2�uÞ. This can be achieved by using the random
value protocol [7]. RVP takes s1 and s2 from the parties as
input and outputs the random value shares R1 and R2 to the
respective parties, where R ¼ R1 þR2. However, RVP
works only in an integer setting but s1 and s2 can be
decimal numbers because of the exponential function exp.
In this case, scaling is needed and consequently the
accuracy of the exponential mechanism could be slightly
affected unless the scaling factor is very large. However, if
the scaling factor is very large the total cost in terms of bits
will increase. We experimentally measure the impact of
scaling in Section 7.

We address the scaling issue by taking the floor value
of expð �ui2�uÞ � 10l. Here, l is a predefined number between
the parties that indicates the number of the considered
digits after the decimal point. For example, the value
2.718281828 of expð �ui2�uÞ can be scaled in different ways
according to the considered digits after the decimal point,
as shown in Table 3. The parties should agree on a specific
value for l and only consider the integer portion using the
floor function. The higher accuracy (in terms of the
number of the considered digits after the decimal point)
we demand, the higher cost we pay (in terms of bits), as
also shown in Table 3. These extra bits result in additional
computation and communication costs. More details are
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provided in Section 7. Notice that restricting the values of
expð �ui2�uÞ to a finite range is completely natural as
calculations performed on computers are handled in this
manner due to memory constraints.

Example 2. Suppose P1 has two candidates and the values
of expð �ui2�uÞ for these candidates are 54.59815003 and
403.4287935, respectively; P2 has one candidate with a
value of 7.389056099. After deciding that the value of l is
one and considering the floor value, P1 ends up with the
integer values 545 and 4,034, whereas P2 ends up with
the value 73. Both parties then pick a random number in
the range [0, 4,652] using the RVP where 4;652 ¼ 545 þ
4;034þ 73. Similarly, if the parties decide that the value
of l is two, P1 ends up with the integer values 5,459 and
40,342, whereas P2 ends up with the value 738. The two
parties then pick a random number in the range [0,
46,539] using the RVP, where 46;539 ¼ 5;459þ 40;
342þ 738.

Picking a winner. The two parties engage in a simple
secure circuit evaluation process using Yao’s Protocol [59]
in Line 12. The circuit COMPARISON compares their random
number R with the sum (L1 þ L2) provided by P1 and P2,
respectively. The winner vi is the first candidate such that
R � L1 þ L2, where

L1 ¼
Xj
i¼1

exp
�ui

2�u

� �
and L2 ¼ 0; or

L1 ¼ s1 and L2 ¼
Xn
i¼jþ1

exp
�ui

2�u

� �
:

Example 3 (Continued from Example 2). Suppose the two
parties pick a random number in [0, 4,652] using RVP.
The circuit first checks if the random number is less than
or equal to 545. If so, the first candidate of P1 is the
winner; otherwise, the circuit checks again if the random
number is less than or equal to 4;579 ð545þ 4;034Þ. If so,
the second candidate of P1 is the winner; otherwise, the
candidate of P2 is the winner because the random
number must be within the range ½0; 4;652� according to
RVP [7].

Remark. The proposed distributed exponential mechanism
takes (candidate, score) pairs as inputs. The score is
calculated using a utility function. The proposed
distributed exponential mechanism is, therefore, inde-
pendent of the choice of the utility function. In the case of
vertically partitioned data, we can use two types of
utility functions: 1) utility functions such as information
gain, maximum function, and the widest (normalized)
range of values that can be calculated locally by each

party or 2) utility functions that cannot be computed
locally. In the latter case, secure function evaluation
techniques can be used by the parties to compute these
utility functions. Once the scores of the candidates are
computed using the utility functions in either case, they
are ready to be used as inputs to execute the distributed
exponential mechanism.

5.2 Analysis

In this section, we first prove that Algorithm 1 correctly
implements the exponential mechanism. Then, we analyze
the security and the efficiency of the algorithm.

Proposition 5.1 (Correctness). Assuming both parties are
semihonest, Algorithm 1 correctly implements the exponential
mechanism for two parties.

Proof. Algorithm 1 selects a candidate vi with probability
/ expð �ui2�uÞÞ. Each party computes expð �ui2�uÞ for its
candidates. Then, parties build an interval in the range
[0,
Pn

k¼1 expð �uk2�uÞ] and partition it among the candidates,
where each subinterval has a length equal to expð �ui2�uÞ.
Since the random value lies uniformly between
[0,
Pn

k¼1 expð �uk2�uÞ] and a candidate is chosen according
to this value, the probability of choosing any candidate is

exp �ui
2�u

� �
Pn

k¼1 exp
�uk
2�u

� � :
Therefore, according to [37], Algorithm 1 correctly
implements the exponential mechanism. tu

Proposition 5.2 (Security). Algorithm 1 is secure under the
semihonest adversary model.

Proof. The communication between P1 and P2 takes place in
the random value protocol and in the COMPARISON

circuit. Algorithm 1 is secure if both the RVP and the
COMPARISON circuit are secure due to the composition
theorem [21]. Since RVP [7] and COMPARISON [21] have
been proven to be secure, Algorithm 1 is also secure. tu

Proposition 5.3 (Complexity). The encryption and the com-
munication costs of Algorithm 1 are bounded by OðnlogCÞ
and OðnKlogCÞ, respectively.

Proof. In Line 3, both parties run RVP where Oð�Þ and Oð�Þ
are the encryption and the communication costs of RVP,
respectively. The add and the compare circuits
determine the complexity of the COMPARISON circuit.
Since the number of gates for add and compare circuits
is linear to their input size, the protocol COMPARISON

requires evaluation of OðlogCÞ gates, where C ¼Pn
i¼1bexpð �

0ui
2�uÞ � 10lc. Hence, the number of the encryp-

tions and the communication complexity of COMPAR-

ISON are bounded by OðlogCÞ and OðKlogCÞ,
respectively, where K is the size of the encryption
and the decryption keys [22]. The COMPARISON protocol
is called at most n times in Line 12. Therefore, the
encryption and the communication costs are bounded
by Oð� þ nlogCÞ and Oð� þ nKlogCÞ, respectively.
Assuming, nlogC � � and nKlogC � �, the total en-
cryption and communication costs of Algorithm 1 are
bounded by OðnlogCÞ and OðnKlogCÞ, respectively. tu
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6 TWO-PARTY DIFFERENTIALLY PRIVATE DATA

RELEASE ALGORITHM

In this section, we first define some notations, state the
problem, and present our assumptions. We then describe
the two-party algorithm for differentially private data
release for vertically partitioned data.

6.1 Preliminaries

Suppose two parties P1 and P2 own data table D1 and D2,
respectively. Both parties want to release an integrated
anonymous data table D̂ðApr

1 ; . . . ; Apr
d ; A

clsÞ to the public for
classification analysis. The attributes in D1 and D2 are
classified into three categories: 1) An explicit identifier
attribute Ai that explicitly identifies an individual, such as
SSN and Name. These attributes are removed before
releasing the data. 2) A class attribute Acls that contains the
class value, and the goal of the data miner is to build a
classifier to accurately predict the value of this attribute. 3) A
set of predictor attributesApr ¼ fApr

1 ; . . . ; Apr
d g, whose values

are used to predict the class attribute. The explicit identifier
and the class attribute are shared among the two parties.

Given a table D1 owned by P1, a table D2 owned by P2

and a privacy parameter �, our objective is to generate an
integrated anonymous data table D̂ such that 1) D̂
satisfies �-differential privacy and 2) the algorithm to
generate D̂ satisfies the security definition of the semi-
honest adversary model.

We require the class attribute to be categorical. However,
the values of a predictor attribute can be either numerical vn
or categorical vc. Further, we require that for each
categorical-predictor attribute Apr

i , a taxonomy tree is
provided. We assume that there is no trusted third party
who computes the output table D̂ and the parties are
semihonest. We also require that both the private tables D1

and D2 contain the same set of records (individuals), where
each party holds different set of attributes. This can be
achieved by executing a secure set intersection protocol on
the explicit identifiers (ID) (see [39, Section 2.2] for details).
Therefore, private data tables need to be preprocessed, if
needed, to identify the common records. The proposed
algorithm uses the common records to generate an
integrated anonymous data table.

6.2 Two-Party Algorithm

In this section, we present our Distributed Differentially
private anonymization algorithm based on Generalization
(DistDiffGen) for two parties as shown in Algorithm 3. The
algorithm first generalizes the raw data and then adds noise
to achieve �-differential privacy.

Algorithm 3. Two-Party Algorithm (DistDiffGen).

Input: Raw data set D1, privacy budget �, and number of

specializations h

Output: Anonymized data set D̂
1: Initialize Dg with one record containing top

most values;

2: Initialize Cuti to include the topmost value;

3: �0  �
2ðjApr

n jþ2hÞ ;

4: Determine the split value for each vn 2 [Cuti with

probability / expð �02�u uðD; vnÞÞ;

5: Compute the score 8v 2 [Cuti;
6: for l ¼ 1 to h do

7: Determine the winner candidate w by

Algorithm 1 (DistExp);

8: if w is local then

9: Specialize w on Dg;

10: Replace w with childðwÞ in the local copy of [Cuti;
11: Instruct P2 to specialize and update [Cuti;
12: Determine the split value for each new vn 2 [Cuti

with probability / expð �02�u uðD; vnÞÞ;
13: Compute the score for each new v 2 [Cuti;
14: else

15: Wait for the instruction from P2;

16: Specialize w and update [Cuti using

the instruction;

17: end if

18: end for

19: for each leaf node of Dg do

20: Execute the SSPP Protocol to compute the shares C1

and C2 of the true count C;

21: Generate two gaussian random variables

Yi 	 Nð0;
ffiffiffiffiffiffiffi
1=�

p
Þ for i 2 f1; 2g;

22: Compute X1 ¼ C1 þ Y 2
1 � Y 2

2 ;

23: Exchange X1 with P2 to compute ðC þ Lapð2=�ÞÞ;
24: end for

25: return Each leaf node with count ðC þ Lapð2=�ÞÞ
The general idea is to anonymize the raw data by a

sequence of specializations starting from the topmost
general state. A specialization, written v! childðvÞ, where
childðvÞ denotes the set of child values of v, replaces the
parent value v with child values. The specialization process
can be viewed as pushing the “cut” of each taxonomy tree
downwards. A cut of the taxonomy tree for an attribute Apr

i ,
denoted by Cuti, contains exactly one value on each root-to-
leaf path. Fig. 1 shows a solution cut indicated by the dotted
line. The specialization starts from the topmost cut and
pushes down the cut iteratively by specializing a value in
the current cut.

Algorithm 3 is executed by the party P1 (same for the
party P2) and can be summarized as follows:

Generalizing raw data. Each party keeps a copy of the
current [Cuti and a generalized table Dg as shown in Fig. 2,
in addition to the private table D1 or D2. Here, [Cuti is the
set of all candidate values for specialization. Initially, all
values in Apr are generalized to the topmost value in their
taxonomy trees (Line 1), and Cuti contains the topmost
value for each attribute Apr

i (Line 2). At each iteration, the
algorithm uses the distributed exponential mechanism
(Algorithm 1) to select a candidate w 2 [Cuti, which is
owned by either P1 or P2, for specialization (Line 7).

Candidates are selected based on their score values, and
different utility functions can be used to determine the scores
of the candidates. Once a winner candidate is determined,
both parties specialize the winner w on Dg by splitting their
records into child partitions according to the provided
taxonomy trees. If the winner w is one of P1’s candidates, P1

specializes w on Dg (Line 9), updates its local copy of [Cuti
(Line 10), and instructs P2 to specialize and update its local
copy of [Cuti accordingly (Line 11). P1 also calculates the
scores of the new candidates due to the specialization
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(Line 13). If the winner w is not one of P1’s candidates, P1

waits for instruction from P2 to specializew and to update its
local copy of [Cuti (Lines 15 and 16). This process is
repeated according to the number of the specializations h.

Example 4. Consider the data of Table 1. Initially, Dg

contains one root node representing all the records that
are generalized to hAny Job;Any Sex;½18-99Þi. [Cuti is
represented as fAny Job;Any Sex;½18-99Þg and includes
the initial candidates. To find the winner candidate, both
parties run DistExp. Suppose the winning candidate w is
Any Job! fProfessional; Artistg. The party P1 first
creates two child nodes under the root node as shown
in Fig. 2 and updates [Cuti to fProfessional, Artist,
Any_Sex, [18-99)g. Then, P1 sends instruction to P2. On
receiving this instruction, P2 creates the two child nodes
under the root node in its copy of Dg and updates the
[Cuti. Suppose that the next winning candidate is
Any Sex! fMale; Femaleg. Similarly, the two parties
cooperate to create further specialized partitions resulting
in the generalized table in Fig. 2. We do not show the class
attribute in Fig. 2.

The split value of a categorical attribute is determined
according to the taxonomy tree of the attribute. Since the
taxonomy tree is fixed, splitting the records according to the
taxonomy tree does not violate differential privacy. For
numerical attributes, a split value cannot be directly chosen
from the attribute values that appear in the data table D
because the probability of selecting the same split value
from a different data table D0 not containing this value is 0.
Therefore, Algorithm 3 uses the exponential mechanism
(same as [38]) to determine the split value for each
numerical candidate vn 2 [Cuti (Lines 4 and 12).

Computing the count. For each leaf node in the resulted Dg

from the previous step, parties need to compute the true
count C before adding noise. Using the Secure Scalar
Product Protocol [26], [57] (Line 20), parties securely
compute the product of the binary vectors Z1 and Z2

provided by P1 and P2, respectively, to produce the shares
C1 and C2 of the true count C such that C ¼ C1 þ C2. For
each leaf node, the first party P1 (similarly P2) computes the
binary vector Z1 such that jZ1j ¼ jD1j ¼ jD2j and Z1½i� ¼ 1 if
D1½i� matches the generalized value of the leaf node;
otherwise, Z1½i� ¼ 0.

Example 5 (Continued from Example 4). Consider the
bottom most left leaf in Fig. 2, where the count of all male
professionals whose salaries in the range [18-99) is
needed. P1 generates the binary vector Z1 ¼ ½0; 0; 0; 0;
1; 1; 1; 0; 1; 1�, whereas P2 generates the binary vector
Z2 ¼ ½1; 1; 1; 0; 0; 0; 1; 0; 1; 0�, as detailed in Table 4. In the
secure scalar product protocol, the goal is to securely
compute the scalar product Z1 � Z2 such that

Z1 � Z2 ¼
X10

i¼1

ðZ1½i� � Z2½i�Þ

¼ 0þ 0þ 0þ 0þ 0þ 0þ 1þ 0þ 1þ 0 ¼ 2:

At the end of the protocol, the two parties have random
shares of the result Z1 � Z2, which is equal to 2.

Computing the noisy count. To compute the overall noisy
count, the first party P1 generates two gaussian random
variables Yi 	 Nð0;

ffiffiffiffiffiffiffi
1=�

p
Þ for i 2 f1; 2g that are distributed

normally with mean 0 and variance
ffiffiffiffiffiffiffi
1=�

p
(Line 21). To

clarify why we choose these values for the mean and the
variance, we state the following Lemma:

Lemma 6.1 [46]. Let Yi 	 Nð0; �Þ for i 2 f1; 2; 3; 4g be four
Gaussian random variables. Then, the random variable
Lapð2�2Þ is equal to Y 2

1 þ Y 2
2 � Y 2

3 � Y 2
4 .

To produce a random variable sampled from a Laplace
distribution with parameter 2=�, that is, Lapð2=�Þ, we need
to choose the variance of the Gaussian distribution equal toffiffiffiffiffiffiffi

1=�
p

. This can be easily verified from Lemma 6.1 by
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TABLE 4
Binary Vectors

Fig. 2. Generalized data table (Dg). Distributed exponential mechanism is used for specializing the predictor attributes in a top-down manner
using half of the privacy budget. Laplace noise is added at leaf nodes to the true count using the second half of the privacy budget to ensure
overall �-differentially private output.



substituting � ¼
ffiffiffiffiffiffiffi
1=�

p
. This gives 2�2 ¼ 2=�. Thus, P1

computes C1 þ Y 2
1 � Y 2

3 to produce its noisy count share

X1, whereas P2 computes C2 þ Y 2
2 � Y 2

4 to produce its noisy

count share X2 (Line 22). The two parties exchange these

values to compute the noisy count C þ Lapð2=�Þ ¼ X1 þ
X2 ¼ C1 þ Y 2

1 � Y 2
3 þ C2 þ Y 2

2 � Y 2
4 (Line 23).

This simple and efficient method makes the final noisy

count ðX1 þX2Þ differentially private. However, the ex-

changed noisy count shares X1 and X2 between the parties

are not differentially private. The addition of two random

Gaussian variables provides some privacy protection

against the other party; however, these noisy count shares

cannot be differentially private without Laplace noise. We

can use instead the proposed technique of Dwork et al. [13]

to achieve a flow of information between the parties that is

differentially private. Their proposed method uses a simple

circuit and takes around 5 seconds for two parties to

generate a Laplace noise securely in a collaborative fashion

[43]. Thus, a data owner may want to tradeoff privacy for

efficiency for noise addition.

6.3 Analysis

We next discuss the correctness, security, and efficiency of

Algorithm 3.

Proposition 6.1 (Correctness). Assuming both parties are

semihonest, Algorithm 3 releases �-differentially private data

when two parties hold different attributes for the same set

of individuals.

Proof. Algorithm 3 performs exactly the same sequence of

operations as in the single-party algorithm DiffGen but

in a distributed setting. DiffGen is �-differentially private

[38]. Therefore, we prove the correctness of Algorithm 3

by just proving the steps that are different from DiffGen:

. Candidate selection. Algorithm 3 selects a candi-
date for specialization. This step correctly uses
the exponential mechanism as stated in Proposi-
tion 5.1; therefore, the candidate selection step
guarantees �0-differential privacy.

. Updating the tree Dg and [Cuti. Each party has its
own copy of Dg and [Cuti. Each party updates
these items exactly like DiffGen either by using
the local information or by using the instruction
provided by the other party.

. Computing the noisy count. Algorithm 3 also outputs
the noisy count of each leaf node (Line 25), where
the noise is equal to Lapð2=�Þ. Thus, it guarantees
�=2-differential privacy.

In summary, Algorithm 3 uses half of the privacy
budget to generalize the data (Lines 6-18), where each
individual operation is �0-differential privacy; it uses the
remaining half of the privacy budget to ensure overall
�-differential privacy. tu

Proposition 6.2 (Security). Algorithm 3 is secure under the

semihonest adversary model.

Proof. The security of Algorithm 3 depends on the steps

where the two parties exchange information, and it is

conducted as follows:

. Line 7. The algorithm DistExp is proven to be
secure in Section 5.

. Lines 11 and 15. The party that owns the winner
candidate instructs the other party to specialize w
and update its local copy of [Cuti. The nature of
the top-down approach implies that Dg is more
general than the final answer and, therefore, does
not leak any additional information.

. Line 20. The secure scalar product protocol is
proven to be secure [57].

. Line 23. The two parties exchange the noisy count
shares to compute the noisy count. According to
Definition 4.1, the exchange process is secure in a
semihonest environment if the additional leakage
due to the Gaussian noise is incorporated as a
part of the final output. The alternative circuit-
based approach is proven to be secure [13].

Therefore, due to composition theorem [21], Algo-
rithm 3 is secure. tu

Proposition 6.3 (Complexity). The encryption and the com-

munication costs of Algorithm 3 are bounded by OðhnlogCÞ þ
2hjDjÞ and OðhnKlogC þ 2hejDjÞ, respectively.

Proof. Most of the encryptions and the communications

occur in Line 7 and Line 20 of Algorithm 3. In Line 7, both

parties execute distributed exponential mechanism to

select a winner candidate. This occurs in a total of h times.

Then, according to Proposition 5.3, the number of

encryptions and the communication complexity of Line 7

are OðhnlogCÞ and OðhnKlogCÞ, respectively. In Line 20,

parties run SSPP to compute the count of each leaf node.

The total number of leaf nodes is 2h. The encryption and

the communication costs of SSPP are OðjDjÞ and OðejDjÞ,
where e is the bit length of an encrypted item [57].

Therefore, the costs of this step areOð2hjDjÞ andOð2hejDjÞ
for encryption and communication, respectively. Thus,

the total costs of the encryption and the communication of

Algorithm 3 are bounded by OðhnlogC þ 2hjDjÞ and

OðhnKlogC þ 2hejDjÞ, respectively. tu

7 PERFORMANCE ANALYSIS

In this section, we evaluate the scaling impact on the data

utility in terms of classification accuracy. We then compare

DistDiffGen with DiffGen [38] and with the distributed

algorithm for k-anonymity [39], which we, henceforth, refer

to as DAKA. The algorithm DAKA integrates and publishes

distributed data with k-anonymity privacy guarantee for

classification analysis. Finally, we estimate the computation

and the communication costs of DistDiffGen. We employ

the publicly available data set Adult [15], [18], a real-life

census data set that has been used for testing many

anonymization algorithms [3], [18], [25], [26], [34], [52],

[40]. It has 45,222 census records with six numerical

attributes, eight categorical attributes, and a binary class

column representing two income levels, �50K or >50K.

All experiments are conducted on an Intel Core i7 2:7-GHz

PC with 12-GB RAM.
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7.1 Experiments

To evaluate the impact on classification quality, we divide
the data into training and testing sets. First, we apply our
algorithm to anonymize the training set and to determine
the [Cuti. Then, the same [Cuti is applied to the testing set
to produce a generalized testing set. Next, we build a
classifier on the anonymized training set and measure the
classification accuracy on the generalized records of the
testing set. We notice that different partitioning of
the attributes among the parties does not have any impact
on the classification accuracy, as the winner candidate is
chosen from all the candidates of both parties. To compute
the score of each candidate v 2 [Cuti, we adopt the Max

utility function [38]:

MaxðD; vÞ ¼
X

c2childðvÞ

�
max
cls

�
jDcls

c j
��
; ð4Þ

where jDcls
c j denotes the number of records in D having

generalized value c and the class value cls. Thus, MaxðD; vÞ
is the summation of the highest class frequencies over all
child values. The sensitivity �u of the Max function is 1
because the value MaxðD; vÞ can vary at most by 1 due to a
record change.

For classification models, we use the well-known C4.5
classifier [45]. To better visualize the cost and the benefits of
our approach, we provide additional measures:

1. Baseline accuracy (BA) is the classification accuracy
measured on the raw data without anonymization;

2. BA-CA represents the cost in terms of classification
quality for achieving a given �-differential privacy
requirement;

3. Lower-bound accuracy (LA) is the accuracy on the
raw data with all attributes (except for the Class
attribute) removed—that is, all the predictor attri-
butes for all the records are generalized to the
topmost value; and

4. CA-LA represents the benefit of our method over the
naive nondisclosure approach.

Fig. 3 depicts the classification accuracy CA for the utility
function Max, where the privacy budget � 2 f0:1; 0:25; 0:5; 1g
and the number of considered digits after the decimal point

2 � l � 10 (i.e., scaling as described in Section 5). The BA

and LA are 85.3 and 75.5 percent, respectively, as shown in

the figure by the dotted lines. We use 2/3 of the records

(i.e., 30,162) to build the classifier and measure the accuracy

on the remaining 1/3 of the records (i.e., 15,060). For each

experiment, we execute 10 runs and average the results over

the runs. The number of specializations h is 10 for all the

experiments. For � ¼ 1 and l ¼ 10, BA-CA is around

3 percent, whereas CA-LA is 6.7 percent. For � ¼ 0:5, BA-

CA spans from 3.58 to 4.18 percent, whereas CA-LA spans

from 5.62 to 6.22 percent. However, as � decreases to 0.1, CA

quickly decreases to about 78.9 percent (highest point), the

cost increases to about 6.4 percent, and the benefit decreases

to about 3.4 percent.
We observe two general trends from the experiments.

First, the privacy budget has a direct impact on the

classification accuracy. A higher budget results in better

accuracy because it ensures better attribute partitioning,

and it lowers the magnitude of noise that is added to the

count of each equivalence group. This observation also

holds for DiffGen. Second, the classification accuracy is

insensitive to the scaling (the number of the considered

digits after the decimal points) for the Max function. This is

because the value of expð �02�u uðD; vnÞÞ is large due to the

score of the Max function, which is usually a large integer.

Therefore, scaling has hardly any impact on the data utility

for classification analysis.
Fig. 4 shows the classification accuracy CA of DistDiffGen,

DiffGen, and DAKA. For DiffGen, we use the utility function

Max and fix the number of specializations h ¼ 10. For DAKA,

we fix the anonymity threshold k ¼ 5. The accuracy of

DistDiffGen is clearly comparable to the one of DiffGen for

privacy budget 0:1 � � � 2. The difference of the classifica-

tion accuracy is due to the randomness introduced by both

the exponential and the Laplace mechanisms. The experi-

mental result also shows that DistDiffGen performs better

than DAKA for � 
 1. For a higher anonymity threshold k, the

accuracy of DAKA will be lower. This is also expected as

DiffGen performed better than TDS [18], a single-party

algorithm adopting the k-anonymity privacy model.
In summary, the experimental results demonstrate that

the proposed two-party algorithm has properties similar to

the single-party algorithm, and the impact of scaling is

insignificant.
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Fig. 3. Classification accuracy for Adult, where the number of
specialization is h ¼ 10. The bottom and top lines stand for Lower-
bound Accuracy and Baseline Accuracy, respectively. For LA, the
values of the predictor attributes of all the records are generalized to the
topmost value in the taxonomy tree. For BA, we use the raw data set
without any generalization.

Fig. 4. Comparison of DistDiffGen with DiffGen and DAKA. For
DistDiffGen with DiffGen, we vary the privacy budget between
0:1 � � � 2. For DAKA, we fix the anonymity threshold k ¼ 5.



7.2 Cost Estimate

Most of the computation and the communication take place
during the execution of DistExp (Line 7) and SSPP (Line 20).
The runtime of the other steps is less than 30 seconds for
Adult data set. Hence, we only elaborate the runtime of
DistExp and SSPP.

7.2.1 Distributed Exponential Mechanism

As discussed in Section 5, the computation and the
communication complexity of the distributed exponential
mechanism are dominated by the cost of the COMPARISON

circuit. In the following, we provide an estimate for the
computation and the communication costs of evaluating the
COMPARISON circuit. Here, we assume that P1 encodes and
P2 evaluates the encrypted circuit. The roles of P1 and P2

can be swapped.
Computation. For each input bit, P2 needs to execute a

1-out-of-2 oblivious transfer protocol to get the corre-
sponding encryption key. This is the major computational
overhead of the distributed exponential mechanism. The
computation cost of an oblivious transfer protocol is
roughly equal to the cost of a modular exponentiation,
denoted by Cm. Therefore, the computation overhead is
equal to the number of input bits of P2 times Cm. Each
input of the circuit is bounded by dlog2 Ce bits, where
C ¼

Pn
i¼1bexpð �

0

2�uuðD; viÞÞ � 10lc:

dlog2 Ce ¼
	

log2


Xn
i¼1

�
exp

�0

2�u
uðD; viÞ


 �
� 10l

��

�
	Xn
i¼1

log2


�
exp

�0

2�u
uðD; viÞ


 �
� 10l

��

�
	Xn
i¼1

�0

2�uuðD; viÞ
ln 2

þ log2 10l
�

¼
	

�0

2�u ln 2

Xn
i¼1

uðD; viÞ þ ð3:3219� lÞ
�
:

Here, �u ¼ 1, �0 ¼ 1
2ð6þ2�10Þ ¼ 0:02,

Pn
i¼1 uðD; viÞ is

bounded by the number of the records jDj ¼ 30;162 for
the Max function, and l ¼ 10 suffices the desired accuracy.
Hence, we have dlog2 Ce ¼ 469 bits. The inputs of P2 are
R2 and L2 which are 469-bit numbers. As mentioned in
Section 6.3, there are at most h� n invocations of each
circuit. Here, n is the total number of candidates, which is
24 at most for the Adult data set. Hence, the total
computational cost is h� n� 2dlog2 Ce � Cm ¼ 10� 24�
2� 469� 0:02s � 75 minutes, assuming the cost of Cm is
0.02 second for 1,024-bit numbers on a Pentium III
processor [42].

Communication.P1 needs to send a table of size 4K for each
gate of the COMPARISON circuit, where we assume the key
size K is 128 bits. This is the major communication overhead
of the distributed exponential mechanism. In Algorithm 2,
we describe the COMPARISON circuit that includes two add

and one compare circuits. However, two additions and one
compare operation can be realized into one circuit. For
example, the first two dlog2 Ce-bit numbers can be added
using 2� dlog2 Ce binary gates. Thus, we need 4� dlog2 Ce
gates to add R1, R2, and L1, L2. After the additions, we can
compare R and L, which are dlog2 Ce-bit numbers, using

5� dlog2 Ce � 3 binary gates [1]. Thus, the total number of
gates needed to implement the COMPARISON circuit is Tg ¼
9dlog2 Ce � 3 ¼ 4;218. Therefore, the communication cost of
sending the tables is h� n� 4K � Tg � 5:18� 108 bits,
taking approximately 5.5 minutes using a T1 line with
1.544 Mbits/second bandwidth.

Remark. Our estimation ignores the computational cost of
evaluating the circuit and the communication cost of the
oblivious transfer protocol. The evaluation of the circuit
involves decrypting a constant number of ciphertexts
(symmetric encryption) for every gate, which is very
efficient compared to the oblivious transfer (modular
exponentiations) because the number of gates of the
circuit is linear to the number of input bits. Also, the
communication cost of the oblivious transfer protocol is
negligible compared to the cost of sending the tables.

7.2.2 Secure Scalar Product Protocol

We adopt the Secure Scalar Product Protocol of [26] and
use its reported running time to estimate the cost of this
step for our algorithm. The primary cost of SSPP depends
on the number of homomorphic encryptions that is equal
to jDj, the size of the data set. As reported in [26], the
estimated cost of the homomorphic encryptions is 19.5 s on
average when jDj ¼ 30162 (the size of our data set) on Intel
Xeon 3-GHz processor. The computation cost of Line 20 is
2h � 19:5 s ¼ 210 � 19:5 s � 5:5 hours. Notice that Line 20
is easily parallelizable because each leaf node pair is
independent. Assuming we have 10 processors, this cost
can be reduced to 33 minutes. Finally, the communication
cost is 2h � e� jDj ¼ 210 � 1;024� 30;162 ¼ 3:16� 1010 bits,
assuming e ¼ 1;024 bits. Thus, the communication over-
head of Line 20 is around 5.6 hours using a T1 line. This
time can be reduced to 15 minutes by using a T3 line with
35 Mbits/second bandwidth.

8 DISCUSSION

Is differential privacy good enough? What changes are
required if there are more than two parties? How reason-
able is it to assume that the parties are semihonest? In this
section, we provide answers to these questions.

Differential Privacy. Differential privacy is a strong
privacy definition. However, Kifer and Machanavajjhala
[29] have shown that if the records are not independent or
an adversary has access to aggregate level background
knowledge about the data, then privacy attack is possible.
In our application scenario, each record is independent of
the other records and we assume that no deterministic
statistics of the raw database have ever been released.
Hence, differential privacy is appropriate for our problem.

More than two parties. The proposed algorithm is only
applicable for the two-party scenario because the distrib-
uted exponential algorithm and the other primitives (e.g.,
random value protocol, secure scalar product protocol) are
limited to a two-party scenario. The proposed algorithm can
be extended for more than two parties by modifying all the
subprotocols while keeping the general top-down structure
of the algorithm.
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Semihonest Adversary Model. This is the common security
definition used in the SMC literature [26]; it is realistic in
our problem scenario because different organizations are
collaborating to securely share their data for mutual
benefits. Hence, it is reasonable to assume that parties will
not deviate from the defined protocol. However, they may
be curious to learn additional information from the
messages they received during the protocol execution. To
extend the algorithm for malicious parties, all subprotocols
should be extended and must be secure under the malicious
adversary model.

9 CONCLUSION

In this paper, we have presented the first two-party
differentially private data release algorithm for vertically
partitioned data. We have shown that the proposed
algorithm is differentially private and secure under the
security definition of the semihonest adversary model.
Moreover, we have experimentally evaluated the data
utility for classification analysis. The proposed algorithm
can effectively retain essential information for classification
analysis. It provides similar data utility compared to the
recently proposed single-party algorithm [38] and better
data utility than the distributed k-anonymity algorithm for
classification analysis [39].
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