
Better Entity Matching with Transformers through Ensembles

Jwen Fai Lowa, Benjamin C. M. Funga,∗, Pulei Xiongb

aSchool of Information Studies, McGill University, Montreal, QC, Canada, H3A 1X1
bCyber Security, National Research Council Canada, Canada

Abstract

In this paper, we introduce AttendEM, a framework for entity matching (EM), i.e., pairwise iden-

tification of duplicates across databases. Eschewing the prevalent focus on text cleaning and

training data augmentation of other transformers-based EM solutions, AttendEM leverages intra-

transformer ensembling of distinctively rearranged text, additional aggregator tokens, and extra

self-attention to enhance the base transformer architecture. Against state-of-the-art (SOTA) solu-

tions on the ER-Magellan benchmark datasets, AttendEM achieved higher F1 scores in most cases.

These SOTA solutions are Ditto (mean improvement of 0.21% with Ditto’s own reported results,

3.93% with DAEM’s Ditto replication, 2.99% with HierGAT’s Ditto replication), DAEM (0.53%),

and HierGAT (0.54%). AttendEM ’s improvements are comparable to solutions that claimed to

have outperformed Ditto, HierGAT (Yao et al., 2022) (2.46% compared to AttendEM ’s 2.99%)

and DAEM (Huang et al., 2022) (3.42 % compared to AttendEM ’s 3.93%), when calculated using

results from their respective Ditto replications.

Keywords: entity resolution, entity matching, deduplication, neural networks, deep learning,

transformers

∗Corresponding authors
Email addresses: jwen.low@mail.mcgill.ca (Jwen Fai Low), ben.fung@mcgill.ca (Benjamin C. M. Fung),

pulei.xiong@cnrc-nrc.gc.ca (Pulei Xiong)

Preprint submitted to Knowledge-Based Systems March 19, 2024

Published in: Knowledge-Based Systems (KBS), 293(111678), June 2024. Elsevier.

1. Introduction

As e-commerce grows in popularity and continues displacing brick-and-mortar retail sales, espe-

cially during the COVID-19 pandemic as indicated by the US Census Bureau (Brewster, 2022), so

too does the problem of counterfeit listing on e-commerce sites, in which consumers are presented

with listings that attempt to deceive the customers into purchasing non-genuine products. The

scale of the counterfeit problem afflicting one leading e-commerce site, Amazon, necessitated the

deployment of automated tools incorporating machine learning and an investment of over $900

million to tackle the problem, which succeeded in blocking 4 billion bad — “fraudulent, infringing,

counterfeit, at risk of other forms of abuse, or presenting significant product quality concerns” —

listings in 2021 alone (Amazon, 2022). Even if a listing is genuine, duplicates can be part of con-

certed efforts by malicious actors to flood marketplaces so that their products gain better visibility

(Besedo, 2016; Davies and Mudge, 2018).

The specific problem of detecting counterfeit offers (deceptive listings) have received little at-

tention in scholarly works. However, as “determining offers referring to the same product is a

special case of object matching” (Arnold et al., 2016), advances in the more mature field of object

matching can have spillover benefits for counterfeit detection.

Object matching is often referred to as entity matching (EM), where the objective is to de-

termine if two similar records across databases should resolve into one unique real-world entity.

Figure 1 shows an example of EM where the left dataset has two candidate pairings found in the

right dataset with the second pair being a valid match, i.e., the pair consists of duplicates. As one

can see, a typical instance of the EM problem is characterized by the presence of two entities with

multiple columns of text, where algorithms may struggle to identify relevant or informative text

spans. Algorithms may also lack the capacity to capture all available information of each entity

and each column.

Comparing all possible pairs for large databases can be infeasibly time-consuming, hence the

existence of an entity blocking (EB) phase prior to EM that aims to reduce the number of candidate

pairs through comparatively computationally cheap algorithms. The combined EB and EM phases

is called entity resolution (ER).

In this paper, we present AttendEM, a classifier framework built to accommodate pre-trained

2

transformer models. The framework is meant to be used during the EM phase of ER and as such

has been extensively validated against widely used EM benchmark datasets. Results show that

AttendEM offers improved performance over previous EM classifiers for a majority of the datasets.

The key contributions made in our paper are as follows:

• A transformer-based classifier framework for EM. Our implementation explores pre-trained

transformer models and optimization strategies that previous works on transformer-based EM

solutions did not, namely domain-agnostic solutions for preserving informative text spans and

methods for keeping the classifier from being “distracted” by the less relevant parts of the

extra preserved information.

• Text preprocessing strategies. Many transformers cannot accommodate all the rich textual

information from the multiple columns/attributes that an entity may have, so we investigated

if prioritizing the inclusion of sections which are likelier to be informative can improve classifier

performance.

• Information aggregation design for transformers. We investigated if a single aggregator token,

as is standard, is sufficient for aggregating all information within a text span composed of two

entities or if spreading out the aggregation over two or more tokens can confer a performance

advantage by potentially avoiding the unintentional omission of important information.

• Attention in the classification head. The classification head used to process the outputs from

the transformer block typically uses only feedforward layers; we examined how adding a self-

attention layer to the classification head could improve performance, especially when there is

information from multiple aggregator tokens instead of a single token to process.

• Ensembles. Different text preprocessing and information aggregation strategies have short-

comings and advantages that could result in performance variance across datasets. Rather

than devising a way to select the appropriate strategy for each problem, we investigated the

performance improvement that can be found from ensembling the strategies, as the sum of

multiple models can often be greater than its parts.

• Comprehensive empirical evaluation over major benchmark datasets. AttendEM is validated

using the same ER-Magellan datasets that were used to evaluate the previous state-of-the-art

3

name category modelno price

hp c6020b coated paper 1 roll · · · stationery c6020b 49.88

title category modelno price

hp coated paper 36 inches · · · photo paper c6980a 27.99
hp coated paper 36 inches · · · roll paper c6020b 29.99

Match

✗

✓

Fig. 1. Example of an entity matching problem between two datasets.

(SOTA) transformer-based EM classifiers. An additional ablation study demonstrates how

each of the enhancements introduced within our framework may have contributed to the

improved performance.

• Performance improvement. AttendEM performs better on a majority of datasets than SOTA

EM solutions, namely Ditto (Li et al., 2020) (average improvement of 0.21% compared against

Ditto’s own reported results, 3.93% using DAEM’s Ditto results, 2.99% using HierGAT’s Ditto

results), DAEM (Huang et al., 2022) (average of 0.53%), and HierGAT (Yao et al., 2022)

(average of 0.54%). As stated in the abstract, the improvements observed in AttendEM are

comparable to two other solutions that claimed to have outperformed Ditto, HierGAT (Yao

et al., 2022) and DAEM (Huang et al., 2022). The mean of their percentage improvements

over Ditto, calculated using their respective replications of Ditto results, were 2.46% for

HierGAT (compared to AttendEM ’s 2.99%) and 3.42% for DAEM (compared to AttendEM ’s

3.93%).

2. Preliminaries and Related Work

2.1. Entity resolution

Entity resolution is “matching records that refer to the same entity across databases” (Christen,

2008) and has also been called deduplication or record linkage. Entity resolution is not to be

confused with coreference resolution, which is concerned with finding out whether references within

a single document point to the same entity (e.g., whether “I” and “Trump” are the same entity in

the following sentence: Trump was quoted saying, “I would vote for Biden.”).

While many ER solutions have EB and EM phases, not all do. For instance, there are some

unsupervised methods, often approaching the ER problem from an information retrieval and graph-

theoretic perspective, that achieve sufficient accuracy in identifying duplicates in a single step for

certain datasets such that the need for separate EB and EM phases is obviated, e.g., Hall et al.

(2008); Kejriwal and Miranker (2013); Zhu et al. (2016); Zhang et al. (2020); Kirielle et al. (2023).

4

The framework introduced in our work, AttendEM, is meant only for the EM phase of ER.

Having an EM solution that is decoupled from EB allows AttendEM to be freely paired with the

many existing EB solutions found in the literature, e.g., Wang et al. (2016); Dou et al. (2019); Shao

et al. (2019).

While classification can be performed with the help of humans through methods such as crowd-

sourcing, e.g., Gokhale et al. (2014) or some hybrid method that mixes human and machine clas-

sification, e.g., Haruna et al. (2019), our work is solely concerned with solutions based purely on

machine learning (ML). A number of notable ER and EM solutions relying solely on ML have been

proposed in recent years, and they include Magellan, DeepER, DeepMatcher, and Ditto.

2.2. Machine learning, deep learning, word embeddings

Deep learning is a specific type of ML featuring many layers of neural networks stacked together,

hence the term “deep”. Traditional ML commonly refers to learning solutions prior to the advent

of deep learning that do not use these stacked neural layers.

As an example of traditional ML, there is Magellan, an ER solution that uses attribute equiva-

lence and overlap to perform EB and uses algorithms such as random forest, Naive Bayes, and SVM

for EM. Magellan also represents the upper limits in performance achievable by traditional machine

learning, performing well on Structured and Textual datasets from the ER-Magellan benchmark

(average F1 score of 88.8 and 83.4) but still lacking when evaluated against Dirty datasets (68.5)

(Mudgal et al., 2018).

Deep learning led to the creation of ER solutions, e.g., DeepER (Ebraheem et al., 2018) and

Seq2SeqMatcher (Nie et al., 2019), and EM solutions, e.g., DeepMatcher (Mudgal et al., 2018)

that typically outperform solutions using traditional ML. In the case of DeepMatcher, while it has

a lower average F1 score than Magellan on Structured datasets (87.9), it performed significantly

better when evaluated against the Textual (88.0) and Dirty (87.9) groups of datasets (Mudgal

et al., 2018). Much of deep learning’s advantage in natural language processing (NLP) tasks can

be attributed to the use of word embeddings, e.g., GloVe and fastText, which are low-dimensional

vector representations of words that can model the relationship between words. A well-known

example of the relationship that embeddings can capture is the “king −man + woman = queen”

equation.

5

2.3. Transformers

Transformers are a further evolution of deep learning. The distinguishing feature of transformers

is the presence of an attention mechanism, which allows transformers to assign greater weights

to relevant context words when generating the embedding for a word as opposed to static word

embeddings such as GloVe and fastText that return the same vector for a word as they treat

context equally (e.g., bank in “river bank”, “bank loan”, and “bank the plane” should be encoded

differently but static embeddings do not do this).

Larger — more tunable parameters — transformers being correlated with increased performance

in NLP tasks have led to the pursuit ever of larger models, leading to the development of a family

of “large language models”.

Many researchers (Brunner and Stockinger, 2020; Li et al., 2020; Huang et al., 2022) have

looked into solving EM with the aid of transformers. Owing to all the interest garnered by the

application of transformers to EM, some researchers have even attempted to tease apart the factors

contributing to the success of transformers on EM (Paganelli et al., 2022).

EMTransformer (Brunner and Stockinger, 2020) did not make alterations to the transformer

architecture as the authors’ intention is simply to evaluate how vanilla transformer varieties fare

in EM. EMTransformer was only evaluated against datasets with long textual data and “dirty”

datasets with inappropriate or missing values because the authors regard other benchmark datasets

as being close to solved problems (near perfect F1 scores) when using non-transformer EM ap-

proaches.

Ditto (Li et al., 2020), contemporaneous to the 2020 EMTransformer, emphasized the use of a

number of “optimizations” to enhance the performance of the transformer that lies at the heart of

Ditto. These optimizations include domain knowledge, data augmentation, and TFIDF summa-

rization. Domain knowledge aims to increase the amount of machine-readable informative signals

by identifying important text spans and fencing them in with special tokens. Data augmentation

augments the training data by adding additional training data. The additional training exam-

ples are generated by altering existing examples through operations such as deletion, shuffling, and

swapping — learning from these “harder” examples may make the model more robust against noise.

Summarization attempts to keep transformers’ attention from wandering through unimportant bits

of text by distilling long text spans to only the most important segments.

6

DAEM (Huang et al., 2022) is a more recent (2022) EM solution featuring transformers and

it claims better performance compared to Ditto and all other competing solutions. Unlike EM-

Transformer and Ditto, DAEM does not rely on pre-trained transformers; it uses the original

Transformer’s encoder block sans pre-trained weights. However, in lieu of pre-trained weights,

DAEM leveraged the pre-trained embeddings from Facebook’s fastText to vectorize words. The

Transformer encoder is used to encode the vectorized words. Another key feature of DAEM is

its use of an adversarial active learning framework, which serves similar purposes to Ditto’s data

augmentation: active learning presents the model with “good” training examples while adversarial

learning augments existing training data for better robustness. To deal with missing data, DAEM

also trains an inter-attribute completion algorithm.

The Hierarchical Graph Attention Transformer, or HierGAT for short, (Yao et al., 2022) is

another recent (2022) EM solution that relies on transformers. The key innovation of HierGAT

is its combination of the Transformer attention mechanism with the hierarchical graph attention

network into a Hierarchical Heterogeneous Graph (HHG). Within the HHG there exists three layers

in the hierarchy, which are, in descending order, entities, attributes, and tokens. The lowest level

token nodes relies on contextual word embeddings from pre-trained transformers such as BERT.

Each higher level node aggregates the embeddings of the constituent component nodes in the level

below it; attribute nodes aggregate token nodes, entity nodes aggregate attribute nodes. A variant

of HierGAT, HierGAT+, extends the use of graph from pairwise EM to the problem of collective

ER where multiple candidates matches exist. As the scope of problem (pairwise EM vs collective

ER) alters the testing basis, we restrict ourselves to examining only HierGAT in our paper.

2.4. State-of-the-art EM

In the sea of transformers-based EM solutions, Ditto is considered the quintessential baseline

SOTA architecture. Despite its age, Ditto’s consistent presence in benchmarks of multiple EM

works published within the last two years (2022–2023) — e.g., EM with hierarchical graph attention

networks (Yao et al., 2022), EM with adversarial active learning (Huang et al., 2022), domain

adaption within EM (Tu et al., 2022), and explainability of deep learning ER solutions (Teofili

et al., 2022) — is a testament to its enduring quality. Works in other fields closely related to ER

that were published within the last two years have also favored including Ditto as one of the SOTA

7

baselines for comparison. These include a non-neural entity alignment (EA) solution (Leone et al.,

2022) and an unsupervised text matching (TM) solution (Ahmadi et al., 2022).

The towering stature of Ditto is cemented by its re-publication as a Special Issue Paper in the

VLDB Journal (Li et al., 2023b). This paper has been updated with additional tables, data, and

discussion giving greater insight into the inner workings of Ditto. Crucially, although separated

by 3 years, the experimental results from the 2023 paper re-introducing Ditto (Table 5 in Li et al.

(2020)) are exactly the same as the ones found in 2020 (also Table 5 in Li et al. (2023b)). The

results from papers presenting solutions that have demonstrated themselves to have outperformed

Ditto such as HierGAT and DAEM are not found in the 2023 Ditto paper. The new Ditto paper did

include results from EMTransformer (Table 13 in Li et al. (2023b)) and described EMTransformer’s

approach as being similar to “baseline” Ditto without the enhancements that make up the “full”

Ditto; the results in the new Ditto paper still shows EMTransformer outperforming the “full” Ditto

when evaluated against the Abt-Buy dataset.

In this paper, when validating AttendEM, we replicated as closely as possible the experimental

conditions that produced the results found in the Ditto paper as we intend to compare AttendEM

against Ditto.

We did note that the two different 2022 papers that evaluated EM solutions on much of the

same ER-Magellan benchmark datasets, DAEM (Huang et al., 2022) and HierGAT (Yao et al.,

2022), did not reuse the scores from Ditto but evaluated the open source Ditto code in conditions

that appeared similar to the original paper’s. The reported scores for Ditto in the DAEM and

HierGAT papers are significantly lower than those found in the original Ditto paper. DAEM and

HierGAT, naturally, outperformed Ditto in their respective publications. For the sake of fairness

and comprehensiveness, we are including in our comparison (1) DAEM’s replication of Ditto and

(2) HierGAT’s replication of Ditto as well as (3) DAEM’s own scores, (4) HierGAT’s own scores,

and (5) the scores of the second best model in the DAEM paper, EMTransformer (Brunner and

Stockinger, 2020).

2.5. Architectures of transformers as they pertain to AttendEM

This section describes the distinguishing architectural features of transformers, with particular

emphasis on parts of the architecture that we either modified or repurposed, to facilitate better

8

understanding of the enhancements found in our framework. A more complete picture of the

different architectures can be found in the respective papers that introduced them.

The Transformer, first introduced by Vaswani et al. (2017), transformed the NLP research

landscape by achieving then state-of-the-art results purely through the use multi-head self-attention

and the deliberate omission of recurrence in its architecture, although it is still auto-regressive.

Copies of the self-attention mechanism are grouped into encoders and decoders, with encoders

responsible for parsing inputs and decoders responsible for generating text as outputs (Section

2.5.2). To distinguish between the original Transformer and its many derivatives, we refer to all

descendants as transformers, always in the lowercase though not necessarily always in plural.

The next major machine learning architecture to emerge in the NLP domain after the intro-

duction of the Transformer is BERT (Bidirectional Encoder Representations from Transformers).

By omitting the original Transformer’s decoder layer, which expects temporally masked inputs and

is therefore unidirectional, and incorporating only the encoder layer which is direction-agnostic

as it attends to both left and right contexts, BERT generates bidirectional encoder representa-

tions. BERT improved the model’s language representation through unsupervised pre-training,

with masked language modeling (MLM) and next sentence prediction (NSP) as its objectives.

Weights for pre-training are used to initialize the transformer during fine-tuning, where BERT is

trained to perform supervised downstream tasks such as question answering. Since there are a

variety of pre-training and downstream task objectives, BERT allows the output layer on top of

the encoder stacks to be swapped based on the task at hand. The swappable output layers are also

known as task-specific heads (Section 3.4).

DeBERTa (He et al., 2021) improved upon BERT with disentangled attention and enhanced

mask decoder. Disentangled attention refers to a mechanism where each input word is represented

by two vectors, one for its content and another for its position, instead of one vector combining

content and position as is standard. The enhanced mask decoder refers to the improvements

DeBERTa made to BERT’s masked language modeling pre-training objective. It is important to

note that the decoder in the enhanced mask decoder is not equivalent to the decoder found in the

Transformer. In a number of benchmarks including MNLI and SQuAD, DeBERTa outperformed

other popular BERT derivatives such as RoBERTa and ALBERT.

ConvBERT (Jiang et al., 2020) substituted the regular self-attention heads in BERT with a

9

form of mixed attention, which is self-attention with integrated convolution, that better captures

local dependencies of different tokens. The convolution operation is called span-based dynamic

convolution as it takes a local span of tokens as inputs instead of just a single token as in regular

dynamic convolution. As ConvBERT’s design goal is to be small and efficient, it has compared

itself against other models of similar size, most notably ELECTRA, which was outperformed by

ConvBERT in a number of benchmark tasks (MNLI, SQuAD, etc.); ELECTRA itself outperformed

RoBERTa and ALBERT in a majority of the same benchmarks (Clark et al., 2020).

Both DeBERTa and ConvBERT, as derivatives of BERT, are bidirectional.

2.5.1. Tokenization

A feature common to transformers is that the first step for processing text spans is to tokenize

them. The tokens are then vectorized into embeddings. Different tokenization algorithms such as

byte-pair encoding (BPE) and WordPiece exist to break text down into words or subwords. For

instance, common words in BPE are tokenized into full words while uncommon words are turned

into subwords, e.g., “defragmentation” is decomposed into “defragment” and “ation”. Subword

tokenization allows the vocabulary of the tokenizer to remain small but still capable of returning

tokens when it encounters out-of-vocabulary words.

In addition to word and sub-word tokens, transformers also utilize special tokens. The Trans-

former was built with translation in mind, where the number of input tokens often do not match the

number of output tokens, hence the need to allow the decoder to dynamically determine the length

of the output. The special tokens inform the decoder when to start (start-of-sentence/beginning-

of-sentence token) and when to stop (end-of-sentence token) generating text.

In BERT, where text generation is not the goal and decoders are absent, the special beginning-

and end-of-sentence tokens remained in the architecture though their purposes have evolved. BERT’s

[CLS] serves to both mark the beginning of a text sequence and to aggregate information of the

entire sequence. The aggregated information can be used in downstream tasks such as classification,

where the classifier head relies only on the embeddings of the [CLS] token to make predictions.

BERT’s [SEP] marks the end of a text span, but if two text spans are present such as in the case

of question-answer pairs, an additional [SEP] separates the first and the second spans.

The flexibility of these special tokens, as can be seen from the transition of their purposes from

10

Transformer to BERT, motivated us to investigate if a new scheme for the insertion of the special

tokens, e.g., using the special tokens in numbers greater than prescribed in BERT and Transformer,

can improve classification performance (Section 3.4).

2.5.2. Self-attention, encoders, and decoders

The Transformer essentially consists of stacks of encoders feeding into stacks of decoders. An

encoder layer consists of a multi-head self-attention mechanism followed by a fully connected feed-

forward network. The self-attention mechanism in encoders attends to all words in a text sequence.

A decoder layer differs from encoders in two ways. First, the multi-head self-attention sub-layer

in the decoder takes the decoder’s own masked output from the previous timestep as its input —

the very first timestep uses the special beginning-of-sentence token (Section 2.5.1) as the seed as

no previous timestep exists. Generation terminates when the decoder generates an end-of-sentence

token. The second difference between encoders and decoders is that a decoder layer inserts an

additional multi-head self-attention sub-layer that takes the output of the encoder layer as its

input.

Having neural networks segmented into encoders and decoders is not unique to the Transformer.

Various types of neural network architectures such as autoencoders and Recurrent Neural Networks

(RNNs) have also used an encoder and decoder setup. The layout of transformers are not bound

to an encoder-decoder arrangement though, as can be seen in the case of BERT, which relied only

on encoders because BERT was never intended for text-generation purposes.

A key insight from BERT is that there are no strict rules in the use of the Transformer’s

constituent parts, e.g., encoders do not necessarily have to be accompanied by decoders. This was

one of the motivating factors for our insertion of a decoder layer as an additional discriminator in

the classifier head to process the embeddings from multiple aggregator tokens (Section 3.5).

Another lesson of transformers and BERT is that the context surrounding a token matters

since context is taken into account by the self-attention mechanism when generating embeddings.

Our experiment with different text preprocessing methods (Section 3.3) attempts to determine if

differing contexts that arise from rearranging spans within text sequences can result in aggregator

token output embeddings that are sufficiently varied for ensemble construction to be viable.

11

2.5.3. Task-specific heads and aggregator tokens

Most BERT derivatives use an aggregator/beginning-of-sentence token (Section 2.5.1) like BERT.

Furthermore, most transformers have adopted the format whereby the “core” self-attention layers

are considered separable from the task-specific heads and text tokenization, with new transformer

derivatives mostly confining their architectural improvements to the core whilst ignoring the task-

specific heads and tokenization. Our framework takes advantage of these conventions: if we restrict

our modifications to only altering parts of the architecture outside the core, then regardless of

whatever enhancements are made to the core, e.g., the innovations introduced by ConvBERT and

DeBERTa, so long as during tokenization the sequences are prepended with aggregator tokens

whose output embeddings are used for downstream classification, the classification performance of

these transformer variants will still be influenced by our modifications.

Increasing the clarity of aggregated data through the use of multiple aggregator tokens (Section

3.4) was one of the modifications we investigated since tokenization lies outside the core and ag-

gregator tokens are a common design feature of BERT derivatives. Finding ways to better utilize

the outputs from the core was the other avenue explored, which we achieved through ensembling

the output embeddings from text that has undergone different preprocessing and the addition of a

decoder layer to the classifier head (Sections 3.3 and 3.5).

3. AttendEM: a Framework for Entity Matching

This section introduces the problem setting (Section 3.1), gives high-level descriptions of the

AttendEM framework (Section 3.2) and transformers’ architectures (Section 2.5) before delving

deeper into the framework’s key components: the text preprocessing step (Section 3.3), the infor-

mation aggregator token design (Section 3.4), and the ensembling of individual models (Section

3.5).

3.1. Problem definition

In the problem of entity resolution (ER), an entity refers to a unique real-world object, e.g.,

product, person, etc. A record refers to a mention of an entity found within a collection, i.e., datasets

that records the attributes of said objects. Given two such datasets D and D′ with symmetrical

attributes (i.e., all the attributes found in one dataset have their respective equivalents in the other

12

dataset) that contains values which can be represented as strings (for instance, if the values are

integers or floats, they can be converted to text), the goal of ER is to find all pairs of records

between D and D′ that point to the same real-world entity. These record pairs that are found are

referred to as matches. Pairs of records that point to two distinct entities are non-matches.

A standard ER pipeline consists of two stages, entity blocking (EB) and entity matching (EM).

The blocker in EB aims to filter out the the non-matches found in the cross product D×D′, which

typically vastly outnumbers the matches, into C, a subset of D×D′ containing candidate matches.

Blockers are assumed to not produce any false negatives. A matcher in EM then determines which

of the record pairs in C are matches and which are non-matches.

The focus of this paper is on the design of an effective matcher. Specifically, given labeled

examples — record pairs which indicate whether the pairs are matches or non-matches — for every

dataset pair split into three disjoint subsets — training, validation, and testing — we aim to train

the matcher using training data, determine the optimal hyperparameter for the matcher with the

validation data, and evaluate the matcher’s performance using testing data.

3.2. Process overview

When tasked with determining if a pair of textual entities, A from dataset D and B from

dataset D′, are matches, we first obtain different representations of the entities by rearranging the

text. The rearranged texts are then tokenized. For each set of tokens, we insert aggregator tokens

in them. The number of aggregator tokens as well as the insertion location differs based on how

the texts were rearranged. Each set of tokens is fed into the transformer, one set at a time. Once

the transformer has processed the last set, the embeddings for all the aggregator tokens found in

all the different sets are concatenated. The concatenated embeddings are then fed into a classifier

block consisting of self-attention, linear, and softmax layers that outputs a probability of the pair

being duplicates. The model is fine-tuned by learning from classification errors. Figure 2 shows

the EM process within our framework.

3.3. Text preprocessing

There are three ways that the raw text can be rearranged within our framework. Two of these

are text summarization. The third way is column/attribute alignment between entities of two

datasets.

13

tokA,col1,1 tokA,col1,2[CLS] tokA,col1,n [SEP] tokB,col1,1 tokB,col1,2 tokB,col1,n [SEP]

tokA,col2,1 tokA,col2,2[CLS] tokA,col2,n [SEP] tokB,col2,1 tokB,col2,2 tokB,col2,n [SEP]

tokA,colN,1 tokA,colN,2[CLS] tokA,colN,n [SEP] tokB,colN,1 tokB,colN,2 tokB,colN,n [SEP]

[CLS] tokA,1 tokA,2

tokB,1 tokB,2

tokA,n

[CLS] tokB,n [SEP]

[SEP]

Summed

[CLS] tokA,1 tokA,2

tokB,1 tokB,2

tokA,n

[CLS] tokB,n [SEP]

[SEP]

SimSents

Transformer

Decoder

Feedforward

Softmax

[CLS] [CLS] [CLS] [CLS][CLS][CLS][CLS][CLS]

[CLS] [CLS][CLS][CLS][CLS] [CLS][CLS]

Sequential (not parallel)

Entity A’s Text

col1 col2 … colN

hp c6... station... ... 49.88

Entity B’s Text

col1 col2 … colN

hp coa... photo p... ... 29.99

NCLS

Fig. 2. AttendEM ’s workflow showing text preprocessing (NCLS/Attribute Alignment, Summed, Simsents, detailed
in Section 3.3), aggregator token insertion (dual-CLS, NCLS, detailed in Section 3.4), ensembling the outputs from
the different representations of the text span as described in Section 3.5, and the classifier head containing a self-
attention layer (decoder) along with feedforward layers processing the concatenated [CLS] embeddings as described
in Sections 2.5.2 and 3.5. Transformer stands in for a substitutable architecture, e.g., DeBERTa or ConvBERT. As
stated in the bottom left corner of the figure, a four-pointed star denotes that the process is sequential as opposed
to parallel.

The first summarization method sorts the sentences found in a span of text based on the summed

TFIDF (term frequency-inverse document frequency) values for all the words found in a sentence,

with high-scoring sentences taking precedence over others. This approach is known as Summed.

The second summarization method sorts sentences based on their similarity to a key sentence, with

priority given to high-similarity sentences. Similarity is determined by the cosine distance between

the TFIDF vectorized representations of a sentence and the key sentence. The key sentence used is

14

the title/name of an entity. Sentences from the rest of the selected attributes/features are the ones

that will be compared against the key sentence and sorted. This approach is known as SimSents.

For attribute alignment (Aligned), the values from equivalent columns of an entity pair are

placed next to each other. For instance, given an entity A within dataset D with the columns

“title” and “brand” and an entity B within dataset D′ with the columns “name” and “brand”, an

entity pair will be concatenated in the following order: Atitle, Bname, Abrand, and Bbrand.

3.4. Aggregator tokens: dual-CLS and NCLS

Transformers take tokenized text sequences as inputs. An input sequence of tokens consists of

not just the original text but also additional tokens that perform special functions. Often, there

are two special tokens, one meant to aggregate information for the text sequence, e.g., [CLS] and

another meant to demarcate the end of a sequence, e.g., [SEP]. In pairwise tasks, the tokenization

scheme of most transformers take the form of having two text sequences concatenated together

with a single aggregator prepended to the first sequence and an end-of-sequence token appended to

at the end of each sequence, i.e., [CLS] tokseqA1 , tokseqA2 , · · · [SEP] tokseqB1 , tokseqB2 , · · · [SEP].

Having observed the recent successes in modifying BERT to use multiple CLS tokens in ab-

stractive and extractive text summarization tasks (Liu and Lapata, 2019), we tested a similar

modification for EM. For Summed and SimSents, we added an extra [CLS] to the start of the

second sequence, making the final concatenated sequence [CLS] tokseqA1 , tokseqA2 , · · · [SEP] [CLS]

tokseqB1 , tokseqB2 , · · · [SEP]. The maximum number of tokens for each entity in an entity pair is

half of a typical transformer’s 512-token limit minus the number of special tokens. This aggregator

scheme is referred to as dual-CLS to contrast with the original formulation that uses only one

token, single-CLS.

The NCLS aggregator scheme is only applicable for Aligned, i.e., entity pairs whose texts have

undergone attribute alignment. This scheme places each entity-attribute pair between an aggrega-

tor token and an end-of-sequence token. The number of special tokens used depends on the number

of attributes that the datasets have. For instance, datasets with three columns, “name”, “brand”,

and “description”, will have three sets of special tokens and the final concatenated sequence will

take the form of [CLS] toknameA1 , toknameA2 , · · · , toknameB1 , toknameB2 , · · · [SEP] [CLS] tokbrandA1 ,

tokbrandA2 , · · · , tokbrandB1 , tokbrandB2 , · · · , [SEP] [CLS] tokdescA1 , tokdescA2 , · · · , tokdescB1 , tokdescB2 ,

15

· · · [SEP]. The number of tokens allotted to each entity is the same as in the dual-CLS scheme.

3.5. Ensemble

In traditional machine learning, a process known as ensembling takes the intermediary predic-

tions from multiple models to derive a final prediction, with Random Forest being a well known

example of such ensemble classifiers. With neural language models, a common method for creating

an ensemble is by averaging the outputs of models with different architectures. The intuition be-

hind ensembles is that a group of classifiers can collectively compensate for the deficiencies of the

individual models.

A barrier to the widespread use of ensembles of large language models is the size of the models

as each of the GPUs that the models are trained on usually can only fit a single model in its

memory. This memory limitation motivated us to devise a method for creating an ensemble while

relying only on a single instance of a single transformer architecture. We accomplished this by

varying the inputs given to the transformer so that it produces different outputs. Inputs are varied

by using different methods for rearranging the text and inserting aggregator tokens as described in

Sections 3.3 and 3.4.

The transformer takes as input the tokens from only one text variant at a time. From the

transformer’s output, only the embeddings for the CLS tokens are retained. These embeddings are

concatenated and fed into the classification block.

While the typical classification block consists of linear layers, our framework adds an additional

self-attention layer, specifically the decoder block from the original Transformer paper (Vaswani

et al., 2017), before the linear layers. Since we are not using our framework for predicting words

sequentially like the Transformer, we did not need to mask the inputs for the decoder. Inputs for

both self-attention sub-layers of the decoder layer we repurposed are the same, which is the output

embeddings of the aggregator tokens. Adding self-attention to the classification block is driven by

the use of multiple CLS tokens in our framework. The standard classification blocks being made up

of only linear layers may have been sufficient for accommodating the embeddings from a single CLS

token, but in the presence of multiple CLS tokens, an attention mechanism may help each CLS

token learn its relation to other CLS tokens, which in turn may improve classification performance.

16

4. Framework Assessment

4.1. Datasets

Our framework is benchmarked against datasets from Mudgal et al. (2018), which have been

used to assess the performance of other EM solutions, e.g., Li et al. (2020); Huang et al. (2022).

This collection of datasets, going by the name of ER-Magellan datasets, predate the Magellan ER

solution and have been slowly built up over the years by the AnHai Doan research group. Earlier

iterations that contain a subset of the datasets found in Mudgal et al. (2018) have also been used

to assess the performance of EM solutions, e.g., Ebraheem et al. (2018). The training, validation,

and test splits follow a 3:1:1 ratio for all the datasets and the splits we used are the exact same

splits used in Mudgal et al. (2018); Li et al. (2020); Huang et al. (2022). The summary statistics

for the datasets can be found in Table 1.

Table 1. Statistics of ER-Magellan benchmark datasets

Datasets
Candidates

(Pairs)
Matches

(Pairs) Attributes

Amazon-Google (AG) 11,460 1,167 3
Beer 450 68 4
DBLP-ACM (DA) 12,363 2,220 4
DBLP-GoogleScholar (DS) 28,707 5,347 4
Fodors-Zagats (FZ) 946 110 6
iTunes-Amazon (IA) 539 132 8
Walmart-Amazon (WA) 10,242 962 5
Abt-Buy (AB) 9,575 1,028 3
Company 112,632 28,200 3

4.2. Experiment setup

Most recent publications have converged upon F1 as the metric of choice for evaluating EM

classifiers; we will adhere to this convention as well.

As we have previously noted in Section 2.4, there have been conflicting scores reported for Ditto

so we will be including in our comparison all versions of published pairwise EM scores (Li et al.,

2020; Huang et al., 2022; Yao et al., 2022) for the purposes of transparency.

For EMTransformer, the original paper (Brunner and Stockinger, 2020) evaluated EMTrans-

former only on Dirty datasets and the Abt-Buy dataset while the DAEM paper (Huang et al.,

17

2022) evaluated EMTransformer only on Structured datasets so there are no overlaps in the re-

ported scores, hence no conflicts.

Like Ditto (Li et al., 2020), the number of epochs (5, 10, or 20) used during training in our

framework varied based on the dataset. The checkpoint used is the one with the lowest loss

instead of the highest F1 score on the validation set. And like Ditto, we first determined which

transformers performed best without the modifications found in our framework (text preprocessing,

multiple aggregator tokens, and ensemble) before deciding on which architecture to use on which

datasets. Note that for EMTransformer (Brunner and Stockinger, 2020; Huang et al., 2022), the

best results from the four different transformer architectures tested (BERT, XLNet, RoBERTa,

and DistilBERT) are the ones reported. With our framework, we tested only two architectures,

ConvBERT (Jiang et al., 2020) and DeBERTa (He et al., 2021). Using two architectures is sufficient

for demonstrating that the improvement resulting from AttendEM ’s modifications is not restricted

to a single architecture. The size discrepancy between the two architectures we chose also shows that

AttendEM ’s improvement is not dependent on the number of parameters found in an architecture.

We settled on using ConvBERT for the Amazon-Google, iTunes-Amazon, Dirty iTunes-Amazon,

and Dirty Walmart-Amazon datasets and DeBERTa for the rest. The pre-trained weights for

ConvBERT are YituTech/conv-bert-base while DeBERTa used microsoft/deberta-v3-base.

ConvBERT has 106M parameters. DeBERTa has 184M parameters. The mean of the F1 scores

from 5 repeated runs are reported.

All experiments are conducted on a single Nvidia Titan Xp with 12GB of memory alongside

an Intel Xeon E5-2697 v4 @ 2.30GHz. The AttendEM framework is implemented in PyTorch.

Transformer models are from the HuggingFace transformers package. When using ConvBERT,

the decoder block within the classifier block has 1 layer with 4 attention heads. DeBERTa uses

1 layer with 8 attention heads. The learning rates are 2e−5 with a weight decay of 1e−2 for the

transformer and 1e−5 with a weight decay of 1e−3 for everything else. Learning rate decreases

linearly with zero warmup steps. For the Python packages random, numpy, and pytorch, we used

a random seed of 42.

4.3. Results

Table 2 compares the performance of AttendEM against several other SOTA EM frameworks.

18

Our framework is notably robust against Dirty datasets, where it outperforms all the EM

classifiers that it was compared against in two instances and is on par in two other instances (after

rounding based on the number of significant figures reported by the competing solution).

Results are mixed with Structured datasets, but AttendEM still made a strong showing. Against

Ditto, DAEM’s reported Ditto results, and HierGAT’s reported Ditto results, AttendEM outper-

formed Ditto in all instances — unsurprising since DAEM and HierGAT themselves outperformed

their Ditto replication attempts. Against DAEM, AttendEM achieved similar or better results in

four out of seven datasets. Against HierGAT, AttendEM also achieved similar or better results

in four out of seven datasets. DBLP-GoogleScholar and Walmart-Amazon are the two datasets

in common where AttendEM performed worse compared to DAEM and HierGAT. Against EM-

Transformer, AttendEM has the lead in all datasets save for DBLP-GoogleScholar. Evidently,

AttendEM is weak against DBLP-GoogleScholar, although there are no immediately obvious rea-

sons for its underperformance as the content and structure of DBLP-GoogleScholar is highly similar

with DBLP-ACM, in which AttendEM was able to achieve performance comparable with other EM

solutions.

With Textual data, out of the four solutions examined, our framework is outperformed by Ditto

and EMTransformer, although AttendEM consistently placed second.

4.4. Implications

DAEM and Ditto both heavily emphasized the effort spent in cleaning up the text during

the text preprocessing stage. DAEM uses inter-attribute completion to fill in missing values (this

requires that the missing value for an attribute can be found within the values for other attributes).

Ditto uses domain knowledge to identify text spans so that special tokens can be inserted to make

it easy for the transformer to identify the span type (e.g., the phone number “(866) 246-6453”

is tokenized as “(866) 246 - [LAST] 6453 [/LAST]” where [LAST] indicates the last 4 digits

of the phone number). Domain knowledge is also used to normalize non-standard entries (e.g.,

rewriting “5 %” and “5.00 %” to “5.0 %”). Another aspect of DAEM and Ditto is their use of

additional training data. DAEM uses active learning and selects examples high in informativeness

and representativeness for the the classifier to learn from. Furthermore, DAEM uses adversarial

learning to create fake matches as extra training examples. As for Ditto, data augmentation is used

19

Table 2. F1 scores on the ER-Magellan datasets. Scores for DAEM are from the DAEM paper (Huang et al., 2022).
Scores for HierGAT are from the HierGAT paper (Yao et al., 2022). Scores for Ditto are from the Ditto (Li et al., 2020,
2023b), DAEM (Huang et al., 2022), and HierGAT (Yao et al., 2022) papers. Scores for EMTransformer are from the
EMTransformer (Brunner and Stockinger, 2020) and DAEM (Huang et al., 2022) papers. The ∆F1 is a comparison
between AttendEM and the best (or next best) performing model. If more than one ∆F1 are reported side-by-side,
the leftmost ∆F1 represents a comparison with results published in the original paper while the remaining ∆F1 are
with results from other papers’ replication attempts. The highest scores are in bold, second best are underlined.

Datasets
DAEM

(DAEM)
HierGAT

(HierGAT)
Ditto

(Ditto)
Ditto

(DAEM)
Ditto

(HierGAT)
EMTr

(EMTr)
EMTr

(DAEM) AttendEM ∆F1

Structured

Amazon-Google 73.1 76.4 75.58 72.9 74.1 - 71.4 77.67 +1.27
Beer 90.3 93.3 94.37 84.4 84.6 - 87.5 91.04 -3.33/+6.64/+6.44
DBLP-ACM 98.9 99.1 98.99 98.7 99.0 - 98.9 99.12 +0.02
DBLP-GoogleScholar 97.3 96.3 95.60 95.6 95.8 - 96.0 95.85 -1.45
Fodors-Zagats 100.0 100.0 100.00 99.1 98.1 - 100.0 100.00 +0.00/+0.90/+1.90
iTunes-Amazon 100.0 96.3 97.06 92.4 92.3 - 93.1 98.90 -1.10
Walmart-Amazon 87.7 88.2 86.76 83.1 85.8 - 85.9 86.81 -1.39

Dirty

DBLP-ACM - 99.1 99.03 - 98.9 98.9 - 99.08 -0.02
DBLP-GoogleScholar - 95.8 95.75 - 95.4 95.6 - 95.89 +0.09
iTunes-Amazon - 94.7 95.65 - 92.9 94.2 - 96.45 +0.80
Walmart-Amazon - 86.3 85.69 - 82.6 85.5 - 86.29 -0.01

Textual

Abt-Buy - 89.8 89.33 - 88.9 90.9 - 90.11 -0.79
Company - 88.2 93.85 - 87.5 - - 92.50 -1.35/+4.30

to create more training examples and the augmentation operators can distort the training examples

so comprehensively that the labels become incorrect, necessitating the use of interpolation to rein

in the changes.

Compared against DAEM and Ditto, our approach forgoes text cleaning and data augmentation.

Our approach’s text preprocessing only rearranges the text. In spite of that, our approach still

manages to achieve higher F1 scores for many of the benchmark datasets.

The only requirement of our framework is that the two datasets of an EM problem has to have

identical (or substitutable) attributes/columns. This is to facilitate attribute alignment where com-

parable columns from the two datasets are grouped together (see Section 3.3). All the benchmark

dataset-pairs featured in Ditto, DAEM, HierGAT, and EMTransformer meet this criteria as the

datasets in each pair have an identical number of attributes that mirror each other.

HierGAT is similar to our approach based on the absence of text cleaning and the use of

additional training data in their approach. Another similarity between HierGAT and our approach

is their use of multiple [CLS] tokens. Significant differences remain. HierGAT used multiple CLS

tokens because each attribute embedding is represented as a CLS token and the concatenated

attribute embeddings go on to form entity embeddings. Our use of multiple CLS tokens comes

20

from text preprocessing (Section 3.3) and also from building ensembles (Section 3.5), with only the

Aligned text preprocessing scheme bearing some resemblance to HierGAT’s attribute embeddings.

Another difference is the core novel feature underlying each framework. In HierGAT, this is the

hierarchical heterogeneous graph, which needs to be constructed and trained to obtain attribute

and entity embeddings. Our approach invested in building intra-model (i.e., using only a single

transformer architecture) ensembles.

4.5. Ablation study

Here, we investigate the influence each of our enhancements on the base transformer architecture

exert on EM classification results as well as runtimes. There are too many possible configurations

for ensembles (e.g., Summed and Simsents can used with single-CLS instead of dual-CLS, default

with single-CLS can be ensembled together with Summed with dual-CLS etc.) so we only presented

a small informative selection of configurations. All ensembles use ConvBERT and are run for 10

epochs and the F1 scores are means from five runs. The training runtimes are means from the

five runs as well. The text preprocessing runtimes are averages from the five-run averages of all

ensembles.

The baseline is “default, sans attention”, which uses the transformer as originally designed

with single-CLS and is comparable to the EMTransformer approach. AttendEM is represented by

“Aligned + SimSents + Summed”. To investigate the impact of the additional self-attention layer

in the classification block on ensembles that contain multiple models, we also present results for

AttendEM with the attention in the classifier head removed.

Runtimes, which can be found in Table 3, appear fairly stable across different datasets. Each

additional model in the ensembles increases the training runtime almost linearly by 0.7×, i.e., two-

model ensembles takes 1.7× the default’s time to run while three-model is roughly 1.7× + 0.7× =

2.4× the default’s. During evaluation/inference (no backpropagation), the burden imposed by

additional models in an ensemble is greater than during training, with each extra model adding

1.0× to the runtime, thus making two-model ensembles’ runtimes around 2.0× the default’s and

three-model ensembles at about 3.0× the default’s.

In general, each additional model in the ensemble imposes an additional linear increase in

runtime. Therefore, the full AttendEM is unsuited for time-sensitive applications such as real-time

21

deduplication of database entries. However, for periodic (e.g., weekly) purging of duplicates from

databases, AttendEM can be a promising solution. Expending more time for better performance

without violating computing resource constraints (e.g., GPU memory limit) can be a worthwhile

tradeoff, especially for organizations without easy, affordable access to computing resources that

are optimal for running transformers and other types of neural network yet still want to obtain the

highest quality results when performing entity matching.

From the F1 scores obtained by the ensembles/models in Table 4, we can see that there is no

single text preprocessing method that works well across different datasets when using additional

aggregator tokens and self-attention during classification. For instance, Aligned (97.06) performs

better than the default (95.42) in Dirty iTunes-Amazon but falters when facing against the Dirty

Walmart-Amazon dataset (83.27, worse than the default’s 85.48). Meanwhile, the reverse applies

to Summed, where it outperforms the default on Dirty Walmart-Amazon (85.52 vs 85.48) but not

on Dirty iTunes-Amazon (95.06 vs 95.42).

Ensembles with two models feature noticeable variability across datasets as well. The “Aligned

+ Summed” ensemble performed better than the default on Dirty iTunes-Amazon (95.74 vs 95.42)

but is worse when it comes to Dirty Walmart-Amazon (85.05 vs 85.48).

The performance of two-model ensembles is not necessarily the average of their constituents. For

Dirty iTunes-Amazon, the SimSents (94.37) and the Summed (95.06) models individually are worse

than the default (95.42) but perform almost as good as the default in the “SimSents + Summed”

ensemble (95.41). A similar situation can be found in Dirty Walmart-Amazon when comparing the

individual Aligned (83.27) and SimSents (84.19) models against the ensemble (85.79) and default

(85.48).

The full three-model ensemble we used to represent AttendEM seems to avoid wild swings in

F1 scores when moving between datasets. While the full AttendEM may not necessarily be the

best performing ensemble (e.g., the individual Aligned model with F1 of 97.06 outscores the full

AttendEM ’s 96.45 in Dirty iTunes-Amazon), it manages to maintain its performance lead over the

default across different datasets unlike the smaller ensembles.

Self-attention in the classifier head appears necessary for models with multiple aggregator CLS

tokens and for large ensembles featuring such models. For both Dirty iTunes-Amazon and Dirty

Walmart-Amazon, the use of dual-CLS tokens resulted in worse performance (94.75 Dirty IA,

22

85.39 Dirty WA) than the default sans self-attention model (95.10, 85.85); the introduction of self-

attention in the classifier helped regain the lost performance (96.10, 85.61). In the case of ensembles,

without self-attention, AttendEM (96.45) would have scored lower (94.76) than the default Dirty

iTunes-Amazon (95.42). When there is only a single model, such as the default, self-attention can

potentially degrade performance, as can be seen in the case of Dirty iTunes-Amazon (95.10 vs

95.42).

5. Conclusion and Future Work

In this paper, we introduced AttendEM, a transformer-based framework for entity matching.

Our evaluation showed that ensembled models built under this framework achieve state-of-the-art

results in a majority of EM benchmark datasets. For the datasets where AttendEM performed

better, the observed improvement in F1 ranges from 0.13 to 2.09 (the Beer and Company datasets

being the two exceptions). When compared against Ditto’s own results over all 13 datasets, i.e., in-

cluding datasets where AttendEM performed worse, the average improvement was +0.16. If we use

DAEM’s reported results for Ditto, the average is +3.31 for all seven evaluated datasets. And if we

use HierGAT’s reported results for Ditto, the average is +2.60 for all 13 evaluated datasets. When

compared against DAEM, the range of improvement is from 0.22 to 4.57 (the DBLP-GoogleScholar,

iTunes-Amazon, and Walmart-Amazon datasets being the three exceptions) with a mean of +0.30

over all seven datasets that DAEM was tested against. And when compared against HierGAT, the

range is from 0.02 to 4.30 (the five exceptions being Beer, DBLP-GoogleScholar, Walmart-Amazon,

Dirty DBLP-ACM, and Dirty Walmart-Amazon) with a mean of +0.48 over all 13 datasets that

HierGAT was tested against.

Although the improvement may seem slight, AttendEM ’s improvements are comparable to two

other solutions that claimed to have outperformed Ditto, HierGAT (Yao et al., 2022) and DAEM

(Huang et al., 2022). The mean of their percentage improvements over Ditto, calculated using their

respective replications of Ditto results, were 2.46% for HierGAT (compared to AttendEM ’s 2.99%)

and 3.42% for DAEM (compared to AttendEM ’s 3.93%).

AttendEM demonstrates that ensembles combined with additional aggregator tokens and self-

attention can improve the performance of a transformer in the domain of EM, albeit at the cost

of greater runtimes as the transformer needs to cycle through each model’s preprocessed text

23

Table 3. Runtimes for different ensembles and text preprocessing methods. Default uses single-CLS, SimSents and
Summed use dual-CLS while Aligned uses NCLS. AttendEM is “Aligned + SimSents + Summed”.

Ensemble
Dirty

IA
Dirty
WA

Training (per epoch)

Default 31s 9m52s
Default, w/o attention 0.969× 0.971×
Default, 2CLS 1.02× 0.998×
Default, 2CLS, w/o attention 0.969× 0.958×
Aligned 1.00× 1.04×
SimSents 1.00× 1.03×
Summed 1.00× 1.04×
Aligned + SimSents 1.64× 1.66×
Aligned + Summed 1.65× 1.65×
SimSents + Summed 1.59× 1.69×
AttendEM 2.34× 2.41×
AttendEM, w/o attention 2.57× 2.43×

Evaluation (per epoch)

Default 3s 56s
Default, w/o attention 1.05× 0.987×
Default, 2CLS 1.03× 0.978×
Default, 2CLS, w/o attention 1.05× 0.984×
Aligned 1.02× 0.982×
SimSents 0.979× 0.977×
Summed 1.02× 0.991×
Aligned + SimSents 1.95× 1.93×
Aligned + Summed 1.96× 1.85×
SimSents + Summed 1.94× 1.95×
AttendEM 2.92× 2.98×
AttendEM, w/o attention 3.40× 2.96×

Text preprocessing

Default 0.414s 0.162s
Aligned 0.875× 0.814×
SimSents 378× 416×
Summed 257× 261×

sequentially. To alleviate the issue with runtime, future work can explore the use of processing

units, e.g., GPUs and TPUs, with sufficient memory capable of fitting multiple models at once

so that running the ensembles can be parallelized. Alternatively, future work can proceed further

down the path of designing a smaller and more efficient AttendEM framework, such as reducing the

number of computations required at inference time using techniques such as dynamical inference.

24

Table 4. F1 scores for different ensembles. Default uses single-CLS, SimSents and Summed use dual-CLS while
Aligned uses NCLS. AttendEM is “Aligned + SimSents + Summed”.

Ensembles/models
Dirty

IA
Dirty
WA

Default 95.42 85.48
Default, w/o attention 95.10 85.85
Default, 2CLS 96.10 85.61
Default, 2CLS, w/o attention 94.75 85.39
Aligned 97.06 83.27
SimSents 94.37 84.19
Summed 95.06 85.52
Aligned + SimSents 96.08 85.79
Aligned + Summed 95.74 85.05
SimSents + Summed 95.41 85.13
AttendEM 96.45 86.29
AttendEM, w/o attention 94.76 86.23

Dynamic inference has been demonstrated to improve the efficiency of transformers, albeit in the

domain of computer vision (Li et al., 2023a) and not NLP that is typical of EM.

Filling in missing values and utilizing domain knowledge to normalize text spans and identify

attribute types may improve AttendEM performance as well. After all, both DAEM and Ditto cred-

ited their careful engineering of text cleaning solutions for their frameworks’ improved performance

over existing solutions.

Pre-training transformers used in AttendEM using text that more closely matches the problem

domain of the downstream classification task (e.g., pre-training on scholarly publication dataset

prior to classification fine-tuning for DBLP-ACM EM task) is a potential avenue for improving

EM performance, as the transformers used in our work and in previous works were pre-trained on

“generic” text corpora. There are known examples of transformers benefiting from unsupervised

pre-training on datasets that bears greater resemblance to the datasets found in downstream tasks.

SciBERT outperfomed BERT on NLP tasks in scientific domains such as biomedicine and computer

science simply through pre-training on a large multi-domain corpus of scientific texts as opposed

to the Wikipedia and literary books corpora used by BERT (Beltagy et al., 2019).

Incorporation of unsupervised (self-supervised) contrastive learning to transformer pre-training

can also potentially improve the current AttendEM framework. Contrastive learning as applied to

transformers resulted in demonstrable improvements in SentEval, a suite of sentence embedding

25

quality benchmark tasks (Giorgi et al., 2021) and in semantic textual similarity (STS) tasks (Gao

et al., 2021). Contrastive learning has also shown success in zero-shot object detection in the

field of computer vision (Yan et al., 2022). Note that the unsupervised contrastive learning being

referred to here is different from the raw string-level contrastive learning used in the EM framework

CorDEL, as the authors of CorDEL themselves have noted (Wang et al., 2020).

Despite the great variety of unique sources in the datasets found within the ER-Magellan

benchmark, the two domains of commerce (product listings and company listings) and bibliography

make up the entirety of the benchmark. While AttendEM has proven itself against the ER-Magellan

benchmark, the generalizability of AttendEM to other, more specialized, problems such as the

merging/de-duplicating of entries from different crime databases (Ahmed et al., 2022) should be

studied.

Some of the modifications introduced by AttendEM is not specific to the task of EM, namely

the use of ensembles and the addition of an attention block in the classification head. Extending

the use of these modifications to problems outside of EM warrants investigation.

Acknowledgements

The research is supported in part by the Discovery Grants (RGPIN-2018-03872) from the Nat-

ural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs

Program (950-232791).

Competing Interests Statement

The authors have no competing interests to declare.

References

Ahmadi, N., Sand, H., Papotti, P., 2022. Unsupervised Matching of Data and Text, in: 2022

IEEE 38th International Conference on Data Engineering (ICDE), pp. 1058–1070. doi:10.1109/

ICDE53745.2022.00084.

Ahmed, S., Gentili, M., Sierra-Sosa, D., Elmaghraby, A.S., 2022. Multi-layer data integration

technique for combining heterogeneous crime data. Information Processing & Management 59,

26

http://dx.doi.org/10.1109/ICDE53745.2022.00084
http://dx.doi.org/10.1109/ICDE53745.2022.00084

102879. URL: https://www.sciencedirect.com/science/article/pii/S0306457322000115,

doi:10.1016/j.ipm.2022.102879.

Amazon, 2022. 2022 Amazon Brand Protection Report. Technical Report. Amazon. URL: https:

//brandservices.amazon.com/progressreport.

Arnold, P., Wartner, C., Rahm, E., 2016. Semi-Automatic Identification of Counterfeit Of-

fers in Online Shopping Platforms. Journal of Internet Commerce 15, 59–75. URL: http://

www.tandfonline.com/doi/full/10.1080/15332861.2015.1121459, doi:10.1080/15332861.

2015.1121459.

Beltagy, I., Lo, K., Cohan, A., 2019. SciBERT: A Pretrained Language Model for Scientific Text,

in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

Association for Computational Linguistics, Hong Kong, China. pp. 3615–3620. doi:10.18653/

v1/D19-1371.

Besedo, 2016. Duplicate Real-Estate Listings. Why Should You Care? URL: https://besedo.

com/resources/blog/duplicate-real-estate-listings-why-should-you-care/.

Brewster, M., 2022. Annual Retail Trade Survey Shows Impact of Online Shopping

on Retail Sales During COVID-19 Pandemic. Technical Report. United States Cen-

sus Bureau. URL: https://www.census.gov/library/stories/2022/04/ecommerce-sales-

surged-during-pandemic.html.

Brunner, U., Stockinger, K., 2020. Entity matching with transformer architectures - a step forward

in data integration, in: Proceedings of the 23rd International Conference on Extending Database

Technology (EDBT), OpenProceedings. pp. 463–473. URL: https://digitalcollection.

zhaw.ch/handle/11475/19637, doi:10.21256/zhaw-19637.

Christen, P., 2008. Febrl -: An open source data cleaning, deduplication and record linkage sys-

tem with a graphical user interface, in: Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery,

27

https://www.sciencedirect.com/science/article/pii/S0306457322000115
http://dx.doi.org/10.1016/j.ipm.2022.102879
https://brandservices.amazon.com/progressreport
https://brandservices.amazon.com/progressreport
http://www.tandfonline.com/doi/full/10.1080/15332861.2015.1121459
http://www.tandfonline.com/doi/full/10.1080/15332861.2015.1121459
http://dx.doi.org/10.1080/15332861.2015.1121459
http://dx.doi.org/10.1080/15332861.2015.1121459
http://dx.doi.org/10.18653/v1/D19-1371
http://dx.doi.org/10.18653/v1/D19-1371
https://besedo.com/resources/blog/duplicate-real-estate-listings-why-should-you-care/
https://besedo.com/resources/blog/duplicate-real-estate-listings-why-should-you-care/
https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-during-pandemic.html
https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-during-pandemic.html
https://digitalcollection.zhaw.ch/handle/11475/19637
https://digitalcollection.zhaw.ch/handle/11475/19637
http://dx.doi.org/10.21256/zhaw-19637

New York, NY, USA. pp. 1065–1068. URL: https://doi.org/10.1145/1401890.1402020,

doi:10.1145/1401890.1402020.

Clark, K., Luong, M.T., Le, Q.V., Manning, C.D., 2020. ELECTRA: Pre-training Text Encoders

as Discriminators Rather Than Generators, in: International Conference on Learning Represen-

tations (ICLR) 2020.

Davies, R., Mudge, L., 2018. Is it all downhill from here for NZ’s e-commerce giant? Hell no, says

Trade Me. The Spinoff URL: https://thespinoff.co.nz/business/29-09-2018/is-it-all-

downhill-from-here-for-trademe/.

Dou, C., Cui, Y., Sun, D., Wong, R., Atif, M., Li, G., Ranjan, R., 2019. Unsupervised blocking

and probabilistic parallelisation for record matching of distributed big data. The Journal of

Supercomputing 75, 623–645. URL: https://doi.org/10.1007/s11227-017-2008-8, doi:10.

1007/s11227-017-2008-8.

Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang, N., 2018. Distributed

Representations of Tuples for Entity Resolution. Proc. VLDB Endow. 11, 1454–1467. URL:

https://doi.org/10.14778/3236187.3269461, doi:10.14778/3236187.3269461.

Gao, T., Yao, X., Chen, D., 2021. SimCSE: Simple Contrastive Learning of Sentence Em-

beddings, in: Moens, M.F., Huang, X., Specia, L., Yih, S.W.t. (Eds.), Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing, Association for Com-

putational Linguistics, Online and Punta Cana, Dominican Republic. pp. 6894–6910. URL:

https://aclanthology.org/2021.emnlp-main.552, doi:10.18653/v1/2021.emnlp-main.552.

Giorgi, J., Nitski, O., Wang, B., Bader, G., 2021. DeCLUTR: Deep Contrastive Learn-

ing for Unsupervised Textual Representations, in: Zong, C., Xia, F., Li, W., Navigli, R.

(Eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Lin-

guistics and the 11th International Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers), Association for Computational Linguistics, Online. pp. 879–895. URL:

https://aclanthology.org/2021.acl-long.72, doi:10.18653/v1/2021.acl-long.72.

Gokhale, C., Das, S., Doan, A., Naughton, J.F., Rampalli, N., Shavlik, J., Zhu, X., 2014. Cor-

28

https://doi.org/10.1145/1401890.1402020
http://dx.doi.org/10.1145/1401890.1402020
https://thespinoff.co.nz/business/29-09-2018/is-it-all-downhill-from-here-for-trademe/
https://thespinoff.co.nz/business/29-09-2018/is-it-all-downhill-from-here-for-trademe/
https://doi.org/10.1007/s11227-017-2008-8
http://dx.doi.org/10.1007/s11227-017-2008-8
http://dx.doi.org/10.1007/s11227-017-2008-8
https://doi.org/10.14778/3236187.3269461
http://dx.doi.org/10.14778/3236187.3269461
https://aclanthology.org/2021.emnlp-main.552
http://dx.doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/2021.acl-long.72
http://dx.doi.org/10.18653/v1/2021.acl-long.72

leone: Hands-off crowdsourcing for entity matching, in: Proceedings of the 2014 ACM SIG-

MOD International Conference on Management of Data, Association for Computing Machin-

ery, Snowbird, Utah, USA. pp. 601–612. URL: https://doi.org/10.1145/2588555.2588576,

doi:10.1145/2588555.2588576.

Hall, R., Sutton, C., McCallum, A., 2008. Unsupervised Deduplication Using Cross-field De-

pendencies, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, ACM, New York, NY, USA. pp. 310–317. URL: http:

//doi.acm.org/10.1145/1401890.1401931, doi:10.1145/1401890.1401931.

Haruna, C.R., Hou, M., Eghan, M.J., Kpiebaareh, M.Y., Tandoh, L., 2019. An Effective and

Cost-Based Framework for a Qualitative Hybrid Data Deduplication, in: Bhatia, S.K., Tiwari,

S., Mishra, K.K., Trivedi, M.C. (Eds.), Advances in Computer Communication and Computa-

tional Sciences. Springer Singapore, Singapore. volume 924, pp. 511–520. URL: http://link.

springer.com/10.1007/978-981-13-6861-5_44, doi:10.1007/978-981-13-6861-5_44.

He, P., Gao, J., Chen, W., 2021. DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-

Training with Gradient-Disentangled Embedding Sharing. URL: http://arxiv.org/abs/2111.

09543, doi:10.48550/arXiv.2111.09543, arXiv:2111.09543.

Huang, J., Hu, W., Bao, Z., Chen, Q., Qu, Y., 2022. Deep entity matching with adversarial

active learning. The VLDB Journal URL: https://doi.org/10.1007/s00778-022-00745-1,

doi:10.1007/s00778-022-00745-1.

Jiang, Z.H., Yu, W., Zhou, D., Chen, Y., Feng, J., Yan, S., 2020. ConvBERT: Improving BERT

with Span-based Dynamic Convolution, in: Advances in Neural Information Processing Systems,

Curran Associates, Inc.. pp. 12837–12848. URL: https://proceedings.neurips.cc/paper/

2020/hash/96da2f590cd7246bbde0051047b0d6f7-Abstract.html.

Kejriwal, M., Miranker, D.P., 2013. An Unsupervised Algorithm for Learning Blocking Schemes,

in: 2013 IEEE 13th International Conference on Data Mining, pp. 340–349. doi:10.1109/ICDM.

2013.60.

Kirielle, N., Christen, P., Ranbaduge, T., 2023. Unsupervised Graph-Based Entity Resolution

29

https://doi.org/10.1145/2588555.2588576
http://dx.doi.org/10.1145/2588555.2588576
http://doi.acm.org/10.1145/1401890.1401931
http://doi.acm.org/10.1145/1401890.1401931
http://dx.doi.org/10.1145/1401890.1401931
http://link.springer.com/10.1007/978-981-13-6861-5_44
http://link.springer.com/10.1007/978-981-13-6861-5_44
http://dx.doi.org/10.1007/978-981-13-6861-5_44
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://dx.doi.org/10.48550/arXiv.2111.09543
http://arxiv.org/abs/2111.09543
https://doi.org/10.1007/s00778-022-00745-1
http://dx.doi.org/10.1007/s00778-022-00745-1
https://proceedings.neurips.cc/paper/2020/hash/96da2f590cd7246bbde0051047b0d6f7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/96da2f590cd7246bbde0051047b0d6f7-Abstract.html
http://dx.doi.org/10.1109/ICDM.2013.60
http://dx.doi.org/10.1109/ICDM.2013.60

for Complex Entities. ACM Transactions on Knowledge Discovery from Data 17, 1–30. URL:

https://dl.acm.org/doi/10.1145/3533016, doi:10.1145/3533016.

Leone, M., Huber, S., Arora, A., Garćıa-Durán, A., West, R., 2022. A critical re-evaluation of

neural methods for entity alignment. Proceedings of the VLDB Endowment 15, 1712–1725.

URL: https://doi.org/10.14778/3529337.3529355, doi:10.14778/3529337.3529355.

Li, C., Wang, G., Wang, B., Liang, X., Li, Z., Chang, X., 2023a. DS-Net++: Dynamic Weight

Slicing for Efficient Inference in CNNs and Vision Transformers. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 45, 4430–4446. URL: https://ieeexplore.ieee.org/

abstract/document/9842348/authors#authors, doi:10.1109/TPAMI.2022.3194044.

Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C., 2020. Deep entity matching with pre-trained

language models. Proceedings of the VLDB Endowment 14, 50–60. URL: http://doi.org/10.

14778/3421424.3421431, doi:10.14778/3421424.3421431.

Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C., 2023b. Effective entity matching with transform-

ers. The VLDB Journal URL: https://link.springer.com/10.1007/s00778-023-00779-z,

doi:10.1007/s00778-023-00779-z.

Liu, Y., Lapata, M., 2019. Text Summarization with Pretrained Encoders, in: Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for

Computational Linguistics, Hong Kong, China. pp. 3730–3740. doi:10.18653/v1/D19-1387.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., 2018. Deep Learning for Entity Matching: A Design

Space Exploration, in: Proceedings of the 2018 International Conference on Management of Data,

Houston, TX, USA. p. 16. doi:10.1145/3183713.3196926.

Nie, H., Han, X., He, B., Sun, L., Chen, B., Zhang, W., Wu, S., Kong, H., 2019. Deep Sequence-to-

Sequence Entity Matching for Heterogeneous Entity Resolution, in: Proceedings of the 28th ACM

International Conference on Information and Knowledge Management, ACM, Beijing China. pp.

629–638. URL: https://dl.acm.org/doi/10.1145/3357384.3358018, doi:10.1145/3357384.

3358018.

30

https://dl.acm.org/doi/10.1145/3533016
http://dx.doi.org/10.1145/3533016
https://doi.org/10.14778/3529337.3529355
http://dx.doi.org/10.14778/3529337.3529355
https://ieeexplore.ieee.org/abstract/document/9842348/authors#authors
https://ieeexplore.ieee.org/abstract/document/9842348/authors#authors
http://dx.doi.org/10.1109/TPAMI.2022.3194044
http://doi.org/10.14778/3421424.3421431
http://doi.org/10.14778/3421424.3421431
http://dx.doi.org/10.14778/3421424.3421431
https://link.springer.com/10.1007/s00778-023-00779-z
http://dx.doi.org/10.1007/s00778-023-00779-z
http://dx.doi.org/10.18653/v1/D19-1387
http://dx.doi.org/10.1145/3183713.3196926
https://dl.acm.org/doi/10.1145/3357384.3358018
http://dx.doi.org/10.1145/3357384.3358018
http://dx.doi.org/10.1145/3357384.3358018

Paganelli, M., Buono, F.D., Baraldi, A., Guerra, F., 2022. Analyzing how BERT performs entity

matching. Proceedings of the VLDB Endowment 15, 1726–1738. URL: https://dl.acm.org/

doi/10.14778/3529337.3529356, doi:10.14778/3529337.3529356.

Shao, J., Wang, Q., Lin, Y., 2019. Skyblocking for entity resolution. Information Systems 85, 30–43.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0306437918304770, doi:10.1016/

j.is.2019.06.003.

Teofili, T., Firmani, D., Koudas, N., Martello, V., Merialdo, P., Srivastava, D., 2022. Effective

Explanations for Entity Resolution Models, in: 2022 IEEE 38th International Conference on

Data Engineering (ICDE), pp. 2709–2721. doi:10.1109/ICDE53745.2022.00248.

Tu, J., Fan, J., Tang, N., Wang, P., Chai, C., Li, G., Fan, R., Du, X., 2022. Domain Adaptation for

Deep Entity Resolution, in: Proceedings of the 2022 International Conference on Management of

Data, Association for Computing Machinery, New York, NY, USA. pp. 443–457. URL: https:

//doi.org/10.1145/3514221.3517870, doi:10.1145/3514221.3517870.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin,

I., 2017. Attention is All you Need, in: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems

30. Curran Associates, Inc., pp. 5998–6008.

Wang, Q., Cui, M., Liang, H., 2016. Semantic-Aware Blocking for Entity Resolution. IEEE

Transactions on Knowledge and Data Engineering 28, 166–180. URL: http://ieeexplore.

ieee.org/document/7202898/, doi:10.1109/TKDE.2015.2468711.

Wang, Z., Sisman, B., Wei, H., Dong, X.L., Ji, S., 2020. CorDEL: A Contrastive Deep Learning

Approach for Entity Linkage, in: 2020 IEEE International Conference on Data Mining (ICDM),

pp. 1322–1327. URL: https://ieeexplore.ieee.org/abstract/document/9338287, doi:10.

1109/ICDM50108.2020.00171.

Yan, C., Chang, X., Luo, M., Liu, H., Zhang, X., Zheng, Q., 2022. Semantics-Guided Contrastive

Network for Zero-Shot Object detection. IEEE Transactions on Pattern Analysis and Machine In-

31

https://dl.acm.org/doi/10.14778/3529337.3529356
https://dl.acm.org/doi/10.14778/3529337.3529356
http://dx.doi.org/10.14778/3529337.3529356
https://linkinghub.elsevier.com/retrieve/pii/S0306437918304770
http://dx.doi.org/10.1016/j.is.2019.06.003
http://dx.doi.org/10.1016/j.is.2019.06.003
http://dx.doi.org/10.1109/ICDE53745.2022.00248
https://doi.org/10.1145/3514221.3517870
https://doi.org/10.1145/3514221.3517870
http://dx.doi.org/10.1145/3514221.3517870
http://ieeexplore.ieee.org/document/7202898/
http://ieeexplore.ieee.org/document/7202898/
http://dx.doi.org/10.1109/TKDE.2015.2468711
https://ieeexplore.ieee.org/abstract/document/9338287
http://dx.doi.org/10.1109/ICDM50108.2020.00171
http://dx.doi.org/10.1109/ICDM50108.2020.00171

telligence , 1–1URL: https://ieeexplore.ieee.org/abstract/document/9669022/authors#

authors, doi:10.1109/TPAMI.2021.3140070.

Yao, D., Gu, Y., Cong, G., Jin, H., Lv, X., 2022. Entity Resolution with Hierarchical Graph

Attention Networks, in: Proceedings of the 2022 International Conference on Management of

Data, Association for Computing Machinery, New York, NY, USA. pp. 429–442. URL: https:

//doi.org/10.1145/3514221.3517872, doi:10.1145/3514221.3517872.

Zhang, D., Li, D., Guo, L., Tan, K.L., 2020. Unsupervised Entity Resolution with Blocking and

Graph Algorithms. IEEE Transactions on Knowledge and Data Engineering , 1–1doi:10.1109/

TKDE.2020.2991063.

Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A., 2016. Unsupervised Entity

Resolution on Multi-type Graphs, in: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch,

M., Lecue, F., Flöck, F., Gil, Y. (Eds.), The Semantic Web – ISWC 2016, Springer International

Publishing, Cham. pp. 649–667. doi:10.1007/978-3-319-46523-4_39.

32

https://ieeexplore.ieee.org/abstract/document/9669022/authors#authors
https://ieeexplore.ieee.org/abstract/document/9669022/authors#authors
http://dx.doi.org/10.1109/TPAMI.2021.3140070
https://doi.org/10.1145/3514221.3517872
https://doi.org/10.1145/3514221.3517872
http://dx.doi.org/10.1145/3514221.3517872
http://dx.doi.org/10.1109/TKDE.2020.2991063
http://dx.doi.org/10.1109/TKDE.2020.2991063
http://dx.doi.org/10.1007/978-3-319-46523-4_39

	Introduction
	Preliminaries and Related Work
	Entity resolution
	Machine learning, deep learning, word embeddings
	Transformers
	State-of-the-art EM
	Architectures of transformers as they pertain to AttendEM
	Tokenization
	Self-attention, encoders, and decoders
	Task-specific heads and aggregator tokens

	AttendEM: a Framework for Entity Matching
	Problem definition
	Process overview
	Text preprocessing
	Aggregator tokens: dual-CLS and NCLS
	Ensemble

	Framework Assessment
	Datasets
	Experiment setup
	Results
	Implications
	Ablation study

	Conclusion and Future Work

