
A Novel and Dedicated Machine Learning Model for Malware
Classification

Miles Q. Li1, Benjamin C. M. Fung2 a, Philippe Charland3 and Steven H. H. Ding4

1School of Computer Science, McGill University, Montreal, Canada
2School of Information Studies, McGill University, Montreal, Canada

3Mission Critical Cyber Security Section, Defence R&D Canada, Quebec, Canada
4School of Computing, Queen’s University, Kingston, Canada

miles.qi.li@mail.mcgill.ca, ben.fung@mcgill.ca, philippe.charland@drdc-rddc.gc.ca, ding@cs.queensu.ca

Keywords: Cybersecurity, Malware Classification, Reverse Engineering, Clustering.

Abstract: Malicious executables are comprised of functions that can be represented in assembly code. In the assembly
code mining literature, many software reverse engineering tools have been created to disassemble executables,
search function clones, and find vulnerabilities, among others. The development of a machine learning-based
malware classification model that can simultaneously achieve excellent classification performance and provide
insightful interpretation for the classification results remains to be a hot research topic. In this paper, we
propose a novel and dedicated machine learning model for the research problem of malware classification.
Our proposed model generates assembly code function clusters based on function representation learning
and provides excellent interpretability for the classification results. It does not require a large or balanced
dataset to train which meets the situation of real-life scenarios. Experiments show that our proposed approach
outperforms previous state-of-the-art malware classification models and provides meaningful interpretation of
classification results.

1 INTRODUCTION

Malware has been an increasingly serious threat to ne-
tizens all over the world, as there has been a tremen-
dous growth in the volume of new malware broadcast-
ing on the Internet (Kumar et al., 2019). To manually
analyze malware samples is not efficient enough to
prevent them from releasing their payload and caus-
ing damages. Most malware samples are variants of
existing ones that fall into a known malware fam-
ily (Nataraj et al., 2015; Kalash et al., 2018). Mal-
ware samples in the same family present similar be-
haviors and often share similar goals. Thus, it is cru-
cial to build an effective malware classification sys-
tem to automatically recognize the family of a new
malware sample to discern its malicious intent. It is
also important for the malware classification system
to be able to explain its classification result so that
malware analysts can validate the outcome and ac-
quire new insights.

Nowadays, general-purpose machine learning
models are applied to many kinds of classification

a https://orcid.org/0000-0001-8423-2906

tasks including malware classification (Moskovitch
et al., 2008; Santos et al., 2013; Nataraj et al., 2011;
Han et al., 2014; Yang and Wen, 2017; Kalash et al.,
2018). However, there are several limitations com-
ing with them. First, it is hard for ordinary machine
learning models to both achieve good classification
performance and provide good interpretability. Linear
models are simple and thus have inferior classifica-
tion performance but excellent interpretability. Non-
linear models, however, have better modelling power,
so they can achieve better performance, but lose inter-
pretability from complexity (Cerna et al., 2019). Sec-
ond, it is commonly known that the training of ordi-
nary machine learning models (Bishop, 2006; Mur-
phy, 2012) requires a large volume of data. The num-
ber of samples in each class is supposed to be sev-
eral times larger than the number of features, or they
tend to overfit the training set. This means that the
models just memorize the labels of the training data,
but cannot correctly classify unseen samples. Third,
when the dataset is unevenly distributed among dif-
ferent malware families, ordinary machine learning
models, in particular discriminative models, may fail
to achieve a satisfying performance. Those issues are

The official version was
published in ICSOFT 2021.

problematic since different malware families could
have quite different numbers of samples. The num-
ber of samples of some malware families could be
small and thus much less than the number of fea-
tures. Therefore, the performance of ordinary ma-
chine learning models are limited.

To overcome the aforementioned issues, instead
of using an existing machine learning model, we
propose a dedicated machine learning model that
is specifically designed to classify a malicious exe-
cutable to a malware family. Typically, an executable
contains hundreds or thousands of functions. Even a
small dataset with about one hundred executables has
hundreds of thousands of functions in total. There-
fore, our model handles the executable-level classifi-
cation task at the function level. It is thus feasible to
train the model even if the dataset is not very large
in terms of number of executables. Unlike an ordi-
nary classification approach, ours is developed based
on the concept of discriminative assembly code func-
tion cluster, or simply discriminative cluster for con-
ciseness. Discriminative clusters are sets of functions
that are only common in certain malware families.
They can serve as signatures for malware families and
are robust against uneven class (i.e., malware family)
distribution scenarios. We use the clone relation be-
tween functions in a target executable and functions
in the clusters to determine the malware family of
the executable. Thus, the classification results are in-
terepretable.

We summarize the contributions of this paper as
follows:

1. Our proposed malware classification model is
novel because it not only achieves excellent clas-
sification accuracy and but also provides inter-
pretable results to justify the classification result.
Our method can precisely pinpoint which func-
tions of the target executable belong to which
clusters. The constituents of the formed clusters
can also be visualized. This capability makes
our model much more than just a classification
system. The interpretability provides an addition
layer of insights and evidence to reverse engi-
neers.

2. Our model is more robust against the overfitting
problem than the general-purpose machine learn-
ing models on small datasets. It is well known that
training a classification system on a small dataset
is more challenging than training it on a large
one. Unlike an ordinary machine learning model
that is directly applied to features extracted from
samples, our method is dedicated for this specific
classification problem. It does not require a large
training set, since it handles the executable-level

classification task at the function level.

3. We formally define the concept of discriminative
cluster to effectively solve the uneven class dis-
tribution issue in malware classification. We also
develop an optimized algorithm to efficiently con-
struct discriminative clusters based on our novel
locality sensitive hashing-based method, which
significantly reduces the time complexity of func-
tion clustering.

The rest of the paper is organized as follows. Sec-
tion 2 introduces related work. Section 3 provides the
details of our proposed method. Section 4 presents the
experiment results and analyses. Section 5 concludes
the paper.

2 RELATED WORK

Schultz et al. (2001) propose to use imported DLLs,
functions, printable strings, and bigram byte se-
quences as features for malware detection. Since
the number of different bigram byte sequences is too
large for in-memory processing, they separate them
into multiple sets and feed them to several Naive
Bayes models. To solve this issue, Kolter and Mal-
oof (Kolter and Maloof, 2004) propose to use infor-
mation gain to select the most informative byte se-
quences as features, which improves both accuracy
and scalability. Further research (Moskovitch et al.,
2008; Dai et al., 2009; Santos et al., 2013) suggests
that opcode sequences are more effective features
than byte sequences because the meaning of instruc-
tion operands, e.g., memory addresses, constants,
varies in different contexts. Therefore, the operands
should not be included in any features. Since byte se-
quences include the operands while opcodes do not,
opcodes are thus better features. Due to the fact
that malware programs may use obfuscation, pack-
ing, polymorphism, and metamorphism to hide their
original malicious code, some researchers therefore
propose dynamic approaches. It involves running tar-
get executables in an isolated environment and moni-
toring the executed instructions and invoked system
calls as features (Fredrikson et al., 2010; Ye et al.,
2010; Dahl et al., 2013; Kolosnjaji et al., 2016; Huang
and Stokes, 2016). The disadvantage of dynamic ap-
proaches is that running executables and logging their
behaviors are time-consuming and do not reveal all
possible execution paths (Bayer et al., 2006).

All of the aforementioned works apply machine
learning models on their proposed features to classify
executables. In contrast, we use function clusters as
the basis for the classification. Chen et al. (2015) also

Executable Disassembling
Asm2Vec

Representation
Learning

Function
Representation

Database

Discriminative
Function

Clustering
Function
Cluster

Database

Function Clone
Search Classification Classification Result

Visualization

Training

Test

Cluster
Visualization

Figure 1: Workflow of our approach.

propose to classify malware using function clusters.
They assume files belonging to the same malware
family share some common functions. They group
functions of samples from the same malware family
in clusters, where any two functions can be connected
directly or indirectly using a clone relation. They pick
one function from each cluster as an exemplar to be a
signature of its malware family. Among all kinds of
clone detection methods Ding et al. (2016); Farhadi
et al. (2014, 2015); Cordy and Roy (2011); Ding et al.
(2019), they use the NiCad clone detector (Cordy and
Roy, 2011) to determine whether two functions are
a clone of each other. In the testing phase, they de-
tect whether a target file contains any function that
is a clone of an exemplary function that represents a
signature of a malware family. If a match is found,
the file is classified to be an instance of that malware
family. Their method is primitive and suffers from the
following issues:

1. Using one exemplar function to represent a cluster
of functions is problematic. As the same func-
tion evolves over different generations of mal-
ware samples in the same family, the newest ver-
sion may be quite different than the older ver-
sions (Cabaj et al., 2017). If the oldest version
is picked as the exemplar, there is a large chance
for the clone detector to fail in identifying some
of its new unknown generations.

2. Their function clusters may not be discriminative.
Some function clusters may be common in most
malware families or even legitimate software. In-
tuitively, they are not appropriate to serve as sig-
natures. There is no mechanism in their method
to filter out those function clusters.

3. The NiCad clone detector (Cordy and Roy, 2011)
cannot recognize function clone pairs that are se-
mantically similar, but syntactically very differ-
ent.

4. Their task is malware classification of Android
applications, which are written in Java. Neither

in their approach nor with NiCad do they explain
how they handle obfuscation, which is quite com-
mon in Java malware.

Our model addresses all of these issues.
Another related topic to this paper is locality sen-

sitive hashing (LSH). LSH is proposed to serve as a
fast and approximate solution to the nearest neighbor
problem (Indyk and Motwani, 1998). It is based on
the property that LSH functions lead to the results that
data points that are close to each other in their vec-
tor space have relatively high probability to have the
same hash value. Although LSH is mostly used for
real-life nearest neighbor problems (Ding et al., 2016;
Bawa et al., 2005; Jain et al., 2008; Kulis and Grau-
man, 2009; Sæbjørnsen et al., 2009), it can also be
used for data clustering. Koga et al. (2007) apply LSH
to find the closest cluster to an intermediate data clus-
ter in their agglomerative hierarchical clustering algo-
rithm. In a different way, Ravichandran et al. (2005)
use LSH functions to accelerate the speed of flat clus-
tering. Their objective is to cluster similar nouns from
a collection of nouns. The vectors of nouns have very
large dimension in their case, so they minimize the
number of times to compute their cosine similarities
by generating signatures with LSH functions to sort
items and only compare objects near each other in
the sorted lists and with similar signatures. The sub-
problem of this paper to cluster similar functions is
the same as theirs at an abstract level. However, in
our case, the dimension of the vectors representing
functions is small and the number of functions could
be very large. In our LSH-based clustering algorithm,
we do not have to avoid the cosine similarity compu-
tation, but we avoid the sorting procedure.

3 OUR APPROACH

Figure 1 illustrates an overview of our approach. The
executables are first disassembled and the assembly

code functions are fed into the representation learning
module of a clone search engine to generate function
vector representations, such that semantically simi-
lar functions have a high cosine similarity measure.
Next, the function representations are fed into a clus-
tering algorithm to construct function clusters that can
be used to discriminate malicious executables of some
families from others. In the testing phase, we disas-
semble a target executable and use the function clone
search engine to determine whether each function of it
is a clone of any function belonging to a cluster. The
results are used to calculate the confidence at which
the target executable belongs to each malware family.

3.1 Disassembling

In the first step, we use IDA Pro1, a commercial dis-
assembler, to disassemble the executable samples in
E. The output is a set of assembly code functions of
the executables.

3.2 Function Representation Learning

In this step, we learn the vector representations of
the disassembled code functions with Asm2Vec (Ding
et al., 2019), an open source function clone search en-
gine based on representation learning. In the literature
of function clone search, when the semantic similar-
ity between two functions is larger than a threshold,
which is automatically decided by a clone search en-
gine or defined by a user, they are considered to be a
clone of each other. Given a target function, the ob-
jective of a clone search engine is to retrieve the top-
k semantically similar functions indexed in the code
repository, which have semantic similarities with the
target function larger than the threshold. The mech-
anism of Asm2Vec is to train an unsupervised learn-
ing model to generate vector representations of func-
tions. The cosine similarity of the vector representa-
tions of two functions represents their semantic sim-
ilarity: cos(θ(u,v)) = |u·v|√

|u||v|
where vector u and v

are the semantic representations of two functions and
θ(u,v) is the angle between vector u and v. We use the
representation learning module of Asm2Vec to gener-
ate the representations of functions disassembled in
the previous step. We choose Asm2Vec because it has
been taken as one of the best solutions for single-
platform clone search (Zuo et al., 2018; Massarelli
et al., 2019b,a) for the following reasons:

1. It is capable to recognize semantically similar
function pairs, even though they may appear syn-
tactically different.

1https://www.hex-rays.com/products/ida/

2. It has been shown to be more resilient to code
obfuscation and compiler optimization than other
clone search engines.

To learn function representations, Asm2Vec uses co-
occurrence relationships among assembly tokens (i.e.,
opcodes and operands) and discovers rich lexical se-
mantic relationships among them. It learns vector
representations of assembly tokens and of assembly
code functions simultaneously in the training phase
and computes the representations of target functions
in the testing phase. We refer the readers to the origi-
nal paper for more details (Ding et al., 2019).

3.3 Discriminative Function Clustering

Consider an undirected graph where the vertices are
assembly functions and edges exist between functions
that are clones of each other, then a function cluster is
a connected component of the graph. In other words,
functions that are in the same cluster are connected
directly or indirectly through clone relations. Some
clusters resemble the commonality of malware fam-
ilies, but others do not, because the clusters are too
common in all kinds of malware families or also in
legitemate software. In other words, they are not dis-
criminative for the classification problem. Therefore,
we want to exclude them and keep only the discrim-
inative ones. In contrast, Chen et al. (2015) isolate
functions from each malware family and then cluster
them for each family separately. Their solution cannot
identify or exclude non-discriminative function clus-
ters.

3.3.1 Discriminative Assembly Code Function
Cluster

Before describing the algorithms to construct dis-
criminative clusters, we first define the discrimina-
tive power of a cluster. Intuitively, the larger the per-
centage of executables in a malware family contain a
function that belongs to a cluster, the more likely the
cluster is a commonality of that family. However, if
for every malware family there is a large percentage
of executables containing a function that belongs to
a cluster, the cluster is not discriminative anymore,
since it is a commonality of all malware families.
Therefore, a large difference on the popularity of a
cluster among different malware families indicates a
good discriminative power. Figure 2 illustrates this
idea. We give a formal definition of a discriminative
cluster below.

Consider a set of predefined malware families C =
{C1, . . . ,Cm}, a collection of executable samples E,
a set of assembly functions F = { f1, . . . , fn}, and a

Figure 2: Comparison of different discriminative powers of clusters. Function cluster 1 is only popular in malware family 1
and every executable in the family contains a function of cluster 1. Therefore, cluster 1 has the highest discriminative power.
The same applies to cluster 4. Cluster 3 is popular among family 1 and family 2 and no executable in family 3 contains one
of its functions. Hence, it still has some discriminative power. Functions in cluster 3 are from all three families. Cluster 3 has
thus a low discriminative power.

set of assembly function clusters G = {G1, . . . ,Gl},
where each Gi ⊆ F . Each executable sample e ∈ E
is a subset of assembly functions e ⊆ F . Each ex-
ecutable sample e ∈ E belongs to a malware fam-
ily Ce ∈ C. Let exe(Gi) denotes the set of executa-
bles that have function(s) in cluster Gi. Formally,
exe(Gi) = {e|∃ f , f ∈ e∧ f ∈ Gi}.

Next, we define the notion of overlapping be-
tween a malware family and a cluster in terms of
common functions. com f (Gi,C j) denotes the set of
functions in executables of family C j that are also
in cluster Gi. Formally, com f (Gi,C j) = { f |∀ f , f ∈
e ∧ e ∈ C j ∧ f ∈ Gi}. |com f (Gi,C j)| is the cardi-
nality of com f (Gi,C j) and denotes the number of
overlapping functions between Gi and C j in this con-
text. ‖com f (Gi,C j)‖ denotes the |com f (Gi,C j)| nor-
malized by the number of executables in family C j,

‖com f (Gi,C j)‖=
|com f (Gi,C j)|

|C j | . To put in plain words,
‖com f (Gi,C j)‖ is the percentage of executables in
family C j that has at least one function in cluster Gi.
The popularity of a malware family C j in cluster Gi,
denoted by pop(Gi,C j), is shown in Equation 1.

pop(Gi,C j) =
‖com f (Gi,C j)‖

∑
m
j=1 ‖com f (Gi,C j)‖

(1)

We have ∑
m
j=1 pop(Gi,C j) = 1. If a cluster contains

functions from only one executable, then it probably
characterizes only that executable itself rather than
the malware family it belongs to. Therefore, the dis-
criminative power only exists in clusters that consist
of functions from at least two executables. Intuitively,
if the difference between the popularity of different

malware families of a cluster is large, then the dis-
criminative power of the cluster is high. We define
the discriminative power of a cluster Gi, denoted by
d p(Gi), based on this intuition.
Definition 3.1 (Cluster Discriminative Power). We
define the discriminative power of cluster Gi as fol-
lows. If |exe(Gi)| = 1, then d p(Gi) = 0. Otherwise,
d p(Gi)=max j{pop(Gi,C j)}−min j{pop(Gi,C j)}.

Discriminative assembly code function clusters
are the clusters that have high disciminative powers.
In other words, the clusters that can be used to differ-
entiate malware families.
Definition 3.2 (Discriminative Assembly Code Func-
tion Cluster). A cluster Gi is a discriminative as-
sembly code function cluster if d p(Gi) ≥ θ1, where
0≤ θ1 ≤ 1 is a prespecified threshold.

3.3.2 LSH-based Discriminative Clustering
Algorithm

To construct discriminative clusters, we do it in two
steps. The first step is to construct function clus-
ters. The second step is to calculate the discriminative
power of the clusters and keep only those with a high
discriminative power.

The most straightforward way to group functions
in clusters is also done in two steps. The first step
is to compute the semantic similarity between every
function pair and find all function clones. The second
is to use a Union-Find (a.k.a. Disjoint Set) algorithm
to combine the unions of two functions that are
clones of each other. For the latter part, we adopt the

Algorithm 1: LSH_Separation.

Data: a set of functions F , the maximum
number of LSH functions to apply
nh_max, the lower boundary of the
number of functions in a bucket n f _b

Result: A set of buckets R
R← /0 ;
f _hash←{ f → 0| f ∈ F};
n_hash← 0;
while sizeo f (F)> 0 do

Cur_buckets← /0;
LSH_ f unc← new_LSH_ f unc();
for f ∈ F do

old_hash← f _hash.get(f);
cur_hash← LSH_ f unc(f);
new_hash← (old_hash <<

1)+ cur_hash;
f _hash.put(f ,new_hash);
if new_hash 6∈Cur_buckets.keys then

Cur_buckets.put(new_hash, /0);
end
buck←Cur_buckets.get(new_hash);
buck.add(f);

end
for hash,buck ∈Cur_buckets.KV Pairs

do
if sizeo f (buck)≤ n f _b then

R.add(buck);
F ← F−buck;

end
end
n_hash = n_hash+1;
if n_hash≥ nh_max then

for
hash,buck ∈Cur_buckets.KV Pairs
do

if sizeo f (buck)> n f _b then
R.add(buck);
F ← F−buck;

end
end
break;

end
end

Weighted Quick-Union with Path Compression algo-
rithm (Sedgewick and Wayne, 2011), since it is the
most efficient one. The problem is that the first step
requires to iterate very function pair with a complex-
ity of O(n2), where n is the number of functions. This
is not efficient enough when the number of functions
is large. Therefore, we propose an LSH-based algo-
rithm to significantly improve the efficiency.

We use a family of LSH functions as follows: each

hash function corresponds to a random vector r which
has the same dimension as the assembly code function
vector representation. The hash value of an assembly
code function vector representation u is computed as
follows:

hr(u) =
{

1 u · r > 0
0 u · r ≤ 0

It has been proven (Indyk and Motwani, 1998) that
for vector u and vector v, the probability that they
have the same hash value of the same LSH function is
as follows:

Pr[hr(u) = hr(v)] = 1−
θ(u,v)

π
(2)

Two functions that are clones of each other
are semantically similar and have a large cosine
similarity cos(θ(u,v)), i.e., small value of θ(u,v).
They thus stand a better chance to have the same
hash value. Therefore, we propose the algorithm
LSH_Separation described as Algorithm 1 to put po-
tentially semantically similar assembly functions in
the same bucket. First, we gradually apply LSH func-
tions on the assembly functions and form a signa-
ture composed of hash values produced by the hash
functions for each assembly code function. Then, we
place the assembly functions having the same signa-
ture in the same bucket. If the number of functions of
a bucket is less than a certain number n f _b, the bucket
is saved and excluded from the subsequent procedure.
If a certain number nh_max of hash functions have been
applied, even though there could still be some buck-
ets holding more than n f _b functions, the procedure
stops and all the remaining buckets are saved. Each
saved bucket contains potentially semantically simi-
lar assembly functions, so we compute the semantic
similarity between every function pair in a bucket and
feed all function clone pairs to the Union-Find algo-
rithm to group them in clusters.

It is still possible that semantically similar as-
sembly functions are separated in different buck-
ets. To solve this issue, we repeat the algorithm
LSH_Separation l times and compute the similarities
between functions in every bucket produced by the al-
gorithm in the l times. Practically, l does not have to
be large and l = 2 is usually enough. Let us use an ex-
ample to illustrate this idea. Consider a function clus-
ter of m functions. It is separated in two buckets by
an LSH function when we apply LSH_Separation for
the first time. Then, we compare the semantic similar-
ity between every function pair in each bucket to find
function clone pairs. If we apply the Union-Find al-
gorithm on the function clone pairs that we find from
the two buckets, we form two separate clusters with
the functions from the original function cluster. Then,
when we apply LSH_Separation for the second time,

Figure 3: Visualization of clusters.

the original cluster is probably not separated the same
way as in the first time. Any two functions that are
a clone of each other in the cluster and separated in
different buckets the first time, but in the same bucket
the second time, are recognized as a function clone
pair. The two clusters they belong to are combined
and we get the original cluster.

The time complexity of applying
LSH_Separation algorithm l times is
O(l × (nh_max × n)) = O(lnh_maxn). The time
complexity to compute the semantic similarity
between every function pair in all generated buck-

ets is O(l × (
n

n f _b
× n2

f _b)) = O(ln f _bn). The

total time complexity is O(lnh_maxn + ln f _bn) =
O(l(nh_max + n f _b)n). Since l, nh_max, and n f _b are
constants and much smaller than n, we reduce the
time complexity of finding all function clone pairs
from O(n2) to a practically linear procedure.

After we use our optimized algorithm to find func-
tion clone pairs and the Union-Find algorithm to con-
struct the clusters, we just need to compute their dis-
criminative powers according to our definition and re-
move the non-discriminative ones.

3.3.3 Cluster Labeling

Chen et al. (2015) assign a hard malware family label
to a cluster, since their clusters are formed within in-
dividual families. We also assign a label to be the
family which takes the largest popularity in cluster
Gi: label(Gi) = argmaxC j{pop(Gi,C j)}. However, a
function cluster may be common in multiple malware
families. Therefore, we still keep all pop(Gi,C j) of a
cluster Gi for classifying target executables.

3.4 Function Clone Search

For a target executable, we use Asm2Vec to detect
clone relations between all its functions and the func-
tions in the clusters. Since each cluster is considered
to be a set of semantically equivalent functions, if a

function of the target executable is a clone of any
function in a cluster, it is also considered to be a mem-
ber of that cluster. As most functions of the executa-
bles in the training set do not belong to a discrimina-
tive cluster, they are abandoned. By keeping only dis-
criminative clusters, we also greatly reduce the time
consumption of this step.

3.5 Malicious Executable Classification

To classify a target executable, we calculate an affili-
ation score for each malware family. If the target exe-
cutable contains a function that is a member of cluster
Gi, then pop(Gi,C j) for all j = 1, . . . ,m of that cluster
Gi is added to the scores of those malware families.
The absolute score accumulated in this way cannot
tell the confidence at which a target executable be-
longs to a malware family. Therefore, for each fam-
ily, we calculate the scores in the same way for all
executables of that family in the training set and find
the median. Then, we divide the accumulated score
of a target executable by that median to be the confi-
dence at which the executable belongs to that family.
If the confidence is larger than 100%, it will be set to
100%.

3.6 Visualization

Our approach supports visualizing the composition of
the formed clusters and the interpretation of the clas-
sification results. For each cluster, the family popu-
larity and its function composition can be viewed to
examine whether they are good signatures of the cor-
responding families. An example is given in Figure 3.
If some clusters are found to be not reasonably good
signatures or some functions should not be included
in a cluster, they can be manually deleted. This abil-
ity to allow human-in-the-loop is a unique advantage
of our classification model. To provide a justification
for the classification of a target executable, its func-
tions that belong to a cluster and the functions in the
clusters that are clones of them can also be viewed.

Table 1: Statistics of the dataset.

Class Training Validation Test
of exec # of func # of exec # of func # of exec # of func

Autoit 80 141,763 26 44,145 27 46,732
Bundlore 186 72,674 61 24,436 61 24,500
Emotet 175 8,714 57 3,405 57 3,460

Fireseria 131 68,605 43 22,516 44 23,109
Gamarue 96 141,312 32 55,676 33 56,276
Hotbar 80 124,977 26 40,633 27 41,712
Imali 121 79,108 40 25,279 41 26,159

Loadmoney 151 39,296 50 13,442 51 13,323
Softpulse 79 58,289 26 19,218 27 19,536

Speedingupmypc 80 38,692 27 12,488 28 13,735
Total 1,179 773,430 388 261,238 396 268,542

An example is given in Figure 4. This interpretabil-
ity can help malware analysts better understand the
function grouping phenomena among some malware
families.

4 EXPERIMENTS

The objectives of our experiments are to (1) evalu-
ate the performance of our dedicated machine learn-
ing model for malware classification, compared with
other state-of-the-art machine learning solutions, (2)
demonstrate that using the proposed concept discrim-
inative power to select function clusters is effective
and necessary, and (3) illustrate the interpretability of
our classification model.

4.1 Dataset

We evaluate the classification model with a dataset of
10 malware families. It is separated into three parts:
training set, validation set, and test set. The valida-
tion set is used to tune hyper-parameters, which is the
discriminative power threshold in our case. We did
not tune the hyper-parameters of Asm2Vec, including
the dimension of vectors representing the functions
and the threshold to determine clone relation, as we
use the default values. There is no overlapping of
executables between the training, validation, and test
sets. To evaluate the generalizability of all classifica-
tion methods, the dataset is organized in a time split
setting (Saxe and Berlin, 2015), i.e., the samples in
the test set are chosen as the ones that are compiled
later than the samples in the training and validation
set. In Table 1, we present the statistics. The dataset
is not very large in terms of number of executables in
each malware family and the class distribution is un-
even by nature. These conditions make it challenging

for machine learning-based classification models.
We collect the malware samples from MalShare

and VirusShare. We use the AVClass malware label-
ing tool (Sebastián et al., 2016) to generate the mal-
ware family label of the malware samples, based on
analysis reports from VirusTotal2. It should be noted
that some malware samples use packing, polymor-
phism, or metamorphism. For them, IDA Pro can
identify zero or only one function. We do not include
those samples in our dataset, since our focus is not
on accounting for those techniques but on classify-
ing malware samples based on the functions that are
already revealed. Asm2Vec can identify the clone re-
lation between an obfuscated function and its original
function, so obfuscation is not a concern.

Our experiment focuses on evaluating the accu-
racy of the classification results. We also evaluate the
precision, recall, and F1 for each family. The classifi-
cation of an executable is correct if the predicted fam-
ily, i.e., the class with the highest confidence, matches
its real family label.

4.2 Comparing with State-of-the-Art
Models

We compare our approach with the following state-
of-the-art static malware classification methods.

• Mosk2008OpBi: Moskovitch et al. (2008) pro-
pose to use TF or TF-IDF of opcode bi-grams as
features and use document frequency (DF), infor-
mation gain ratio, or Fisher score as the criteria
for feature selection. They apply Artificial Neural
Networks, Decision Trees, Naïve Bayes, Boosted
Decision Trees, and Boosted Naïve Bayes as their
malware classification models.

2https://www.virustotal.com/

Table 2: Experiment results on each malware family.

Malware family Our method Bald2013Meta
Precision Recall F1-score Precision Recall F1-score

Autoit 1.00 1.00 1.00 0.96 0.89 0.92
Bundlore 1.00 0.97 0.98 0.98 1.00 0.99
Emotet 0.98 0.96 0.97 1.00 0.98 0.99
Firseria 0.98 1.00 0.99 1.00 1.00 1.00

Gamarue 0.97 0.94 0.95 0.94 0.91 0.92
Hotbar 0.96 1.00 0.98 0.96 0.89 0.92
Imali 0.98 1.00 0.99 0.98 1.00 0.99

Loadmoney 0.96 0.98 0.97 0.98 1.00 0.99
Softpulse 1.00 1.00 1.00 0.93 0.93 0.93

Speedingupmypc 1.00 1.00 1.00 0.90 1.00 0.95
Weighted Average 0.98 0.99 0.98 0.96 0.97 0.97

• Bald2013Meta: Baldangombo et al. (2013) pro-
pose to extract multiple raw features from PE
headers and use information Gain and calling fre-
quencies for feature selection and PCA for dimen-
sion reduction. They apply SVM, J48, and Naïve
Bayes as their malware classification models.

• Saxe2015Deep: Saxe and Berlin (2015) propose
a deep learning model that works on four differ-
ent features: byte/entropy histogram features, PE
import features, string 2D histogram features, and
PE metadata numerical features.

• Mour2019CNN: Mourtaji et al. (2019) convert
malware binaries to grayscale images and apply a
convolutional neural network (CNN) on malware
images for malware classification. Their CNN
network has two convolutional layers followed by
a fully-connected layer.

Table 3: Accuracy of different models on the test set.

Method Accuracy
Our Method 98.2%

Our Method (all clusters) 94.2%
Mosk2008OpBi 82.3%
Bald2013Meta 97.0%
Saxe2015Deep 96.7%
Mour2019CNN 55.1%

4.3 Classification Results

We show the classification accuracy of our approach
and the state-of-the-art models for comparison in Ta-
ble 3. The first row is the results of the exact model
we proposed and the second row shows the results
of our model without excluding clusters of low dis-
criminative power. From the table, we can see that
by keeping only the discriminative clusters, our ap-
proach achieves significantly better results. This ver-
ifies the effectiveness of our proposed concept of dis-

criminative power and the importance of using it to
exclude the interference of irrelevance functions in
non-discriminative clusters. The previous methods
for comparison achieve different performances and
the accuracy is lower than what they report in their
papers. This may be due to the fact that the dataset is
relatively small and ordinary machine learning mod-
els require a large dataset to train, while our model
works at the assembly function level to mitigate this
issue. This result shows the advantage of our pro-
posed model since in real-life scenarios, some mal-
ware families do not contain a lot of samples.

In Table 2, we compare our method with
Bald2013Meta, which is the best model for compari-
son, regarding precision, recall and F1 for each mal-
ware family. We can see that Bald2013Meta achieves
lower F1 on malware families with less training sam-
ples such as Autoit and Hotbar, while our model have
no such issue. This confirms our statement that gen-
eral machine learning models are less robust with
datasets of uneven class distribution, while our model
uses the concept of Discriminative assembly code
function clusters, which takes uneven class distribu-
tion into consideration, and thus does not suffer from
this issue.

4.4 Visualizing Clusters

The clusters of each family and the functions that
form them can be visualized. An example is shown
in Figure 3. We can see the list of clusters for each
malware family, the functions in each cluster, and the
class popularity pop(Gi,C j) of each cluster.

To provide an in-depth understanding of the clus-
ters, we carefully examined the formed clusters of the
two datasets. According to our observation, we find
min j{pop(Gi,C j)} = 0 for all saved clusters. This
means that for every saved cluster, there is always at
least one malware family that has no function in it.

Figure 4: An example of the detailed interpretation of classification results.

The two reasons leading to this result are as follows:
(1) some of the 10 malware families are quite dif-
ferent from each other. The chance that all of them
share some semantically similar functions is very
low. (2) A few clusters with min j{pop(Gi,C j)} > 0
are automatically filtered, because their discrimina-
tive power is low. Therefore, for each cluster Gi
that is saved, we have d p(Gi)=max j{pop(Gi,C j)}−
min j{pop(Gi,C j)}= max j{pop(Gi,C j)}.

We also provide the statistics on the number
of classes (nc) that have functions in a cluster and
the discriminative power (d p(Gi) or equivalently
max j{pop(Gi,C j)}) of a cluster. They are shown in
Table 4. Most clusters (i.e., 4,723) are homogeneous:
all of their functions are from the same family, i.e.,
the number of nc = 1 or max j{pop(Gi,C j)} > 0.99.
If there is only one family taking up a large popu-
larity (e.g., max j{pop(Gi,C j)}> 0.90) of cluster Gi,
the cluster is obviously a good signature of the fam-
ily. 988 clusters contain functions from two malware
families. We manually examined those clusters con-
cerning two malware families and found that many of
them are shared by related malware families that have
similar behaviors. Therefore, those clusters charac-
terize both malware families and provide insights on
the commonalities of the malware families to reverse
engineers.

4.5 Interpretable Classification Results

To interpret the classification results, the executable’s
functions that are clones of functions in a cluster and
the corresponding cluster are presented. Figure 4
shows an example. The target executable belongs to
malware family Autoit. The figure presents a list of
functions of it that are clones of functions in a clus-
ter. Its function sub_40B6D0 belongs to cluster Au-
toit_Cluster186, which we have introduced in Fig-
ure 3, since it is a clone of the listed functions in the
training set that belong to Autoit_Cluster186. Fig-

Table 4: Statistics of clusters. nc is the number of classes
that have functions in a cluster. d p(Gi) is the discriminative
power of the clusters. The second and the fourth columns
are the numbers of clusters that satisfy the numbers in the
first column and the ranges in the third column, respectively.

nc # of clusters d p(Gi) # of clusters
1 4,723 [0,0.20] 0
2 988 (0.20,0.40] 0
3 45 (0.40,0.60] 260
4 22 (0.60,0.80] 228
5 30 (0.80,0.99] 615
6 17 (0.99,0.100] 4,723
7 1
≥ 8 0

ures 3 shows that Autoit_Cluster186 consists of 112
functions. However, Figure 4 shows that only 13 of
them are found to be clones of sub_40B6D0 in the
target executable. Chen et al. (2015) use one ex-
emplary function to represent a cluster in their mal-
ware classification system. Their method would fail
to identify that sub_40B6D0 belongs to cluster Au-
toit_Cluster186, if one of the 99 functions in Au-
toit_Cluster186 that were not determined as clones of
sub_40B6D0 in the target executable, was chosen as
the exemplar. Our model does not have this concern,
as we keep all the functions of a cluster.

5 CONCLUSION

This work is the result of a fruitful collaboration with
some reverse engineers in a government agency. The
accuracy of a malware classification system is impor-
tant for system security monitoring usage. Yet, in-
terpretability is also crucial if further investigation or
justification is needed on the classification results. In
this paper, we propose a novel and dedicated machine
learning model for malware classification that has
several advantages over the ordinary machine learn-

ing classification models for this task. First, it does
not require a large number of samples in each mal-
ware family to train the model. Second, using the con-
cept of discriminative power to select discriminative
function clusters, our approach can handle datasets
with uneven class distribution. Third, unlike ordinary
machine learning models, our approach provides in-
terpretable evidence to justify its classification results.
It is a practical solution for malware classification.

ACKNOWLEDGMENT

This research is supported by Defence Research
and Development Canada (contract no. W7701-
176483/001/QCL), NSERC Discovery Grants
(RGPIN-2018-03872), and Canada Research Chairs
Program (950-230623).

REFERENCES

Baldangombo, U., Jambaljav, N., and Horng, S.-J. (2013).
A static malware detection system using data mining
methods. arXiv preprint arXiv:1308.2831.

Bawa, M., Condie, T., and Ganesan, P. (2005). Lsh forest:
self-tuning indexes for similarity search. In Proceed-
ings of the 14th International Conference on World
Wide Web, pages 651–660. ACM.

Bayer, U., Moser, A., Kruegel, C., and Kirda, E. (2006).
Dynamic analysis of malicious code. Journal in Com-
puter Virology, 2(1):67–77.

Bishop, C. M. (2006). Pattern recognition and machine
learning. springer.

Cabaj, K., Gawkowski, P., Grochowski, K., Nowikowski,
A., and Żórawski, P. (2017). The impact of mal-
ware evolution on the analysis methods and infras-
tructure. In Proceedings of the Federated Conference
on Computer Science and Information Systems (Fed-
CSIS), pages 549–553. IEEE.

Cerna, A. E. U., Pattichis, M., VanMaanen, D. P., Jing, L.,
Patel, A. A., Stough, J. V., Haggerty, C. M., and Forn-
walt, B. K. (2019). Interpretable neural networks for
predicting mortality risk using multi-modal electronic
health records. arXiv preprint arXiv:1901.08125.

Chen, J., Alalfi, M. H., Dean, T. R., and Zou, Y. (2015). De-
tecting android malware using clone detection. Jour-
nal of Computer Science and Technology, 30(5):942–
956.

Cordy, J. R. and Roy, C. K. (2011). The nicad clone
detector. In Proceedings of the 19th IEEE In-
ternational Conference on Program Comprehension
(ICPC), pages 219–220. IEEE.

Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. (2013).
Large-scale malware classification using random pro-
jections and neural networks. In Acoustics, Speech

and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 3422–3426. IEEE.

Dai, J., Guha, R. K., and Lee, J. (2009). Efficient virus
detection using dynamic instruction sequences. JCP,
4(5):405–414.

Ding, S. H. H., Fung, B. C. M., and Charland, P. (2016).
Kam1n0: MapReduce-based assembly clone search
for reverse engineering. In Proceedings of the 22nd
ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), pages 461–470.
ACM Press.

Ding, S. H. H., Fung, B. C. M., and Charland, P. (2019).
Asm2vec: Boosting static representation robustness
for binary clone search against code obfuscation and
compiler optimization. In Proceedings of the 40th
International Symposium on Security and Privacy
(S&P), pages 38–55. IEEE Computer Society.

Farhadi, M. R., Fung, B. C. M., Charland, P., and Deb-
babi, M. (2014). Binclone: Detecting code clones
in malware. In Proceedings of the 8th IEEE Interna-
tional Conference on Software Security and Reliabil-
ity (SERE), pages 78–87, San Francisco, CA. IEEE.

Farhadi, M. R., Fung, B. C. M., Fung, Y. B., Charland,
P., Preda, S., and Debbabi, M. (2015). Scalable code
clone search for malware analysis. Digital Investiga-
tion (DIIN): Special Issue on Big Data and Intelligent
Data Analysis, 15:46–60.

Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., and
Yan, X. (2010). Synthesizing near-optimal malware
specifications from suspicious behaviors. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages
45–60. IEEE.

Han, K., Kang, B., and Im, E. G. (2014). Malware analysis
using visualized image matrices. The Scientific World
Journal, 2014.

Huang, W. and Stokes, J. W. (2016). Mtnet: a multi-task
neural network for dynamic malware classification. In
Proceedings of the International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 399–418. Springer.

Indyk, P. and Motwani, R. (1998). Approximate nearest
neighbors: towards removing the curse of dimension-
ality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613.
ACM.

Jain, P., Kulis, B., and Grauman, K. (2008). Fast image
search for learned metrics. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D.,
Wang, Y., and Iqbal, F. (2018). Malware classification
with deep convolutional neural networks. In Proceed-
ings of the 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages
1–5. IEEE.

Koga, H., Ishibashi, T., and Watanabe, T. (2007). Fast
agglomerative hierarchical clustering algorithm using
locality-sensitive hashing. Knowledge and Informa-
tion Systems, 12(1):25–53.

Kolosnjaji, B., Zarras, A., Webster, G., and Eckert, C.
(2016). Deep learning for classification of malware
system call sequences. In Proceedings of the Aus-
tralasian Joint Conference on Artificial Intelligence,
pages 137–149. Springer.

Kolter, J. Z. and Maloof, M. A. (2004). Learning to de-
tect malicious executables in the wild. In Proceedings
of the 10th ACM International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD), pages
470–478. ACM.

Kulis, B. and Grauman, K. (2009). Kernelized locality-
sensitive hashing for scalable image search. In Pro-
ceedings of the International Conference on Computer
Vision (ICCV), volume 9, pages 2130–2137.

Kumar, N., Mukhopadhyay, S., Gupta, M., Handa, A., and
Shukla, S. K. (2019). Malware classification using
early stage behavioral analysis. In Proceedings of the
14th Asia Joint Conference on Information Security
(AsiaJCIS), pages 16–23. IEEE.

Massarelli, L., Di Luna, G. A., Petroni, F., Baldoni, R.,
and Querzoni, L. (2019a). Safe: Self-attentive func-
tion embeddings for binary similarity. In Proceedings
of the International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment,
pages 309–329. Springer.

Massarelli, L., Di Luna, G. A., Petroni, F., Querzoni, L., and
Baldoni, R. (2019b). Investigating graph embedding
neural networks with unsupervised features extraction
for binary analysis. In Proceedings of the 2nd Work-
shop on Binary Analysis Research (BAR).

Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitel-
man, M., Dolev, S., and Elovici, Y. (2008). Unknown
malcode detection using opcode representation. In
Proceedings of the IEEE International Conference on
Intelligence and Security Informatics, pages 204–215.
Springer.

Mourtaji, Y., Bouhorma, M., and Alghazzawi, D. (2019).
Intelligent framework for malware detection with con-
volutional neural network. In Proceedings of the 2nd
International Conference on Networking, Information
Systems & Security, pages 1–6.

Murphy, K. P. (2012). Machine learning: a probabilistic
perspective. MIT press.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B.
(2011). Malware images: visualization and automatic
classification. In Proceedings of the 8th international
symposium on visualization for cyber security, page 4.
ACM.

Nataraj, L., Karthikeyan, S., and Manjunath, B. (2015).
Sattva: Sparsity inspired classification of malware
variants. In Proceedings of the 3rd ACM Workshop on
Information Hiding and Multimedia Security, pages
135–140.

Ravichandran, D., Pantel, P., and Hovy, E. (2005). Random-
ized algorithms and nlp: Using locality sensitive hash
functions for high speed noun clustering. In Proceed-
ings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 622–629.

Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., and
Su, Z. (2009). Detecting code clones in binary ex-
ecutables. In Proceedings of the 18th International

Symposium on Software Testing and Analysis, pages
117–128. ACM.

Santos, I., Devesa, J., Brezo, F., Nieves, J., and Bringas,
P. G. (2013). Opem: A static-dynamic approach
for machine-learning-based malware detection. In
Proceedings of the International Joint Conference
CISIS’12-ICEUTE 12-SOCO 12 Special Sessions,
pages 271–280. Springer.

Saxe, J. and Berlin, K. (2015). Deep neural network based
malware detection using two dimensional binary pro-
gram features. In Proceedings of the 10th Interna-
tional Conference on Malicious and Unwanted Soft-
ware (MALWARE), pages 11–20. IEEE.

Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2001).
Data mining methods for detection of new malicious
executables. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 38–49. IEEE.

Sebastián, M., Rivera, R., Kotzias, P., and Caballero, J.
(2016). Avclass: A tool for massive malware labeling.
In Proceedings of the International Symposium on Re-
search in Attacks, Intrusions, and Defenses, pages
230–253. Springer.

Sedgewick, R. and Wayne, K. (2011). Algorithms.
Addison-Wesley Professional.

Yang, M. and Wen, Q. (2017). Detecting android malware
by applying classification techniques on images pat-
terns. In Proceedings of the 2nd International Con-
ference on Cloud Computing and Big Data Analysis
(ICCCBDA), pages 344–347. IEEE.

Ye, Y., Li, T., Huang, K., Jiang, Q., and Chen, Y. (2010). Hi-
erarchical associative classifier (hac) for malware de-
tection from the large and imbalanced gray list. Jour-
nal of Intelligent Information Systems, 35(1):1–20.

Zuo, F., Li, X., Zhang, Z., Young, P., Luo, L., and Zeng,
Q. (2018). Neural machine translation inspired binary
code similarity comparison beyond function pairs.
arXiv preprint arXiv:1808.04706.

