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Abstract—Properly analyzing health insurance claims data
could lead to significant business insights and benefits for health
service providers and insurance companies. Yet, health insurance
data is often high dimensional and contains complex interleave
sequences of claims. Instead of conducting machine learning tasks
directly on the raw data, a better approach is performing the
tasks on high-quality embeddings of the raw data. Driven by the
real business need of Solution Segic Inc., a Canadian technology
company in the group insurance industry, we extract health
insurance claims embeddings with neural networks in the context
of anomaly detection. We propose and thoroughly examine six
embedding components that are customized based on different
possible assumptions made on the data. One of our proposed
embedding components, EC-ReStepRec, significantly outperforms
other candidates on two anomaly detection tasks. This is the first
embedding study done on health insurance claims for anomaly
detection.

Index Terms—embedding, representation learning, machine
learning, health insurance claims

I. INTRODUCTION

Health insurance claims data are the bills between health
service providers and insurance companies for the services
obtained by a patient. A typical claiming process begins with
a patient receiving health services from a provider. Next,
the service provider submits a claim directly to an insurance
company. The claim goes though validation checks followed
by rules based on the patient’s plan for pricing. Then, the
insurance company pays the service provider [1]. Health
insurance claims could be generally categorized into medical,
pharmaceutical, and dental based on the services and service
providers under request. As shown in Figure 1, each claim
record generally contains information about the patient, the
service provider, and the service. The exact attributes included
in a claim depend on its category. For pharmaceutical claims,
typical patient attributes include name, date of birth, address,
etc. Typical service provider attributes include pharmacy code,
pharmacist code, etc. Typical service attributes include medi-
cation code, quantity, date of service, etc.

Health insurance claims have been increasingly studied,
resulting in many analytical insights that contribute to health-
care applications. Koh et al. [2] summarize the applications
into four categories: evaluation of treatment effectiveness,
healthcare management, customer relationship management,
and anomaly detection.

Figure 1: A claim record

Among the aforementioned applications, anomaly detection
deserves special attention from insurance companies and gov-
ernments. In the context of health insurance claims, there are
three types of anomalies: frauds, abuses, and errors. Frauds in-
dicate intentional acts of deception, misrepresentation, or con-
cealment in order to get payment. Abuses indicate excessive or
improper use of services that are inconsistent with acceptable
business or medical practice and that result in unnecessary
costs. Errors are unintentional mistakes made in processing
claims. The boundaries between the three categories are not
always clear. Frequent errors could suggest an abuse. Besides,
intention is hard to be reflected in a claim itself. All three
types of anomaly deserve special attention. Further manual
examinations are required to determine the actions followed.
The general goal is to accurately identify the anomalies.

In reality, however, it is hard to conduct analyses or perform
machine learning tasks directly on health insurance claims
data, which are often high dimensional and in the form of in-
terleaving sequences. Prevailing data analytical techniques are
typically applied to datasets where the records are relatively
small in dimension [3]. The same analytical dilemma also
appears in other domains such as accounting and banking [4]–
[10].

Traditionally, feature engineering plays an important role
in addressing the issue of high dimensionality. Based on the
knowledge for the target dataset, a relatively small set of
indicators would be selected as the input of the detection
models. Recently, through the development of deep learning
techniques, embedding has been widely studied as a solution
to tackle the curse of dimensionality.

Driven by the business requirements of our industrial part-
ner, Solution Segic Inc., a Canadian technology company
in the group insurance industry, we have been working on
their health insurance claims data. We aim for embeddings
that can effectively represent the health insurance claims data



in low dimensional space but still be descriptive, and thus
the embeddings could be effectively applied in the analytical
scenario of anomaly detection.

To obtain an effective embedding, we propose six em-
bedding components for health insurance claims data. The
embedding components that we present are carefully designed
based on different assumptions made on the nature of the
data. Each embedding component has a clear but very different
learning preference. By training each embedding component
as part of a deep learning model, respectively, we obtained
the corresponding embeddings and evaluated them on two
anomaly detection tasks of different granularity. Our main
contributions are summarized as follows:

• This paper is the first embedding study on health insur-
ance claims for anomaly detection. With embedding, we
effectively address the curse of dimensionality without
heavily relying on domain knowledge for feature selec-
tion.

• We propose six embedding components to perform health
insurance claims embedding. Working closely with health
insurance practitioners, we thoroughly consider the pos-
sible assumptions on health insurance claims. Based on
different assumptions, we design the embedding com-
ponents so that each has a distinct learning preference.
Our implementation of the embedding components is
available online.1

• We conducted extensive experiments on real-life health
insurance claim data provided by our industrial partner.
Results suggest that the embedding obtained by our
proposed embedding component, EC-ReStepRec, is of
outstanding quality and significantly outperforms other
embeddings under comparison.

Section II describes the works related to health insurance
claims embedding. Section III formally defines the research
problem. Section IV presents each proposed embedding com-
ponent in detail. Section V shows the experiment on a real-
life health insurance claims dataset and the evaluation of the
embeddings by two anomaly detection tasks with visualization.
Section VI concludes the paper.

II. RELATED WORK

A. Anomaly Detection

Existing machine learning methods for anomaly detection
in health insurance claims can be generally categorized into
supervised [11] and unsupervised learning methods such as
customized scoring models [12], [13]. Both learning methods
face the same challenge of high dimensionality in real-life
data. Most existing works address this issue based on pre-
liminary knowledge, for example, by computing metrics or
aggregated features on the raw data and then using those ad-
vanced indicators in the detection model [14]. The knowledge
required to figure out the appropriate indicators mostly comes
from in-depth case studies and literature reviews with the
help of experienced domain experts. Given the advancement

1〈the link will be updated once the paper is accepted.〉

of deep learning techniques, learning the latent features is
feasible and practical. This paper explores embedding learning
for a specific domain as an alternative to traditional feature
engineering.

B. Embedding

Generally, embedding methods can be categorized into
mathe-matical-based or learning-based.

Mathematical-based methods. These methods are unsuper-
vised and relate to matrix computation in closed form. The
computation cost is relatively low, and they are not limited to
any specific domain [15], [16]. Baldassini et al. [9] obtained
client embeddings on current account transactions with a
marginalized stacked denoising autoencoder (mSDA) [16]. We
experimentally compare our embeddings with the embedding
obtained by mSDA on health insurance claims.

Learning-based methods. Learning-based methods dominate
the state-of-the-art embedding studies. One of our baseline
methods, autoencoder, is one of the popular methods. In
a typical autoencoder, an encoder maps the input into an
embedding, a decoder reconstructs the embedding back to the
original input, and the whole model is trained to reduce the
reconstruction loss. Schreyer et al. [17] introduced a few deep
autoencoders for anomaly detection on accounting data. We
implement and employ their models on health insurance claims
and compare with the obtained embeddings in experiments.
Alternatively, an embedding component is trained as part of
a large model for a domain-specific task in a supervised way.
Optimizing algorithms such as stochastic gradient descent
(SGD) would be involved in these methods in order to learn
the parameters [4]–[10], [18].

Embedding has been increasingly studied in different do-
mains, such as natural language processing [4], graph analy-
sis [5], and network analysis [6]. Word embedding models,
as one of the most well-studied branches of embedding
learning, have been adapted to healthcare domain and lead
to progress in embeddings of medical concepts, including
diseases, medicines, and procedures [19]–[23]. Those embed-
dings have been proven to be able to capture medical semantic
relatedness or illustrate competitive performance on predic-
tive tasks. There also exist works that propose frameworks
for healthcare analytical tasks such as future hospitalization
prediction, future diagnosis of heart failure with intermediate
embeddings on healthcare data [24], [25]. Yet, no related work
has been done on health insurance claims embedding in the
context of anomaly detection.

III. PROBLEM DESCRIPTION

Mostly, it is the characteristics of data that prohibit direct
utilization and drive the involvement of embeddings. In the
case of health insurance claims, the challenging characteristics
are sequentiality and dimensionality.

Sequentiality. The claims could be processed into se-
quences by grouping. Figure 2 shows a sequence of claims
grouped by patient and medication code. By sorting the se-
quence by the date of service, the resulting sequence represents



Figure 2: An example sequence of claims

the medication history of a patient. The sequences can be
generally categorized into two genres of relations:

• Independent relation: the relation among the attributes
within the same claim.

• Dependent relation: the relation among the attributes
across multiple claims in the same sequence.

Dependent relations are important in the context of health
insurance claim anomaly detection. For example, they can
represent persistent behavioral patterns or ordered patterns that
are likely to be suspicious but are generally hard to capture.
Figure 3 shows an example.

Figure 3: An example of dependent relation: services 1001,
1002 and 1003 are usually requested in order. A patient with
misordered service records is flagged suspicious.

Dimensionality. The dimension for an encoded claim could
be extremely large. The challenge amplifies if the data are in
sequence, where multiple claims are assembled as one input.
This is a challenge because the curse of dimensionality renders
many traditional machine learning algorithms ineffective on
many machine learning tasks. Therefore, a compact but still
informative embedding is important.

In order to resolve those challenges, we resort to embed-
dings. An embedding is a relatively low-dimensional space
into which high-dimensional vectors are transformed. Embed-
dings are helpful because they reduce the dimensionality of
data while still effectively representing the relations within the
original data in the mapping space. Good embeddings could
well serve for various purposes. For example, they could be
the input for a specific target task or be directly visualized
in order to intuitively illustrate the distribution of the original
data.

Here we formally define our research problem. A claim
is defined as T={x1, x2, . . . , xm}, where xi is an attribute
or a feature. Given a set of sequences, D={S1, S2, . . . , Sn}
where each sequence Sj is constituted by varying length of

claims, Sj=〈T1, T2, . . . , Tk〉, our problem is to find a mapping
function f : D → Rd and thus every sequence Sj is mapped to
a continuous vector of length d, E={e1, e2, . . . , ed}, where m,
n, k, and d are all positive integers. d should be significantly
smaller than m× k. The mapping should be of high quality so
that the mapping space can effectively represent the original
data.

IV. MODEL: EMBEDDING COMPONENT DESIGN

Figure 4: An overview of the architecture

Figure 4 provides an overview of the architecture. The
objective of this paper is to propose a model to generate an em-
bedding component of health insurance claims to facilities the
subsequent classification task, which is anomaly detection in
our case. In this paper, the classifier is a small fully-connected
neural network responsible to classify the embedded sequences
into classes depending on the user-defined customized task.
In the training phase, both the embedding component and the
classifiers are trained as a whole. In the evaluation phase, only
the embedding components are evaluated. The whole model
takes a sequence of claims Sj as input. Ti is the ith claim in
the sequence, denoted by Ti={xi

1, x
i
2, ..., x

i
m}.

We have explored, proposed, and evaluated different em-
bedding components that are developed based on different
assumptions that can be imposed on health insurance claim
data. Each embedding component is customized for one type
of assumption and thus is endowed with a specific learning
preference, enabling the embedding component to explore cer-
tain relationships effectively. Here we discuss six architectures
of embedding components.

A. EC-Flatten

In EC-Flatten, there is no explicit assumption made in terms
of the relationship between attributes. As we want to grant the
model maximal flexibility, the claims in a sequence are con-
catenated into a one-dimensional vector. Therefore, attributes
that come from the same claim and the attributes that come
from different claims are treated equally. Figure 5 illustrates
the architecture of EC-Flatten, where {h1, h2, ..., hm∗k} is an
intermediate output with m× k dimensions.



Figure 5: EC-Flatten

B. EC-Recurrent

In EC-Recurrent we assume that the inter-claim relationship
in sequential context is important. Thus, each claim is fed into
the model as one step. An abstraction persists and is updated
from one step to the next. Finally, the output embedding is a
global abstraction of the whole sequence. Figure 6 illustrates
the architecture of EC-Recurrent, where {hi,1, hi,2, ..., hi,p} is
the p-dimensional global abstraction at step i.

Figure 6: EC-Recurrent

C. EC-Step

In EC-Step we assume that claims in the same sequence
do not closely rely on each other. Instead, the inter-attribute
relationship within each single claim is more important. As
shown in Figure 7, each claim is fed into the model as one
step. However, instead of allowing the information to evolve
along the steps as EC-Recurrent, at each step the information
exposed to the model is isolated. Abstraction is made step by
step. {h1

i,1, h
1
i,2, ..., h

1
i,p} is the p-dimensional abstraction on

the input of step i. Next, the step-wise abstractions are con-
catenated into an intermediate output with p× k dimensions,
which is {h2

1, h
2
2, ..., h

2
p∗k}. The intermediate output is further

mapped into a continuous space.

D. EC-FlaRec

EC-FlaRec is a hybrid architecture of EC-Flatten and
EC-Recurrent. Therefore, while assuming the existence of
inter-claim relationship, EC-FlaRec also benefits from cer-
tain flexibility. After concatenating the q-dimensional ab-
straction {h2

1, h
2
2, ..., h

2
q} produced by EC-Flatten with one

Figure 7: EC-Step

intermediate layer, and the p-dimensional global abstraction
{h1

k,1, h
1
k,2, ..., h

1
k,p} produced by EC-Recurrent, the concate-

nated vector is mapped to a continuous space. Figure 8
illustrates the architecture of EC-FlaRec.

Figure 8: EC-FlaRec

E. EC-StepRec

In EC-StepRec we still assume that the inter-claim relation-
ship in sequential context is critical. Yet, in addition to the
global abstraction, the partial abstractions obtained during the
intermediate steps are also informative. EC-StepRec is similar
to EC-Recurrent, where a piece of information persists and is
updated among the steps. Instead of outputting the last step
abstraction only, here the abstractions obtained at each step
are outputted, further abstracted, concatenated and mapped
to a continuous space. Figure 9 illustrates the architecture
of EC-StepRec. The first layer abstraction on the input of
step i is represented as {h1

i,1, h
1
i,2, ..., h

1
i,p}, where p is the

dimension. The first layer outputs are further abstracted into
{h2

i,1, h
2
i,2, ..., h

2
i,q}, where q is the dimension. The second

layer abstractions are concatenated into a (q×k)-dimensional
intermediate output {h3

1, h
3
2, ..., h

3
q∗k}, which is then mapped

to the embedding space.



Figure 9: EC-StepRec

F. EC-ReStepRec

Figure 10: EC-ReStepRec
In EC-ReStepRec we assume that the sequence-wise inter-

attribute relationship is important. By introducing a reshape
trick, the unit per step for the recurrent layer is no longer a
claim, but the values for one attribute across all claims in
sequence. Instead of capturing the inter-claim relationship,
here the recurrent layer captures the sequence-wise inter-
attribute relationship. Next, similar to EC-StepRec, step-wise
abstractions are outputted, further abstracted, concatenated,
and mapped to a continuous space. Figure 10 illustrates the
architecture of EC-ReStepRec. Due to the reshape trick, the
input of step i is {x1

i , x
2
i , ..., x

k
i }. The rest of the symbols

used in Figure 10 are in line with Figure 9.

Table I: Attribute description

Attribute Description
medication
code

The identifier of the medication ordered.

quantity The number of unit of the medication ordered.
age The age of the patient when the claim is sub-

mitted.
claim amount The total cost in dollar, including prescription

drug cost, and pharmacist’s professional fee.
transaction day
of year

The day when the claim is submitted in the year.
It is a number between 1 and 365 (366 if it is
a leap year).

day of supply The number of days the supply of dispensed
medication will last.

V. EXPERIMENTS

A. Dataset

The experiments were performed on a pharmaceutical
claims dataset provided by our industrial partner. We as-
sembled a labeled dataset with the help of domain experts.
The dataset consists of both anomalous and benign samples.
The anomalous class can be further divided into two types
of anomalies: T1: exaggeration of claim amount and T2:
persistent early-refill behaviors on narcotics. Each sample is
a sequence of claims of different length.

The labeling process simulates the traditional rule-based
anomaly detection method. The domain experts of our in-
dustrial partners first explain the anomalous patterns. Based
on the patterns both the domain experts and our machine
learning team carefully design the validation rules accordingly.
All claims go through the validation rules for T1 anomaly
detection individually. All claims are grouped by medicine
code and patient identifier first, then go through the validation
rules for T2 anomaly detection as part of a sequence of claims.
Upon the accepted pharmaceutical claims ranging from April
2015 through October 2018, we obtained 1,908 T1 anomalies,
7 T2 anomalies, and 8,760 benign cases. It is clear that
the dataset is highly imbalanced. To mitigate the problem,
5,000 T1 anomalies and 2,500 T2 anomalies are simulated by
utilizing the validation rules reversely. The simulated anoma-
lies are once again verified the domain experts, so they are
high-quality synthetic data. Therefore, we finally assembled
a dataset with 6,908 T1 anomalies, 2,507 T2 anomalies, and
8,760 benign cases.

Real-life health insurance claim datasets are difficult to ob-
tain, as the data is highly-sensitive and noisy. Many attributes
have to be excluded because of two main reasons: missing
value: this happens frequently for non-mandatory fields of the
claims and unreliable filling: this happens frequently for fields
whose format is ambiguous.

After consulting the domain experts, we only use mandatory
and reliable attributes in our study. Additionally, we also apply
necessary transformations which intuitively can help the model
to learn faster and easier. The involved attributes and their
descriptions are listed in Table I.



Table II: Binary classification on test set

micro F1-score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA
KNN(5) 82 82 81 82 82 92 77 76 51
L-SVM 87 82 81 82 82 92 76 77 50
R-SVM 79 82 78 82 82 93 76 75 50
DT 80 83 78 81 81 92 75 75 50
RF 75 82 77 82 82 92 74 75 50
Ada 84 82 80 82 82 92 76 76 50
NB 57 83 76 72 82 93 54 54 50
LR 85 82 81 82 82 92 76 76 51
LDA 86 82 81 82 82 92 76 76 51
QDA 51 83 78 69 82 93 56 55 49

Average 76.6 82.3 79.1 79.6 81.9 92.3 71.6 71.5 50.2

Table III: Three-Class classification on test set

F1-score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA

KNN(5) 79 79 80 79 68 88 77 76 40
L-SVM 82 78 80 79 69 79 77 78 40
R-SVM 66 70 72 78 69 79 76 74 40
DT 74 81 76 78 69 81 75 76 38
RF 62 71 64 70 69 82 73 72 40
Ada 78 81 78 79 69 80 62 58 40
NB 51 78 65 66 59 76 54 56 32
LR 81 77 79 79 69 79 76 77 40
LDA 82 80 79 78 69 79 76 76 40
QDA 53 79 63 59 69 71 58 58 42

Average 70.8 77.4 73.6 74.5 67.9 79.4 70.4 70.1 39.2

B. Baselines

As we mentioned in Section II, we chose the following base-
line methods, which have been employed in similar application
scenarios.

• Schreyer et al. [17] employed deep autoencoder to detect
anomalies in accounting data. Here we compare with
their best two deep autoencoders, AE8 and AE9, as two
baselines. Since our focus is the embeddings, we have
to adapt the models and fix the dimension of the latent
representation as 128.

• Baldassini et al. [9] obtained client embeddings on cur-
rent account transactions with a marginalized stacked
denoising autoencoder (mSDA) [16]. Yet, mSDA does not
reduce dimension. To be computational efficient and to
also guarantee a fair comparison we first use principal
component analysis (PCA) to compact the inputs into 128
dimensions and then stream the data into mSDA [15].

C. Experiment Setting

Table IV: Parameter settings for the embedding components

m k p q d
EC-Flatten

563 15

/ /

128

EC-Recurrent 128 /
EC-Step 16 /
EC-FlaRec 128 128
EC-StepRec 128 16
EC-ReStepRec 128 1

The data go through a standard preprocessing procedure,
including one-hot encoding the categorical attributes and nor-
malization of the numeric attributes. Each claim is encoded

into a 563-dimensional vector. Since the claim sequences are
of varying length, before a sample, whether an anomaly or
a benign case, goes into the model, it is either truncated or
zero-padded into a sequence of 15. In order to illustrate the
capacity of embedding components, we intentionally only use
simple preprocessing steps here.

To implement the framework described in Figure 4 we train
the full model for a binary classification task that differentiates
the anomalous class and the benign class. The default main
classifier is a three-layer fully connected neural network, with
64 neurons, 8 neurons, and 1 sigmoid neuron in order. The
output is a value between 0 and 1 which we interpret as the
probability of being an anomaly.

We randomly split the full dataset into a training set and
a testing set. The training set accounts for 80% of the full
dataset. 10% of the training set is reserved as a validation
set. After training we collect the embedding components EC-
Flatten, EC-Recurrent, EC-Step, EC-FlaRec, EC-StepRec, EC-
ReStepRec, the encoders of AE8 and AE9, and the trained
mapping of mSDA. Each of these maps the original dataset
into a R128 embedding space.

The parameter settings for the embedding component are
shown in Table IV. Each embedding component is regularized
by dropout with 0.6 drop out rate and by batch normalization.
The models are implemented using TensorFlow in Python and
are trained until convergence or reaching a running time limit.
Our implementation is available online.

D. Evaluation

Following the convention in [5], [6], we evaluate nine
embedding devices by two anomaly detection tasks of different



granularity. Essentially, the tasks could be regarded as a binary
classification task and a three-class classification task. Also,
we present their t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization as an intuitive evaluation [26].

1) Binary Classification Task: For each embedding device,
we use it to transform the original data into the R128 embed-
ding space and then use the embeddings as the input of 10
traditional machine learning classifiers, including K-nearest
neighbors (KNN) where K = 5, support vector machine
with the linear kernel (L-SVM), support vector machine with
the radial basis function kernel (R-SVM), decision tree (DT),
random forest (RF), adaboost (Ada), naı̈ve bayes (NB), logis-
tic regression (LR), linear discriminant analysis (LDA), and
quadratic discriminant analysis (QDA). Those classifiers are
trained to discriminate between the anomalous class and the
benign class.

Table II reports the micro-average F1-scores on the testing
set for each classifier. A detailed table with F1-scores per
class is provided in Appendix A. We evaluate the quality of a
specific embedding in two perspectives.

• Superiority: This is evaluated by the best micro-average
F1-score achieved by any classifier with that embedding.
The best micro-average F1-scores for a embedding are in
bold.

• Robustness: This is evaluated by the average micro-
average F1-score achieved by all classifiers with that

embedding.
It is clear that the embedding obtained by EC-ReStepRec
outperforms the others in both perspectives. The best micro-
average F1-score is 0.93 and the average micro-average F1-
score is 0.923. We highlight the best values with square boxes.

2) Three-Class Classification Task: The same sets of classi-
fiers are also trained to discriminate between the T1 anomalous
class, the T2 anomalous class, and the benign class. The way
we evaluate the embedding quality is the same as in Section
V-D1. Table III summarizes the results. A detailed table with
F1-scores per class is provided in Appendix B. Again, EC-
ReStepRec achieves the best performance in terms of both
superiority and robustness. The best micro-average F1-score
is 0.88 and the average micro-average F1-score is 0.794.

3) t-SNE Visualization: Figures 11 and 12 illustrate the t-
SNE visualization on the embeddings with different levels of
granularity. We highlight the EC-ReStepRec embedding with
a rectagular yellow box. Clearly, in both scenarios, the EC-
ReStepRec embedding maps the samples of the same class
closely while mapping the samples from different classes to
different regions. Different classes are grouped and have clear
boundaries. This indicates that EC-ReStepRec embeddings are
of high quality and can meaningfully represent the original
input.

4) Result Discussion: Our experimental results suggest that
EC-ReStepRec yields the best embedding for anomaly detec-

Figure 11: t-SNE visualization (low granularity)



Figure 12: t-SNE visualization (high granularity)

tion. The outstanding performance of EC-ReStepRec indicates
that the learning preference of EC-ReStepRec has the best fit
of the health insurance claims, which implicitly means that
the assumptions corresponding to EC-ReStepRec describe the
health insurance claims well.

VI. CONCLUSION AND LESSON LEARNED

In this paper, we present a method for learning health
insurance claims embedding. We discuss six embedding com-
ponents that are designed based on different assumptions.
Our experiments on health insurance claims show that one of
our proposed embedding components, namely EC-ReStepRec,
achieves the best embedding for anomaly detection. Further-
more, due to the assumptions we made on the target data are
quite general, it is possible that our work could also be applied
to other similar datasets, for example, other transactional
datasets with the characteristics of high dimensionality and
sequentiality.

Finally, we would like to share the lesson learned from
this university-industry collaboration. Both the deep learning
domain and the health insurance industry are complex. There
was a steep learning curve for both parties at the early stage
of the project. In addition to tackling technical challenges, a
lot of effort was spent on gathering and labelling the data with
the consideration of privacy, security, and ethical issues. Given
our encouraging research results, all these efforts pay off.
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APPENDIX A
BINARY CLASSIFICATION TASK PERFORMANCE

Table V: Binary classification performance on test set (0,1 indicate the F1-score on the benign class and the anomalous class
respectively. m indicates the micro F1-score.)

F1-score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 MSDA

KNN(5)
0 81 81 80 81 82 92 75 74 47
1 83 83 82 82 83 93 78 77 55
m 82 82 81 82 82 92 77 76 51

L-SVM
0 86 82 81 81 82 92 75 75 48
1 87 83 82 83 82 93 77 79 52
m 87 82 81 82 82 92 76 77 50

R-SVM
0 76 82 73 81 81 92 75 74 48
1 81 83 81 82 82 93 77 77 53

m 79 82 78 82 82 93 76 75 50

DT
0 78 82 75 80 81 92 71 72 42
1 81 83 80 82 81 92 78 78 57
m 80 83 78 81 81 92 75 75 50

RF
0 72 81 73 81 81 92 71 71 42
1 78 83 79 83 82 93 77 78 56
m 75 82 77 82 82 92 74 75 50

Ada
0 83 82 78 81 81 92 74 74 43
1 85 83 81 83 82 93 78 79 56
m 84 82 80 82 82 92 76 76 50

NB
0 67 82 72 67 81 92 67 67 42
1 36 84 79 76 83 93 26 24 55
m 57 83 76 72 82 93 54 54 50

LR
0 84 82 80 81 82 92 75 75 49
1 86 83 82 83 82 92 76 78 52
m 85 82 81 82 82 92 76 76 51

LDA
0 86 82 80 81 82 92 75 75 49
1 87 83 82 82 82 92 77 78 52
m 86 82 81 82 82 92 76 76 51

QDA
0 66 82 79 55 82 92 68 68 60
1 14 83 76 76 83 93 27 26 28
m 51 83 78 69 82 93 56 55 49

APPENDIX B
THREE-CLASS CLASSIFICATION TASK PERFORMANCE

Table VI: Three-Class classification performance on test set (0, T1, T2, indicate the F1-score on the benign class, T1 anomalous
class, and T2 anomalous class respectively. m indicates the micro F1-score.)

F1-score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 MSDA

KNN(5)

0 81 81 80 81 82 92 75 74 47
T1 76 75 76 74 62 86 75 74 41
T2 83 87 92 87 24 75 87 87 13

m 79 79 80 79 68 88 77 76 40

L-SVM

0 86 82 81 81 81 92 75 75 49
T1 78 74 76 74 65 77 75 77 39
T2 77 79 88 86 1 0 88 88 13
m 82 78 80 79 69 79 77 78 40

R-SVM

0 76 82 74 81 81 92 75 74 49
T1 66 67 71 73 65 77 74 74 39
T2 0 13 63 83 0 0 84 76 12
m 66 70 72 78 69 79 76 74 40

DT

0 78 82 77 80 82 92 70 72 40
T1 69 76 73 73 65 79 79 79 43
T2 75 89 84 84 5 30 78 79 14
m 74 81 76 78 69 81 75 76 38

RF

0 75 81 69 75 82 92 71 70 46
T1 57 68 68 70 65 80 76 77 42
T2 0 18 1 44 0 33 69 66 8
m 62 71 64 70 69 82 73 72 40

Ada

0 78 82 78 82 81 92 38 34 34
T1 76 76 75 74 65 78 76 71 50
T2 83 94 88 85 3 9 65 64 0
m 78 81 78 79 69 80 62 58 40

NB

0 61 81 67 62 81 92 25 31 9
T1 36 74 64 71 32 69 68 69 49
T2 48 74 66 62 47 38 63 59 18
m 51 78 65 66 59 76 54 56 32

LR

0 84 82 81 81 81 91 75 75 49
T1 77 72 76 73 65 76 73 76 39
T2 79 74 86 84 1 0 88 87 13
m 81 77 79 79 69 79 76 77 40

LDA

0 86 82 80 81 82 92 75 74 48
T1 79 75 75 72 65 76 74 74 39
T2 79 89 85 83 4 26 87 85 13
m 82 80 79 78 69 79 76 76 40

QDA

0 65 82 60 43 81 92 35 36 61
T1 43 75 63 63 67 56 69 70 0
T2 45 83 67 78 3 48 70 67 17
m 53 79 63 59 69 71 58 58 42


