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Abstract—With the increasing adoption of cloud services in the
e-market, collaboration between stakeholders is easier than ever.
Consumer stakeholders demand data from various sources to
analyze trends and improve customer services. Data-as-a-Service
(DaaS) enables data integration to serve the demands of data con-
sumers. However, the data must be of good quality and trustful
for accurate analysis and effective decision-making. In addition,
a data custodian or provider must conform to privacy policies
to avoid potential penalties for privacy breaches. To address
these challenges, we propose a two-fold solution: (1) We present
the first information entropy-based trust computation algorithm,
IEB_Trust, that allows a semi-trusted arbitrator to detect the
covert behavior of a dishonest data provider and chooses the
qualified providers for data mashup. (2) We incorporate the
Vickrey-Clarke-Groves (VCG) auction mechanism for the valuation
of data providers’ attributes into the data mashup process.
Experiments on real-life data demonstrate the robustness of our
approach in restricting dishonest providers from participation in
the data mashup and improving the efficiency in comparison
to provenance-based approaches. Furthermore, we derive the
monetary shares for the chosen providers from their information
utility and trust scores over the differentially-private release of
the integrated dataset under their joint privacy requirements.

Index Terms—Cloud computing, data trustworthiness, data
privacy, data mashup, monetary valuation.

I. INTRODUCTION

ATA are the fuel of today’s digital economy. Yet, data

coming from a single source often fail to provide a
complete picture for big data analytics. To answer complex
queries, companies usually have to seek additional data from
multiple sources. The emerging cloud paradigm Data-as-a-
Service (DaaS) provides an ideal platform for data integration
in order to serve data consumers’ demands. However, busi-
ness data often contain person-specific information. Mashing
up personal data from different sources raises concerns on
security, privacy, and data reliability. In the past decade, many
trust models [[6], [67]] and frameworks [15], [57] have been
proposed to evaluate and measure the security strength of
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cloud environments, but limited research considers the aspect
of data reliability. In this article, we propose a cloud-based
data integration solution that considers privacy protection, data
trustworthiness, and fairness of profit distribution among data
providers.

According to a recent survey [24], organizations in the
U.S. estimate that 33% of their customer data is inaccu-
rate. This skepticism about data elicits the increased risk of
non-compliance and regulatory penalties. The study by IBM
estimated that $3.1 trillion of the U.S.’s GDP is lost due
to poor quality data [64]]. Organizations may mitigate these
potential risks by taking appropriate measures regarding the
quality of their data, leading to more reliable analysis and
decision-making. There is a line of research [[13[], [42] that
focuses on exchanging data between multiple parties from
the perspective of ensuring confidentiality and integrity. These
works aim to provide prevention from unauthorized use and
modification when data is in transit but do not verify data if
any party provides false data. Our research perspective is to
determine the trustfulness of private data held by dishonest
data providers who may arbitrarily attempt to provide false
data when trading person-specific information in the e-market
for monetary benefits. Our proposed method can detect such
behavior from dishonest data providers, who resemble adver-
saries under the covert security model [7]. In literature [3|],
[17], [26] two protocols are discussed, namely Private Set
Intersection (PSI) and Private Set Intersection Cardinality
(PSI-CA) for privacy and data quality assessment. Freudiger
et al. [27] claimed that these protocols are incurred from
computational overhead and thus are not applicable to real-
world scenarios. They proposed some protocols that operate
on reduced dimensionality descriptions and so can be scalable
to large datasets. It is a challenging problem to evaluate the
trustfulness of private data held by untrusted data providers. In
this article, we study the problem of untrusted data providers
holding overlapping attributes on a person-specific dataset. We
illustrate the problem in the following example.

Example 1. Suppose there is a cloud-based data market,
where data consumers can place their data mining requests and
data providers compete with each other to contribute their data
with the goal of fulfilling the requests for monetary reward.
Consider the 12 raw data records in Table I, where each record
corresponds to the personal information of an individual. The
three data providers own different yet overlapping sets of
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attributes over the 12 records.

Since the data providers collect data from different channels,
it is quite possible that their data conflict with each other as
illustrated in Table Il According to the predefined general-
ization hierarchy of the attributes in Fig. [I] the individuals
in the table can be generalized to two groups: Non-Technical
and Technical. Suppose a data consumer wants to perform a
data analysis that depends on the Non-Technical and Technical
groups. Yet, the inconsistent, conflicting, or even inaccurate
data may mislead the analysis result. For example, DP; and
DP; state that the individuals in {Rec#3,5} are Cleaner,
while D P states that they are T'echnician. A similar conflict
can be seen in the Rec#9, where DP; and D Ps provide the
Job as Painter, and D P, provides the Job as Welder. In this
example, the Job attribute on { Rec#3, 5,9} has two different
values that are categorized as Non-Technical and Technical,
respectively. These inconsistencies significantly impact the
quality of data analysis. ®

Presumably the data providers would have missing values on
some attributes, although the same set of records is identified
by executing the secure set intersection protocol [3]] on the
globally unique identifiers [53], [54f]. Instead of avoiding
participating in the data mashup process, they would prefer
to impute missing values by using the machine learning
methods appropriate for their datasets. The properties of a
dataset such as low dimensional or high dimensional data,
single-type or mixed-type data, or linearly separable or non-
linearly separable data are a crucial factor before choosing
the imputation method. The data providers’ decision whether
to use a single imputation method or multiple imputation
methods is conditional on their missing data. We evaluate the
robustness of our approach when an acquisitive data provider
employs a machine learning method for imputation of missing
data.

In the context of quantifying monetary value through shar-
ing person-specific data, the data providers first must do the
valuation of personal data, but there is no determined market
price [56], [62] for person-specific data that can be taken as
a proxy for the valuation. It is also well-acknowledged from
existing literature [25]], [58]] that there is no commonly agreed
methodology for valuing personal data. However, in the e-
market, many companies actively collect personal information
by providing monetary rewards to their customers. In this arti-
cle, we incorporate the Vickrey-Clarke-Groves (VCG) auction
mechanism for the valuation of data providers’ attributes. We
reason that it is a dominant strategy, where no data provider
has an incentive to lie about his true valuations. In addition,
private data often encode privacy-sensitive information related
to individuals that need to be protected when integrating data
from the competing data providers. In this article we adopt
differential privacy [22|] because it provides strong privacy
guarantees to an individual independently of an adversary’s
background knowledge, in contrast to underlying assumptions
in syntactic privacy models [47[], [S1]], [[66] about an adver-
sary’s knowledge.

Contributions. We propose a novel solution to address the
critical issues of data trustworthiness, privacy protection, and

profit distribution for cloud-based data integration services.
The data trustworthiness problem has been studied in [49],
[S0], [69] applications of sensor networks. The provenance-
based approach has been used in [16], [SO] to evaluate
the trustworthiness of network nodes and data items. This
approach is primarily used to collect evidence about where
the data originates and how the data generates. In this article
we are not concerned about the high degree of the instrumen-
tation of customers’ private data, which is collected by data
providers. However, our proposed approach makes novel use
of information entropy to verify the correctness of data from
untrusted data providers and also to preserve the privacy of
customers’ data held by data providers when evaluating the
trustworthiness of the providers.

PSI-based approaches allow multiple parties to jointly com-
pute the intersection of their private data without revealing any
additional information to either side [75]. These approaches
are suitable for privacy-preserving distributed data mining
(PPDDM), in which multiple data custodians compute a
function based on their inputs without sharing their data with
others. In this article, we focus on privacy-preserving data
publishing (PPDP) in a distributed setting, where the data
providers wish to integrate their data for better information
utility. However, the data integration necessitates that under
the specified privacy constraints, no data provider should learn
any additional information other than necessary information.
We summarize our contributions as follows:

e Our proposed method, /EB_Trust, is the first entropy-
based trust computation method that enables secure trust-
worthiness assessment and incorporates fairness in the
verification process to restrict dishonest data providers
from participation in the next phase for integrating data.

e We compare our proposed method with a closely related
method. Results suggest that our entropy-based trust com-
putation algorithm is capable of significantly improving
runtime efficiency.

o« We evaluate the robustness of our method when an
acquisitive data provider adopts machine learning tech-
niques to substitute missing values on their own data and
claim them as original data collected from customers to
compete with the other participating data providers.

o We define the procedure for setting the price on person-
specific attributes in trading personal information from
data providers based on the VCG mechanism.

o« We integrate data from chosen data providers using
Differentially-private anonymization based on General-
ization (DistDiffGen) [53] and analyze the impacts of
privacy protections and trust scores on data providers’
monetary value.

The rest of the article is organized as follows: In Section [}
we provide an overview of the trust mechanism and the prob-
lem statement. In Section we review the related work. In
Section we discuss the trust aspects, imputation methods,
and privacy models. In Section [V] we present our proposed
solution. In Section we compare our proposed method and
provide empirical study to analyze the trustworthiness of each
data provider and further analyze its impact along with the
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TABLE I: Raw data owned by three data providers

Data Provider D Py Data Provider D P> Data Provider D Ps
RecID Age | Sex Job Sex | Education Job Age | Education Job
1 39 M Lawyer M Bachelors Lawyer 45 Doctorate Lawyer
2 50 M Lawyer M Masters Lawyer 50 Doctorate Lawyer
3 38 M Cleaner M 12th Technician 35 12th Cleaner
4 53 M Lawyer M Doctorate Doctor 57 Masters Lawyer
5 28 F Cleaner F 11th Technician 28 11th Cleaner
6 37 F Welder F 12th Welder 37 11th Welder
7 49 F Painter F 12th Cleaner 49 12th Painter
8 59 M Doctor F Doctorate Doctor 66 Doctorate Doctor
9 31 F Painter M 12th Welder 27 12th Painter
10 42 M Technician M Bachelors Technician 42 Bachelors | Technician
11 37 M Lawyer M Masters Lawyer 38 Masters Lawyer
12 30 M Lawyer M Masters Lawyer 28 Bachelors Lawyer
o Job
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Fig. 1: Taxonomy trees

e-differential privacy protection on a data provider’s monetary
value. Finally, we provide the conclusion in Section |VII|

II. TRUST MECHANISM

In this section, we first provide an overview of our trust
mechanism and then formally define the research problem.

A. Overview of trust mechanism

Fig.[2]provides an overview of our trust mechanism in which
data providers, data consumers, and cloud service providers
are the main entities. Data providers collect person-specific
information from customers and intend to participate in the
data mashup for generating more profit by competing with peer
data providers, data consumers perform data analysis on the
received data, and the cloud service provider (CSP) is a semi-
trusted arbitrator between data providers and data consumers.
The CSP manages three key services: authentication, mashup
coordination, and data verification. These services are run on
a cloud server by the CSP. First, each data provider has to
pass the authentication phase to prove their identity. Second,

data consumers submit their data requests to the CSP. In this
article, we assume that a data consumer runs a classification
analysis on its requested attributes by a supervised machine
learning method. A resource queue is built by the mashup
service to manage data requests from a data consumer, which
is accessible only to authenticated data providers. Third, data
providers register their available data attributes on the registry
hosted by the mashup service; each data attribute is assigned a
sequence number based on its arrival. Fourth, the verification
process is run to detect false or incorrect data and to determine
the trustworthiness of each data provider. Fifth, this process
results in determining the accepted data providers. Sixth, the
CSP connects the group of accepted data providers with the
data consumer to serve its demand. This is done by the mashup
service that determines the group of data providers whose data
can collectively fulfill the demand of a data consumer. Seventh,
the data providers quantify their costs and benefits using joint
privacy requirements and integrate their data over the cloud.
Finally, the anonymous integrated data is released to the data
consumer.
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B. Problem statement

We describe our problem as follows. There are three main
entities discussed in our trust mechanism: data providers,
data consumers, and a cloud service provider (CSP). Data
verification service runs on a cloud server C'S, which is
managed by the CSP. The purpose of this service is to verify
the correctness of data. The CSP is a semi-trusted arbitrator
who would not have access to customers’ private data, which is
held by the data providers. Data providers are considered to be
dishonest, meaning that they may arbitrarily attempt to provide
false data because they are acquisitive in competing with
others in the e-market. The behavior of such data providers
is similar to adversaries in the covert security model.

Suppose data providers DP;,...,DP, own private data
tables Dy, ..., D,, respectively. Each record in the data table
belongs to a unique individual. All explicit identifiers of an
individual, such as name, social security number (SSN), and
account number, have been removed. Each D; is defined over
a set of attributes PA; = {A;,..., Aq}. We assume that the
data providers hold overlapping attributes for the same set
of records identified by executing the secure set intersection
protocol [J3], on the globally unique identifiers RecID.
We require YP.A; IPA; such that PA; N'PA; # 0, where
i # j, and PA = {PA;,...,PA,}. In addition, each D;
contains a A°® attribute for classification analysis, which
is shared among all the data providers. Each A is either
a categorical or a numerical attribute, but A°* is required
to be categorical. A data consumer submits a data request
ReqgA = {ReqAi,...,ReqA,,} for classification analysis.
We assume that each data provider has PA; C RegA to
serve the demand of a data consumer. The goal of this
trust computation is to restrict dishonest data providers from
participation in the data mashup process when their trust scores

drop below a certain threshold.

Problem 1 (Trust computation). Given multiple person-
specific raw data tables D;,...,D, from data providers
DPy,...,DP, and a set of requested attributes ReqA =
{ReqA1,...,ReqA,,} for classification analysis from a data
consumer, the research problem is to verify the correctness of
data on the submissions of the overlapping set of attributes
PA; = {A1,..., Ay} on the same set of records from each
data provider DP;, where PA; NPA; # (0 VPA; IPA; and
i # j and to compute the trust score T'Spp, of each data
provider.

In the context of data privacy, the data providers want to
integrate their data in a way such that no data provider should
learn any additional information about the others as a result
of data integration. After the completion of trust computation,
the data providers D P, ..., DP, attain a mutually exclusive
set of attributes PA; = {A1,...,Aq} over the same set of
records for data integration. That is, PA; N PA; = () for
any 1 < 4,5 < n. We assume that for each attribute A7 €
PA;, ataxonomy tree is provided that defines the hierarchy of
values in (A7), where (A 7) represents the domain of A ;.
Data providers require doing their attributes’ valuations for
price setting and jointly setting up the privacy requirements,
such as privacy budget ¢ and specialization level A for a e-
differential privacy model, before data integration. They wish
to derive their monetary shares from the information utility of
anonymous integrated data D for classification analysis and
their trust scores.

Problem 2 (Monetary share under c-differential privacy
mechanism). Given multiple raw data tables Di,...,D,
containing mutually exclusive sets of attributes PA; =
{A1,..., Ag}, e, PA,NPA; =0 forany 1 < i,j <n
over the same set of records, and a data request ReqA =
{ReqA;,...,ReqA,,} from a data consumer for classification
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analysis, the research problem is to derive the monetary share
of each DP; from their information utility and trust scores
over the differentially-private release of integrated dataset D
under the joint privacy requirements and attributes’ valuations.

Several companies, such as Acxiom, AnalyticsIQ, Dataline,
and Expedia, collect user data including demographic, fi-
nancial, retail, social, and travel information from multiple
sources with the goal of serving different market needs [1].
Our research problem can be generalized to other similar
companies who face trustworthy or quality data issues [24]]
and whose business models are primarily based on sharing
person-specific information.

III. RELATED WORK

In this section, we summarize the literature of the following
related areas: data trustworthiness and auction-based pricing,
cryptographic primitives, and differentially-private anonymiza-
tion techniques.

A. Data trustworthiness and auction-based pricing

Different trust models, frameworks, and techniques have
been proposed to address the problem of data trustworthiness.
Bertino and Lim [[11]] proposed a framework that consists
of two key components. The first component is based on
the concept of data provenance in which information relies
on the origin of data for computation of trust scores. The
second component undertakes the notion of confidence policy
in which query results are filtered based on the specified
confidence range for use in certain tasks. Dai et al. [16]]
proposed a provenance-based model in which they evaluated
the trustworthiness of data items based on the aspects of data
similarity, path similarity, data conflict, and data deduction.
Benjelloun et al. [8] introduced ULDBs in which they com-
bined the concept of lineage and uncertainty for querying in
probabilistic databases.

There are studies related to data trustworthiness in mission-
critical applications [49]], [69]]. Tang et al. [69] proposed trust-
worthiness analysis for sensor networks in cyber-physical sys-
tems to eliminate false alarms that occur due to random noise
or defective sensors. They validated events by using a graph-
based filtering approach. However, their method does not deal
with coordinated attacks where a fraction of sensing nodes are
compromised by malicious attackers. Lim et al. [49] addressed
this challenge by adopting a game-theoretic approach based on
the Stackelberg competition for defending the network against
false data injection. They assessed trust scores for both data
items and network nodes using the cyclic framework proposed
in [50]. This framework is based on the interdependency
property between data items and their associated network
nodes in which trust scores are computed using two types
of similarity functions. First, value similarity is derived from
the principle that the more that similar values refer to the
same event, the higher the trust scores. Second, provenance
similarity is based on the principle that the more that different
data sources are with similar data values, the higher the trust
scores. Mainly, the approaches presented in the above works
fall under the category of workflow provenance. In contrast,

we are not concerned about the higher level of instrumentation
at the data collection phase by data providers because it is
not practically efficient to determine the data provenance in
the e-market. Furthermore, the above works mainly focus on
similarity functions for trust computation but do not consider
privacy protection for data trustworthiness. We propose an
approach that makes novel use of information entropy to
verify the correctness of data in a multiple data providers
scenario where a semi-trusted arbitrator cannot derive any
customers’ private data when evaluating the trustworthiness
of the participating data providers.

Karabati et al. [41]] studied the challenge of pricing with
short-term capacity allocation decisions for multiple prod-
ucts in a single-supplier and multiple-buyers scenario. They
proposed an iterative auction mechanism with monotonically
increasing prices to maximize the profit of a supplier. Li et
al. [48] presented dynamic pricing strategies for resources
allocations in cloud workflow systems. Their proposed reverse
auction-based mechanism allows resource providers to change
the prices during the auction, depending upon their trading
situation, to improve the efficiency of resource utilization
as well as the competitiveness. Wu et al. [72] employed a
VCG auction to implement a dynamic pricing scheme for
multi-granularity service composition. They considered both
coarse-grained and fine-grained services for composition. In
their approach, service providers bid for services of different
granularities in the composite service, whereas a recipient of
the bids decides a composition that minimizes the overall cost
while satisfying quality constraints. They solved the problem
of winner determination by an integer programming model. In
this article, we define the procedure for the valuations of data
providers attributes based on the VCG mechanism.

B. Cryptographic primitives

Private set intersection (PSI) is a cryptographic primitive
that was first formally defined in [26]. The protocols for
PSI allow two parties, holding sets A and B, to compute
the private intersection without revealing to each other any
additional information from their respective sets. At the end of
the protocol, either one or both parties may learn the size of the
intersection, depending on the application. Since its inception,
many variants have been proposed in an attempt to speed up
PSI computation, including garbled Bloom filters [20], [33]],
server-aided computations [[19], [39]], [40], and computational
optimizations [46]], [59], [61]].

Oblivious Transfer (OT) is one of the fundamental primi-
tives in cryptography and has been extensively used for secure
multi-party computation. Particularly, the most efficient OTs
were introduced by Pinkas et al. [61]] and further strengthened
in [46[, [59], [60]. Kolesnikov et al. [46] proposed a batched
related-key oblivious pseudo-random function (BaRK-OPRF)
protocol to improve the performance of semi-honest secure
PSI. They achieved a 1-out-of-n OT of random messages for
an arbitrarily large n at nearly the same cost as 1-out-of-2
in Ishai et al. [35]. The new OPRF construction of Pinkas et
al. [59] is similar to Kolesnikov et al. [46] except in handling
error correcting code. Kolesnikov et al. [46] demonstrated that
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their protocol outperforms Pinkas et al. [60] in almost as many
settings, particularly for the long bit length of input and large
values of the input size.

In practice, the OT-based protocols are much faster than
the random garbled Bloom filter-based protocols for larger
set sizes, yet these protocols do not have the lowest com-
munication cost [46]. One desirable property is to achieve the
fairness that ensures either all the parties of a group learn the
output of the computation or none do [39]. This is not the case
with standard approaches to PSI. Our solution to the problem
is different from several PSI-based approaches in which the
intention is to achieve both privacy and security simultane-
ously. These approaches are suitable for different motivating
applications in private data mining, online recommendation
services, and genomic computations. In our approach, we
maintain confidentiality and integrity by exchanging only an
encrypted information gain message and its keyed hash be-
tween a data provider and the cloud server, based on a random
challenge (i.e., attribute request) of the cloud server, instead of
exchanging encrypted individual data items. This apparently
reduces the overhead of communication. In addition, we do
not rely on the server to perform the computation on clients’
private data. In the context of privacy, PSI protocols enable
parties to privately know the result from their intersection, but
the total information is not published for data analysis [75].
However, we intend to securely integrate person-specific data
from multiple data providers and to release differentially-
private data for classification analysis.

C. Differentially-private anonymization techniques

Differential privacy is increasingly being accepted as the
cornerstone of privacy protection by domain experts due to
its robustness and rigorous mathematical definition. In litera-
ture, two settings, namely inferactive and non-interactive, are
mainly discussed regarding utilization of the privacy budget e.
The primary difference is that in the interactive setting [22],
[28]], [[73]], [74]] the data custodian holds the raw data and a data
analyst poses a set of queries in real time for which the data
custodian provides differentially-private answers. Each query
would utilize a fraction of e incrementally to produce a noisy
answer. When the entire privacy budget has been depleted, a
data analyst would not be able to get the answer by query-
ing the database. On the other hand, in the non-interactive
setting, the data custodian first anonymizes its raw data by
utilizing the entire privacy budget. Later, the anonymous (e-
differentially private) data releases to the data analyst, who
would perform an analysis without any constraints on the data
usage. This approach is widely known as privacy-preserving
data publishing (PPDP) [30], which is more appropriate in
many real-life data sharing scenarios because of the flexibility
for a data analyst to perform an analysis without back and
forth querying of the database. In this article, we focus on
the non-interactive setting for a differentially-private release
of data in a distributed setup.

The group of works [4], [53] based on distributed ap-
proaches are suitable for multiple parties whose prime concern
is to integrate their data in a way that no party could learn

any additional information about the other party as a result of
data integration. Mohammed et al. [53]] proposed an algorithm,
called DistDiffGen, in which data is vertically partitioned
among multiple parties in a distributed setup. It allows two
parties to securely integrate their person-specific data while
maintaining necessary information to support data utility. Each
party in this setup owns a mutually exclusive set of attributes
over the same set of records. A similar problem has also
been studied by Alhadidi et al. [4] where data is horizontally
partitioned among two parties. Each party in this setup owns
a disjoint set of records over the same set of attributes. In this
article, we employ DistDiffGen [53|] for a distributed setup
with an extension for multiple data providers to achieve e-
differential privacy. There are existing works that allow data
integration for horizontally partitioned databases [37], [55]]
and vertically partitioned databases [29], [36]], [54] under the
privacy constraints in a distributed setup. These works are
based on syntactic privacy models, which are vulnerable to
certain attacks such as minimality attack [71], composition
attack [32], and deFinetti attack [44]. Therefore, we adopt
differential privacy [22|] because it provides strong privacy
guarantees against such attacks. Whereas existing work [43]]
proposed a privacy-preserving data mashup model that allows
the collaboration of multiple data providers for integrating
their data and derives the contribution of each data provider
by evaluating the incorporated cost factors, in our work we
derive the monetary shares for the chosen data providers from
their contribution to information utility over the differentially-
private integrated data for classification analysis and their trust
scores.

IV. PRELIMINARIES

In this section, we first present the principles that are crucial
for establishing trust. Next, we discuss methods for imputation
of missing data, and finally, we discuss privacy models.

A. Trust aspects

Trust is a critical aspect of decision making in e-commerce.
Trust principles are a part of many service-oriented architec-
tures (SOA)-based models where participants in the system
want to do interactions for service delivery and use [2]. We
review the principles that are crucial for trust establishment.
First, entities should be identified [38]] as they have claimed. In
the world of the Internet, where entities are physically isolated,
they may have real identities or may use fake identities to
show their existences in their interactions. Authentication is
a way of validating entities by the use of usernames and
passwords, tokens, or digital certificates before granting them
access to the resources or applications [12]. Second, it is
crucial for trust formation to initialize new entities with trust
rates. This process is called trust bootstrapping. Third, when
one entity trusts another entity’s decision there is a risk of an
undesirable outcome due to some degree of uncertainty and
dependency [45]. The risk is considered to be a prerequisite
before trusting the trustee’s behavior. The entities who are
involved in an interaction should comply with the norms and
rules of trust to avoid penalties for violation. Fourth, trust
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rates are of two types: local and global [[70]. Local trust rating
refers to a personalized score in which each trustee would have
different scores from the trustors. Global trust rating provides
a unique score about the entity (trustee) independently of
who are the entities (trustors) participating in the evaluation.
Global trust rating often requires the trusted third party (TTP)
services to collect feedback from the trustors about trustees
and compute the trust rates. Last, security and privacy are
the main components for trust establishment. Trust is required
when there is uncertainty; it has widely been accepted that
perfect security does not exist, even though security mea-
sures are necessary to gain trust in many circumstances [10].
Customers who place their orders online and submit private
information in the form of their name, address, and credit
details necessitate that their private information should not
be disclosed or shared by any means with untrusted parties.
Building a trust relationship requires protection of customers’
privacy in online transactions. We pay attention to some of
the aforementioned principles for establishing trust on the data
providers in the context of our trust mechanism.

B. Methods for imputation of missing data

There are different types of missing data [34], such as
Missing at Random (MAR), Missing Completely at Random
(MCAR), and Missing Not at Random (MNAR). MAR refers
to the probability of missing data of an attribute on other
present observations of attributes in the dataset, but not on
the attribute’s own value. Whereas, MCAR occurs when there
is no dependency on the attribute value itself or any other
attribute in the dataset. And the special case MNAR occurs
when the missing data meets neither the condition defined
in MAR nor MCAR. In this special case, missing values in
MNAR cannot be imputed by using other present observations
of attributes.

There is extensive research [5], [9], [[76], [[77] done on
machine learning methods such as hot-deck imputation, mean
imputation, regression imputation, k-nearest neighbors impu-
tation, and random forest imputation. Hot-deck imputation is
a technique for replacing missing values of a non-respondent
on one or more attributes with the most similar characteristics
to a respondent [5S|]. This method has been used in practice,
but the theory is not as well developed. Mean imputation is
a technique used for replacing missing values of a numerical
attribute by the average value, and for a categorical attribute by
the mode, i.e., most frequent value. This method is quite sim-
ple, but it is not suitable for multivariate analysis. Regression
imputation first builds a model from the observed data, then
predictions for the incomplete cases are calculated under the
fitted model to replace the missing data [[77]]. The drawback of
the regression model is that all predicted values fall directly on
the regression line, which decreases variability. Random forest
is a type of ensemble learning method [76]. It is used widely
for classification and regression tasks. The learning process
of a random forest algorithm is based upon the bootstrap
aggregation technique, in which a specified number of trees are
trained on a given dataset. As the random forest is built upon
multiple decision trees, intrinsically it uses the same approach

for attribute selection measures such as information gain, gini
index, and gain ratio of decision trees. Random forest can
deal with missing values with different types of variables. k-
nearest neighbors (kNN) imputation is an efficient approach
for replacing missing values on some records by computing
another value from similar examples in the given dataset [9].
kNN computes the similarity by using a distance metric, such
as Euclidean distance. k is a positive integer, when k& = 1 the
object is simply assigned to the class of that single nearest
neighbor. When k£ > 1 the object is assigned to the class that
appears most frequently within the k-subset. KNN generally
produces good quality predictions, but the computation cost is
high because of computing distances.

C. Privacy models

In the literature, there are two types of models appre-
hended: syntactic and semantic. Syntactic models, such
as K-anonymity [[66] protects against identity disclosure,
[-diversity [S1]] protects from homogeneity attacks, and t-
closeness [47|] is an extension of [-diversity in which the
distribution of sensitive attribute values for privacy protection
is further refined. Differential privacy [22] is a semantic model
that is more robust against the aforementioned attacks. It pro-
vides strong privacy guarantees to an individual independently
of an adversary’s background knowledge. The intuition of dif-
ferential privacy is that individual information is not revealed
from the output of the analysis in the anonymized data. In
other words, it is insensitive whether an individual record is
present in the input dataset or not. It is mathematically defined
as follows.

Definition IV.1 (e-differential privacy). [22]. A sanitization
mechanism M provides e-differential privacy, if for any neigh-
boring datasets D and D’ differing by at most one record
(i.e., symmetric difference | DAD’| < 1), and for any possible
sanitized dataset 13

Pr[M (D) = D] < e x Pr[M(D') = D],
where the probability is taken over the randomness of the //. =

e is the privacy budget that is specified by the data custodian.
A smaller value of e results in stronger privacy protection
but produces lower data utility. Conversely, a larger value of
e results in weaker privacy protection but yields higher data
utility.

The Laplace mechanism and exponential mechanism are the
canonical examples of a differentially-private mechanism. A
standard mechanism to achieve differential privacy is to add
random noise to the outcome of the analysis for providing
privacy protection. The calibration of noise is done according
to the sensitivity of the function f.

Definition IV.2 (Sensitivity). For any function f : D — R,
the sensitivity of f is

Af=13%>§|\f(D)—f(D’)II1 (1)

for all D, D’ differing at most by one record.
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The sensitivity of a function does not depend on the data but
instead produces an upper bound to how much noise we must
add to the true output to preserve privacy. Suppose function
f answers count queries over a dataset D. Then, the Af is 1
because f(D) can differ at most by 1, due to the addition or
removal of a single record.

Laplace mechanism. Dwork et al. [22] proposed the Laplace
mechanism. It is appropriate when the output of function f
is a real value, and f should perturb its output with a noisy
answer to preserve privacy. The noise is calibrated based on the
privacy parameter € and the sensitivity of the utility function
A f. Formally, the Laplace mechanism takes as inputs a data
set D, the privacy parameter ¢, and a function f and outputs
f(D) = f(D) 4 Lap(X), where Lap(A) is a noise drawn
from the Laplace distribution with probability density function
Pr(z|)\) = sxexp(—|z|/A). The variance of this distribution
is 2A2, and the mean is 0.

Exponential mechanism. McSherry and Talwar [52] proposed
the exponential mechanism. It is appropriate for situations in
which it is desirable to choose the best response, because
adding noise directly to the count can eradicate its value. Given
an arbitrary range 7, the exponential mechanism is defined
with respect to a utility function v : (D x7T) — R that assigns
a real valued score to every output ¢ € 7, where a higher
score means better utility. The exponential mechanism induces
a probability distribution over the range 7 and then samples
an output t. Suppose Au = maxw; p pr |u(D,t) — u(D’,1)]
to be the sensitivity of the utility function. The probability

associated with each output ¢ is proportional to exp(%).

V. PROPOSED SOLUTION

In this section, we provide a solution to address the concerns
of stakeholders on data trustworthiness, privacy protection,
and profit distribution in the online market for trading person-
specific data. Section [V-A| presents our proposed IEB_Trust,
an information entropy-based trust computation algorithm to
restrict dishonest data providers from participation in the
data mashup process and to assess the trustworthiness of
each data provider. Section discusses security properties.
Section [V-C] provides an analysis of JEB_Trust algorithm. Sec-
tion [V-D|provides an evaluation of learner models. Section
provides an auction mechanism for price-setting among data
providers who own multiple attributes. Section presents
an algorithm for privacy protection by which data providers
can determine the impact of anonymization on data utility for
classification analysis. Section [V-G| discusses how the chosen
data providers can quantify their monetary value.

A. Trust computation

In Section we state the problem where the challenge is
to verify the correctness of data from untrusted multiple data
providers who own overlapping attributes for the same set of
records. We assume that the data providers are competitors
who intend to maximize their profits. The data providers
consider as dishonest anyone who may arbitrarily attempt to
provide false data to get a larger monetary share from their
participation. To address this problem, we propose a novel

algorithm that adopts information entropy for secure trustwor-
thiness assessment of acquisitive data providers. Information
entropy has been widely used in machine learning tools and
decision-making systems. Compared to the existing work on
data trustworthiness [49]], [50]], [69]], our proposed algorithm
not only detects false or incorrect data from a dishonest data
provider during the verification process, but also preserves
the privacy of customers’ data owned by a data provider.
Furthermore, our method provides better runtime efficiency
over provenance-based approaches [16], [50].

Algorithm [I] presents our approach in more detail. A
cloud service provider (CSP) runs this algorithm on a cloud
server(C'S). Consider multiple data providers DP;, ..., DP,,
who own private data tables Dy, ..., D, having overlapping
attributes for the same set of records identified by the common
record identifier RecI D [3]], [54]]. First, the C'S and each DP;
mutually authenticate each other and derive ks; symmetric
keys for all 7+ € I by the mutual authentication protocol [[18]
for the secure exchange of messages. Each DP; has its own
ks; to answer the CS’s queries. Second, a data consumer
submits a data request ReqA = {ReqA, ..., ReqA,,} to the
CS. Third, each data provider DP; submits an available set
of attributes PA; = {Ay,...,Aq}, where PA; C ReqA, to
the C'S. We assume that initially all the participating data
providers have “zero” in their trust scores (Line 3). € is
the allocated privacy budget to consume for each requested
attribute. A resource queue is created by the mashup service
for m requested attributes, where each attribute A; € PA;
of a corresponding data provider is registered with its arrival
sequence (Line 9).

Fourth, the verification process is run to determine the
trustworthiness of each data provider. In the first round,
CS successively selects one attribute ReqA,’ uniformly at
random without replacement over a domain of m requested
attributes and sends an encrypted challenge E(ks;, ReqA,’)
to the corresponding data providers DPy, ..., DP,, who own
common attribute A 7. Prior to responding to this challenge,
each DP; decrypts to retrieve ReqA,’, computes informa-

tion %ain on the challenge attribute in Line 16, denoted
by G Al; (refer to Section for details), according to

Eq. [[63]] and then adds noise to a true output. Then DP;
encrypts the message () E(ksi,gfql;) and computes
tags YN « S(ky, (M) by using keyed hash-based message
authentication code (HMAC) in Line 17. C'S receives the
concatenated message, tag, and identity (1) || Y| DP; on
his challenge from each data provider. Then C'S computes the
comparison to determine the majority candidates by invoking
procedure findMajCand(y)(") || Y1), size) in Line 19, where
size indicates the number of data providers who own the
requested attribute. This procedure returns majority candidate
M ajg(%)d. In the second round, C'S generates C random IDs
for the requested challenge ReqA,’, i.e., picked in the first
round, from |D;| records, then generates P pairs of values
for ReqA,’ and A°* attributes. C'S sends another challenge
to each DP; by concatenating the encrypted K random IDs
and P pairs of values as E(ks;, K, ReqA," )| E(ksi, Var, Vels)-
DP; decrypts to retrieve K record IDs and P pairs of values.
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DP; concatenates X records and P pairs of values received
from the C'S. D P; computes g A, On the concatenated version
and then adds noise to a true output, encrypts it as (2

(ks“g ), and computes the tag as Y2 « S(kj,, ).
cS recewes @Y || DP; on the second round challenge
from the corresponding data providers in Line 28. C'S again
invokes procedure findMajCand(z)(®) || Y(?), size) to determine
the majority candidates in Line 29. This process repeats
« times. In Line 33 an intersection of both the rounds is
computed to determine Majcoand.

Candidates whose scores match on the majority are consid-
ered as Qualified, denoted by Qualpp,, who gain a positive
weight « in their trust scores T'Sp p,. Alternatively, candidates
whose scores do not match are considered as Non-Qualified,
denoted by UnQualpp,. Subsequently, UnQualpp, is penal-
ized with a negative weight -y in their trust scores T'Spp,.
When only a single data provider responds to the C'S challenge
of ReqA,’, it is accepted based on his existing trust score
TSpp, > 0. However, in this case, the trust score does not
increase for that data provider. When a data consumer request
for an attribute, which is not fulfilled by the participating data
providers, then that attribute is excluded from the verification
process, and the data providers gain no monetary value from it.
The comparison is performed (Line 45) to select one candidate
(or data provider) on each attribute from the qualified data
providers Qualpp, based on their arrival sequences (using
first-come first-served (FCFS) rule). If the final aggregated
trust score of any data provider becomes < 0 that data
provider drops from the final selection for the data mashup
and the attributes initially belonging to him are subsequently
reassigned to other qualified data providers that appear next
in the arrival sequences. The algorithm terminates when there
is no more attribute for verification.

1) Computation of information gain: We use information
gain as a criterion for splitting attributes [63] based on
the concept introduced by Claude Shannon on information
theory [[68]. We compute information gain on an individual
attribute A7 € PA; of each data provider in the presence of
a shared class attribute A°® on raw data. Let D™ C D; denote
a subset of the data table D;. Suppose the attribute A°** has C
distinct values. Let AS',. be the set of records of class Ag'
in D". Let |D7| and |AClD,| denote the number of records in
D™ and AS'5) ., respectively. The entropy on the data table D7
is computed as follows.

C
E(D7) = — Z Pr; x logs Pr; )

i=1

where Pr; is the probability that an art‘)ziéxtcrgry‘ record in D7
i,DT
Ed
We can further partition the records in D7 on the attribute
Ag. If Ay is discrete-valued, then one branch is grown
for each known value of As. On the other side, if Ay is
continuous-valued, then two branches are grown, correspond-
ing to A7 < splitpoint and A7 > splitpoint. It is calculated

belongs to class AS's. It is estimated by

by the following equation.

%
Ea, (D7) Z
Jj=1

Finally, we can compute the information gain G4, on the
chosen attribute A 7 of each data provider DP; as follows.

Ga; = E(DT) — Ea, (D7) )

2) Differentially-private G4, : Given a privacy budget €',
the sensitivity of the utility function (Af) is 1, and a true
computed G4 . We add independently generated noise from
the Laplace distribution Lap(1/€’) to a true computed G4,
to have a differentially-private version of Eq. ().

G a4, =Ga, +Lap(1/€) 5)

3) Discretization: We use equal-width method to discretize
a continuous-valued attribute A into K intervals of equal
size. The min,,; and max,, parameters are used for defining
the boundaries of the range, whereas arity K is used to
determine the number of bins. Each bin is associated with
a distinct discrete value. The width of interval is computed by

| T

| Di| (D7) 3)

— MANyal
K

Example 2. We continue from Example Consider the
example data of numerical type attribute in Table [} In this
table Age is a numerical attribute, whereas Loan approval is
an A°s attribute. Data providers DP; and DPs; own raw
data tables Table [ll(a) and Table [[}(b), respectively. DPs
has somewhat different values on the Age attribute in contrast
to DP; on records {ID#1,3,4,8,9,11,12}. They discretize
their data on the Age attribute, as shown in Table (c), ac-
cording to the parameters of equal width binning. A boundary
is defined as min,, = 10.0 and max,, = 70.0, whereas
arity i = 5. Though they have differences in their raw data,
the produced discrete version is the same for both since the
data values occurred in the specified range. Therefore, the
computed information gain 0.34573 is also the same. ®

maxqyal

(6)

Intyian =

Example 3. We continue from Example [T} Consider the raw
data tables of two data providers who own common attribute,
e.g., Sex (which has two values, M or F) as shown in the
compressed Table[ITl] The class attribute Loan approval shared
between the data providers has two values, Y or N, indicating
whether or not the loan is approved. Both DP; and DP;
have the same number of records and the same count on their
records, i.e., M = 8, and F' = 4, but they have different
information gain DP; = 0.011580 and D P, = 0.251629 on
the Sex attribute. Since the data providers are not consistent
in providing the same information on the common ReclDs,
this results in a change in the count for class label values. For
instance, D P; indicates that there is 1 female whose loan is
approved, whereas D P, indicates 0 females. m

4) Computation of trust score: Intuitively, the trust score is
a metric for assessing the trustworthiness of each data provider.
We compute the trust score T'Spp, locally for each data
provider in an iterative manner on each attribute ReqA, from
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TABLE II: Example data of numerical type attribute

Data Provider D P, Data Provider D P3 Discretization

ID | Age | Loan approval ID | Age | Loan approval ID Age Loan approval
1 39 N 1 45 N 1 [34.0 - 46.0] N
2 50 N 2 50 N 2 [46.0 - 58.0] N
3 38 N 3 35 N 3 [34.0 - 46.0] N
4 53 N 4 57 N 4 [46.0 - 58.0] N
5 28 N 5 28 N 5 [22.0 - 34.0] N
6 37 N 6 37 N 6 [34.0 - 46.0] N
7 49 N 7 49 N 7 [46.0 - 58.0] N
8 59 N 8 66 N 8 [58.0 - 70.0] N
9 31 Y 9 27 Y 9 [22.0 - 34.0] Y
10 42 Y 10 42 Y 10 [34.0 - 46.0] Y
11 37 Y 11 38 Y 11 [34.0 - 46.0] Y
12 30 Y 12 28 Y 12 [22.0 - 34.0] Y

Raw data table (a) Raw data table (b) Raw data table (c)

TABLE III: Compressed data table for categorical type attribute

Data Provider DP;

Sex | Loan approval | #of Recs.
M 3Y5N 8
F 1Y3N 4

Total 12
Raw data table (a)

the C'S. v is a user-defined weight. A data provider qualifying
on the majority gains a positive v weight in the trust score. On
the other hand, a disqualified data provider is penalized with
a negative -y weight in the trust score. We aggregate on both
positive and negative weights at each iteration to determine
the final trust score for each data provider.

Z o { zf(Cand c Majc(md)

ReqA;EReqA Zf(cand ¢ Ma]Cand)

+7
-
(7

TSpp, =

B. Security properties

In this section, we discuss the security properties of our
proposed algorithm.

1) Security against covert adversaries: In the context of
our problem, a dishonest data provider is a kind of covert ad-
versary who may arbitrarily provide false data on his attribute
As € PA;. The probability of detecting this cheat by our
proposed trust computation algorithm is 1 — £ (refer to the
Section for details). Each DP; who has committed to,
when registering, the available attributes P.A; = {Aq, ..., A4}
is responsible to answer the C'S’s challenge request, where
JReqA,’ € PA;. When the CS detects a data provider
cheating, the provider is penalized with a negative -y weight
in the trust score.

2) Mutual authentication: Before the verification process,
each DP; and the C'S mutually authenticate each other by the
TLS 1.2 protocol or higher [18]], [65]. It is indispensable for
the C'S to negotiate on the latest stable version of the TLS
protocol and stronger cipher suite to prevent against different
forms of deception. After successful authentication of each
DP;, they are granted access to the resource queue, where
they can register their data attributes.

3) Minimal access for outsourcing verification: The data
providers who own customers’ private data outsource the ver-
ification on their data to the C'S. Each D P; computes locally
the information gain function G on an available attribute

Data Provider D P>

Sex | Loan approval | # of Recs.
M 4Y4N 8
F 0Y4N 4

Total
Raw data table (b)

12

Ag € PA,, whereas the C'S can have access to only an
encrypted g’AJ message, i.e., ¥, and its keyed hash, i.e., T
for the verification. It benefits the data providers to restrict
the C'S from accessing the customers’ private data. Since
encrypted individual data records are not exchanged during
the verification, the overhead of computation on the C'S is
also reduced.

4) Authentication and integrity: HMAC enforces integrity
and authenticity. It depends on what underlying hashing func-
tion has been used. There are some collision-related vulnera-
bilities of MDS5; however, HMAC-MDS is not as affected by
those vulnerabilities. Regardless, SHA-2 is cryptographically
stronger than MD5 and SHA-1. HMAC is constructed by using
two nested keys, say k;,, and k,,;. These nested keys are not
independent; instead they are derived from a single kj,. Let M
bytes be assumed to be the message blocks for the underlying
Merkle-Damgard hash. To derive the keys k;,, and k,,;, which
are byte strings of length M, we first construct kj, exactly M
bytes long. If the length of k), < M, we pad it out with zero
bytes; otherwise, we replace it with #(k;,) padded with zero
bytes. Then we compute

kin < kn @ ipad
kout < kn @ opad

The ipad denotes the inner pad and the opad denotes the
outer pad. These pads are 512 bit constants that never change
and are embedded in the implementation of HMAC. HMAC is
assumed to be a secure PRF [14]]. It provides better protection
against length extension attacks. It is built as follows:

S(kn, ) = H(kh @ opad, H(kh @ ipad||1/1))

One of the properties of a cryptographic hash function is
that if there is a minor change in an input message, it changes
the message digest so extensively that the new message digest
appears uncorrelated with the old computed message digest.
In our case, we do not apply cryptographic hash functions
directly on the input data for data integrity because we allow
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Algorithm 1 /EB_Trust

Key Setup: C'S and DP; derive n symmetric keys by mutual authentication protocol
Input: Data consumer attributes request ReqAy, ..., ReqA,,, privacy budget ¢
Input: Data provider DP,’s attributes A;,..., Ay
Output: Accepted DP,

1: DPy,...,DP, own private data tables D1,..., D, Yie I, where I =1,...,n;

2: Each DP; holds set of attributes PA; = {A, ..

3: TSpp, < 0; /* Initially, trust score is set to O for each data provider */
4: s; < 0; /* Initially, arrival sequence is set to O for all data providers’ attributes */
Sl € .
— TReqA]’

6: while 3ReqA, € RegA do
7. foric I do
8 if 3ReqA, € PA; then
9: register arrival sequence s, on each attribute;
10: end if
11:  end for
12: end while

Round 1
13: while 3ReqA, € ReqA do
14:  CS randomly picks ReqA,’ over a range of ReqA,, ..., ReqA,, without replacement;
15: O sends challenge E(ks;, ReqA,') to each DP; where 3ReqA,’ € PA;; )
16:  Each DP; computes QS; according to Eq. \ and then adds Lap(1/€’), to have QS; ;

., Aq}, over a domain of attributes request ReqA = {ReqA, ..., ReqA.;,};

17: Each DP; encrypts the message ¥/ « E(ks;, gfjl’) and then computes tag T < S(kp, v ™);

18:  CS receives (V|| T || DP; on his challenge from the corresponding data providers;
19:  CS computes comparison to determine Majai)), « findMajCand(yV || Y1), size);
20: end while

Round 2
: while 3ReqA, € RegA do
22: for {=11to o do

=)

23: C'S generates K random IDs for RegA,’ (pick in Round 1) from |D;| records, where 5 < K < 10;

24: C'S generates P pairs of values for RegA,’ and Al attributes, where 5 < P < 10;

25: C'S sends challenge Egks[, K, ReqA,")||E(ks;, var, vers) to each DP; where 3ReqA,’ € PA;;

26: Each DP; computes GAJ

to have gf‘l’ H

on the concatenated X specified records and P pairs of values and then adds Lap(1/€’),

27: Each DP; encrypts the message 12 E(ksl‘gffj/) and then computes tag T3 < S(kp,,v®?);
28: C'S receives ) || T3 || DP; on his challenge from the corresponding data providers;
29: C'S computes comparison to determine Majgﬁ)df <+ findMajCand(y || T?), size);

30:  end for .

31:  CS computes (;_, ]\Jajg((li)di;
32: end while

33: C'S computes ]\Jajg,(li?)d ﬂ]\rfajgi?d
34: for all Cand € Majcana do

35: set Cand as Qualpp,;

36:  TSpp, =TSpp, +7:

37: end for

38: for all Cand ¢ Majcana do

39:  set Cand as UnQualpp,;

TSpp, =TSpp, —;

41: end for

: if size==1ATSpp, > 0 then

43:  set DP; as Qualpp,;

: end if

: Pick one C'and by comparison on the arrival sequences of the Qualpp, on each attribute
: return Data providers whose final aggregated trust score > 0

to determine M ajcand;

~
o

parties to have minor inaccuracies on numerical attributes for
a specified threshold.

C. Analysis

In this section, we analyze the correctness and security of
Algorithm [T}

Proposition V.1. (Correctness) Assuming multiple data
providers are dishonest, Algorithm [I| correctly computes the
trust scores among them, as stated in Problem 1 in Sec-
tion[II-B| to evaluate the trustworthiness of each data provider.

Proof: Algorithm [I] selects an attribute uniformly at
random without replacement from a list ReqA = {ReqAy, ...
,ReqA,,} of m requested attributes. Each DP; computes
Ga, according to Eq. (@) for its matching attribute in the
presence of a shared class attribute A°’*. For a continuous-
valued attribute, each provider follows equal-width method
for discretization into intervals of equal size. Consider Ay

is discrete-valued, owned by two providers, where Q(A7) =
{v1,v2} is in its domain of data values. Assume there is a
single record between two provider§ where they have different
values. Algorithm computes 91(41; in the first round for both
the data providers and returns different scores. This suggests
that they are not the same.

Now, we consider an extended case where two data
providers (say DP;, DPy) wquld have different sets of records
but the computation of 9541; in the first round on the full
dataset for both data providers returns the same score, so we
have Maj\!), = {DPy, DP,}. Algorithm 1| verifies further
by running the process « times in the second round. During
each iteration data providers have to select records over KC
random IDs for Ay, and they also have to add P pairs
of values v,s and v.s for A7 and a class attribuge Acls,
respectively, from the C'S before computation of Qf; . Algo-
rithm [1| computes Ma, jgéil)d N(Ny=y Ma jggl)dz) to determine
Majcang- This determines whether or not the data providers
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are holding the same data values over the common attribute
A . Data providers are required to match in both the rounds
to prove that they have the same score. Since data providers
are holding a different set of records, it is not possible for
them to match because of the randomness introduced in the
second round. ]

Proposition V.2. (Security) Algorithm [ is secure against
covert adversaries as described in Section by the prob-
abilistic bound of 1 — €.

Proof: The security of Algorithm [I] depends on the
keys derivation in the mutual authentication protocol and the
communication of the cloud server C'S and data providers
DP, in the verification process.

o A random challenge E(ks;, ReqA,’) is secure because
of symmetric keys derivation by [18]], [65].

e On a given challenge request, if JReqA,’ € PA,,
each data provider first computes the information gain
function on its matching attribute G4, € P.A;, and then
perturbs the output by adding noise. This returns a noisy
score g;‘j for which data providers should agree on the
scale for digits after the decimal point. It is secured for
privacy protection because each D P; only exchanges an
encrypted g;‘j message, i.e., ¥, and its keyed hash, i.e.,
T, with the C'S in both rounds of the protocol, instead
of exchanging encrypted individual data records on their
attributes A 7.

o Keyed hash-based message authentication code S(kp, )
is a secure PRF according to [14]. It is computationally
infeasible for an adversary to find distinct inputs 1, Y9
such that S(kp,¥1) = S(kn, ¥2).

« Dishonest data providers cannot modify the outputs, i.e.,
|| T, of the honest providers in any round of the protocol.
They may compute G  on their false data and can send
their ¢*||T™* to the C'S. The C'S computes a comparison
and detects cheating from a dishonest data provider with
the probability of 1 — &.

1) Adversary’s inferences: In the following, we estimate the
probability of an adversary, i.e., a dishonest data provider, to
correctly guess g;j on a random challenge attribute ReqA.,.
An adversary knows |D7|, the number of records in D7,
and |A$%,. |, the number of records of class AS'® in D™, and
computes the entropy of D7 by Eq. (). Next, the adversary
may try to compute entropy on A 7 by the following equation
because he knows [2(A 7)|, the domain size of A7, and |D7|,
the number of records in D7.

¢ A7 | A |

,Z %j/xlogg 7 (8)
2 o7 D7

V/
. i |DZ|
E;, (D7) =)

j'=1

X
|D7|

There are [Q(A)|IP"! possible arrangements in which an
adversary may try to compute £ (DT). Finally, he computes
QZJ having all distinct values by the following equation.

Gi, = E(DT) - E4 (D7) ©

This results in 9 distinct values of ngj, with the lower
bound of ¥ &~ |D7|. The probability of correctly guessing
gj;j for an adversary in our verification process is

11,
=35 x(3)

2) Detecting cheat against varying dishonest providers:
Let n denote the number of participating data providers, and
let b denote an upper bound on the number of dishonest
data providers who may arbitrarily provide incorrect data in
responding to the C'S’s challenge.

(10)

o When b < n/2, the verification process guarantees fair-
ness and no honest data providers are negatively affected
by their trust levels.

e When b < n — 2, the verification process guarantees
fairness under the arbitrary behavior of dishonest data
providers, where the chance of detecting them is 1 — &.
It is a type of covert adversarial behavior when the
dishonest data providers arbitrarily provide false data
on their data inputs, i.e., they neither would be able to
appear in the majority nor would be able to undermine
the reputations of the honest data providers.

e When b > n/2, the verification process does not guar-
antee fairness on the flip side, i.e., when the behavior
of dishonest data providers is not arbitrary. This would
be the case when the dishonest data providers not only
appear in the majority but also organize in a way to
undermine the reputation of the honest data providers.
We assume that if a secure set intersection is carried
out by using a trusted mediator (e.g., by computing
the function on the data providers input) between data
providers, then the dishonest providers would not be
able to determine the total number of participating data
providers in advance. This would restrict them from
developing the organized group; still, there is no remedy
if they would try by guessing at random.

D. Evaluation of learner models

We provide an example of a sample data to evaluate the
quality of linear regression, k-nearest neighbors (kNN), and
random forest learner models.

Example 4. We retrieve the top 1000 records from a real-
life Adul{| dataset on attributes age, education-num, race, sex,
income. The attributes age, education-num are of continuous
types, whereas race, sex, income are of categorical types.
We develop learner models in RapidMinerE] to compare the
predictive accuracy of linear regression, k-nearest neighbors
(kNN), and random forest methods.

For the linear regression model, we set education-num as
a label, which is considered as a dependent attribute (or
variable), and the remaining are considered as independent at-
tributes. We convert non-numeric type attributes to the numeric
type. After running 10-fold cross-validation, the Root Mean
Square Error (RMSE) is found to be 2.438 £ 0.165, which

! Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
2 Available at: https://rapidminer.com/products/studio/
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indicates the standard deviation of the residuals. Furthermore,
R? is found to be 0.1274+0.055, which indicates the goodness
of fit of this regression model. Its value is close to 0, indicating
a weak linear correlation.

For the k-nearest neighbors (kNN) model, we set all
attributes as nominal and education-num as a label. After
running 10-fold cross-validation when k& = 20, the accuracy is
found to be 33.90% + 5.59%, which indicates the percentage
of correct predictions.

For the random forest model, we set the education-num
attribute as nominal and specify the role as a label. The key
parameter ‘number of trees’ is specified as 10, and the ‘gain
ratio’ is chosen as a criterion for splitting attributes. After
running 10-fold cross-validation, the accuracy is found to be
32.90% + 0.30%, which indicates the percentage of correct
predictions. m

There are no significant performance differences found on
running these learner models on the sample dataset. Data
providers would use any one or multiple learning methods
for missing data imputation.

E. Price setting using auction mechanism

An auction mechanism can be defined in many differ-
ent ways depending upon the design requirements. The two
variants of 2nd price sealed-bid auctions [23] have widely
used, namely Vickrey-Clarke-Groves (VCG) and Generalized
Second Price (GSP) mechanisms for multiple items.

The reason for employing the VCG mechanism for deter-
mining the pricing on data providers’ attributes is that truthful
bidding is a dominant strategy, and there is no incentive to lie
or deviate from reporting true valuations for a data provider. It
maximizes the total valuation obtained by data providers. One
nice property of the VCG mechanism is that it provides a
unique outcome, which is socially optimal, whereas, in the
GSP there would be multiple outcomes in terms of Nash
equilibrium. One Nash equilibrium would maximize social
welfare but not all of them.

We intend to design an auction mechanism for multiple
items. It is assumed that the data providers intend to set up
a matching market using a 2nd price sealed-bid auction for
valuation of their attributes. We formally define the procedure
for setting the price as follows:

1) Data providers: Let DPy,...,DP, (where 7 =
1,...,n) be the set of data providers who set up a matching
market for valuations of their attributes.

2) Positions: Let Pi,..., P, (where 7 = .,n) be
the set of positions for which data providers compete. The
higher the position P;, the more will be its demand rate. The
positions should be equal to the number of data providers.
If there are more data providers than positions, we simply
add fictitious positions of demand rate 0. Similarly, if there
are more positions than data providers, we add fictitious data
providers of revenue per demand O.

3) Revenue per demand: Revenue per demand is the ex-
pected amount of money that a data provider D P; receives,
denoted by Rewv;, for every demand on its attribute. The
monetary values of Rewv; are sorted in descending order.

4) Demand rate: Demand rate is defined as the number
of demands requested by a consumer over a period of time,
denoted by @;. Demand rate varies as per the position P;. Q;
enumerates in descending order.

5) Data providers’ valuations: Data providers’ valuations
are defined as the data provider D P;’s valuation of the position
P;. It is the product of the revenue per demand Rev; and the
demand rate ();, denoted by V'al; ;. It is computed as follows:

Vali,j = Rev; X Qj (11

6) VCG price: VCG price is defined as the harm or
externality caused by data provider D P; to other data providers
in terms of reduction of their valuations due to his presence.
It is called VCG price, denoted by ExPrc; j, which is paid
by data provider DFP; for position P;. Formally, it is defined
by

P, P —P;
El‘P’I“CiJ‘ = \/ - \/ (12)
DP,—DP; DP,—DP;

where

e DP, — DP; is the set of data providers excluding data
provider DF;;

e P, — P; is the set of positions excluding position P;;
\/ pp,—pp, 1s the sum of data provider values of an
optlmal matching between sets DP,, — DP; and P,,; and
\/ DP, B _'pp, 1s the sum of data provider values of an
optimal matchmg between sets DP, — DPF; and P, — P;.

7) Data providers’ valuations after payoff: Data providers’
valuations after payoff is defined as the data provider DP;’s
valuation on position P; after paying off harm to other data
providers. It is calculated using the following equation.

Valpp, = maxVal; ; — ExPrc;; (13)

8) Valuation of an attribute: Valuation of an attribute can be
assessed once a data provider D P; acquires a certain position
P;. The value of each data provider’s attribute per single
demand is calculated using the following equation.

Valpp,
ValAtteri = M

(14
J

9) Attribute count: The attribute count CntAttrpp, of a
data provider DP; represents the number of attributes in a
single record. Each DP; owns a mutually exclusive set of
attributes.

10) Price per record: The price per record PrcRecpp, of
a data provider D P; represents the unit price of a record. Nat-
urally, it is the product of the value per attribute ValAttrpp,
and the attribute count CntAttrpp, in a single record. That
is,

PrcRecpp, = ValAttrpp, x CntAttrpp, (15)

11) Size of dataset: The dataset of each data provider D P;
consists of a collection of records, denoted by |D;|. The size
of a dataset grows as the number of records in the dataset
increases.
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12) Price of raw dataset: The price of a raw dataset
PrcRawDSpp, represents the data provider DF;’s selling
price of a raw dataset in the e-market. The overall pricing of
a raw dataset increases as the number of records or the unit
price per record increases. It is computed as follows:

PrcRawDSpp, = |D;| x PrcRecpp, (16)

13) Total price of raw dataset: The total price of the raw
dataset T'Prcrqwps is the sum of the pricing of all the
contributing data providers’ raw datasets. It is computed as
follows:

TPregawps = Y, PreRawDSpp, (17)
i=1

14) Total monetary value of raw dataset: First, data
providers compute baseline accuracy (BA) for classification
analysis using the secure multiple party classifier [21] by main-
taining the confidentiality of their raw data. Then they use the
information utility of classifying raw data to derive the mon-
etary value of the raw dataset, denoted by T'"MV aluerqwps-
It is calculated using the following equation:

TMValueRawDS = TPTCRawDS x BA (18)

F. Anonymization method

In this section, we provide an extension of the two-party
Differentially private anonymization in Algorithm [2] which
is based on Generalization [53|] to differentially integrate
multiple private data tables. This algorithm guarantees e-
differential privacy and security definition under the semi-
honest adversary model (readers may refer to the detailed
analysis in [53], Section 6.3). The two major extensions over
the TDS algorithm [31]] include: (1) DistDiffGen selects the
Best specialization based on the exponential mechanism, and
(2) DistDiffGen perturbs the generalized contingency table by
adding the Laplacian noise to the count of each equivalence
group.

Generally, there is no incentive for any data provider who
executes the algorithm as the purpose is merely to synchronize
the anonymization process. We assume a trusted data provider,
who attains the highest trust score after running the Algo-
rithm [I] starts the anonymization process. The accepted data
providers, as a result of trust computation by Algorithm [I] at-
tain a mutually exclusive set of attributes, i.e., PA;NPA; = ()
for any 1 < 4,7 < n over the same set of records for
integrating data.

Initially, all values in the set of attributes PA; =
{Ay,...,A;} of each data provider are generalized to the
topmost value in their taxonomy trees (Line 1), as illustrated
in Fig. I} and Mark, contains the topmost value for each
attribute A7 € PA; (Line 2). Each data provider keeps a
copy of the UMark, and a generalized data table D,. The
attribute A 7 can be either categorical or numerical, but the
class attribute is required to be categorical. The split value of
a categorical attribute v, is a generalized value drawn from a
pre-defined taxonomy tree of the attribute, whereas the split
value of a numerical attribute vy, is determined by using the

exponential mechanism (Line 4). It partitions the domain range
of a numerical attribute into successive intervals Zi,...,Z.
Line 4 preserves € | A,y |-differential privacy since the cost
of each exponential mechanism is ¢’. In Line 5, a score
IGScore is computed for all candidates v € UMark,.
At each iteration, the algorithm uses the secure distributed
exponential mechanism (DistExp) as presented in [53]] (readers
may refer to the details of the DistExp algorithm) to select
a winner candidate w € UMark, for specialization (Line
7). Different utility functions (e.g., information gain) can be
used to calculate the score. If the winner candidate w is local
to DP;, DP; specializes w on D, by splitting its records
into child partitions, updates its local copy of UM ark,, and
instructs all the other participating data providers to specialize
and update their local copy of UMark, (Line 8-11). The
information gain, denoted by Gpp,, accumulates IG Score(x)
on the winner’s attribute specializations (Line 12). D P; further
calculates the scores of the new candidates as a result of
the specialization (Line 14). If the winner w is not one of
DP;’s candidates, D P; waits for instructions from the other
winner data provider DP;, where i # j, to specialize w
and to update its local copy of UMark, (Lines 16 and
17). This process iterates until the specified number of the
specializations h is reached. The algorithm perturbs the output
by adding the noisy count at each leaf node (Line 21) using the
Laplace mechanism. The contribution of each data provider is
computed according to Eq. (22)). Finally, the monetary share
of each data provider is derived according to the Eq. (23).

G. Quantifying the monetary value

The rationality of quantifying the monetary value is that
data providers are the business stakeholders who collaborate
in the data integration process to maximize their profits. The
profit generated by their collaboration is distributed based
on each provider’s contribution to information utility and its
trustworthiness.

1) Cost of anonymization in integrated data: First, the
data providers compute classification accuracy (CA) on the
anonymized integrated data. Then, they quantify the cost of
anonymization in integrated data, denoted by Costr,:ps, on
the difference between the baseline accuracy (BA) and the
classification accuracy (C'A). It is computed as follows:

Costrnins = TPrcrewps X (BA - CA) (19)

2) Expected value in integrated data: An expected mon-
etary value in integrated data is what the data providers
earn from the information utility of classification analysis
when trading an anonymized version of integrated data. The
information utility varies with the valuations of data providers’
attributes and joint privacy requirements, such as privacy
budget € and specialization level h, for a e-differential privacy
model in a distributed setup, between the data providers. It
is calculated on the difference between the total monetary
value of the raw dataset T MV aluegrqwps and the cost of
anonymization in integrated data C'ostr,:pg. It is computed
as follows:

EValueImDS = TMVLLZU@RMUDS — COSt]ntDS (20)
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Algorithm 2 Monetary Shares for Data Providers using Dist-
DiftGen

Input: Data providers’ attributes valuations ValAttrpp,
Input: Private data tables D, ..., D,, privacy budget ¢, and
number of specializations A

Output: Monetary shares M Sharepp,

1: Initialize D, with one record containing topmost general-
ized values in each data provider’s taxonomy tree;

2: Initialize Mark, to include the topmost value;

C € T

4: Determine the split value for each vy, € UMark, with
probability o« exp(553u(D, Vnum));

5. Compute the /G Score for Vv € UM ark,;

6: for iter =1to h do

7. Determine the winner candidate w by using the DistExp

Algorithm [53];
8: if w is local then

9: Specialize w on Dy;
10: Replace w with child(w) in the local copy of
UMark,;

11: Instruct all the other participating data providers to
sApecia]izeNand update UM ark,;

12: Gpp, = Gpp, + IGScore(x);

13: Determine the split value for each new wvyum €
UMark,, with probability o exp(55:u(D, Vpum));

14: Compute the /G Score for each new v € UM ark,;

15:  else

16: Wait for the instruction from the winner data
provider;

17: Specialize w and update UM ark,, using the instruc-

don;

18: Gpp; = Gpp, + IGScore(x);

19:  end if

20: end for

21: Compute count (CT + Lap(2/e)) for each leaf node;

22: Compute the contribution of each data provider according
to Eq. 22);

23: Compute monetary share of each data provider according
to Eq. 23);

24: return M Sharepp,

3) Expected value of an individual data provider: The ex-
pected monetary value of an individual data provider, denoted
by EValueIndvpp,, is determined by the ratio of the number
of attributes CntAttrpp, a data provider owns with the total
count of attributes. It is computed as follows:

C’ntAttTDpi
S, CntAttrpp,
2n

EValueIndvpp, = EValuer,ips %

4) Derivation of monetary share: The derivation of a mone-
tary share depends upon the contribution of each data provider
and its trustworthiness. Intuitively, a data provider whose
provided data on his attributes result in more information
gain, and whose trust level is higher than the other com-
petitors, can get a significantly larger share of the monetary
value. The contribution of each data provider DP; is derived
from the expected monetary value EValuelndvpp, by fairly
computing first the accumulative information gain Gpp, of
each data provider D P; on the anonymized integrated dataset.
The information gain /G Score(x) of the winner candidate w
data provider accumulates under the relevant winner w data
provider at each iteration (refer to the Section for details)
for the specified specialization level h. The contribution of

each data provider Contribpp, is calculated using the fol-
lowing equation:

Contribpp, = ngDi]ii x EValueIndvpp, (22)
Zi:l Gpp,
Finally, the monetary share of each data provider

MSharepp, is derived according to Eq. (7), i.e., the aggre-
gated trust score of each data provider, and Eq. (22), i.e., the
contribution of each data provider. Therefore, M Sharepp,
becomes:

TSpp,

MSharepp, = Contribpp. (1 + ——2BPi__
arepp, ontribpp, (1 + ST TSom

) (23)

VI. COMPARATIVE ANALYSIS AND EMPIRICAL STUDY

In this section, we first provide a comparison of our ap-
proach, followed by an empirical study.

A. Comparative analysis

We compare our proposed IEB_Trust, an entropy-based trust
computation algorithm with the closely related provenance-
based trust method [16]. The provenance-based method com-
putes the trust scores for data and data providers using
similarity functions, but do not consider privacy protection
when evaluating trustworthiness. The fundamental idea of our
approach is different. Our method enables secure trustworthi-
ness assessment and preserves the privacy of the customers’
data when evaluating the trustworthiness of the participating
data providers. For this reason, we are limiting to the runtime
comparison in Fig. Bh. We evaluate the performance of our
proposed method on a real-life Adulﬂ dataset. It contains
45,222 records with 8 categorical attributes, 6 numerical
attributes, and a binary class attribute Income with two levels,
< 50K or > 50K. The distribution of attributes other than
class attribute among 10 data providers is shown in Fig. 3p.
We generate 10% of data conflicts over randomly chosen
attributes. We vary the size of the datasets |D;| from 10K to
50K to study the runtime cost. All experiments are conducted
on an Intel Core i7 3.4GHz PC with 8GB memory.

The running time includes time elapsed in both the ini-
tialization phase and the iteration phase. We observe that
the initialization phase of the provenance-based method takes
more time to compute data similarity and data conflict.
It has worst-case complexity of O(n?). While the com-
plexity of our proposed method at the initialization phase
is O(CntAttrpp,- |D;| log |D;|). Since each data provider
computes G4, in a distributed setup, the complexity remains
the same in our method. The iteration phase to compute trust is
much faster in both the methods. It takes less than one second
to complete the trust computation. Fig. Bp shows that our
method is more efficient in running time over the provenance-
based method. Our method is scalable when we need to grow
either the number of attributes, the number of data providers,
or both on a dataset.

3 Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
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Fig. 3: Our method improves the runtime efficiency compared to the provenance-based trust method.

B. Empirical study

We first analyze the trustworthiness of each data provider
and assess the truthfulness of the provided data by a trust
score metric. Second, we analyze the impact of e-differential
privacy requirements along with the aggregated trust score on
each data provider’s monetary value. We evaluate our proposed
method, IEB_Trust, with the assumption of having 4 data
providers who intend to verify the correctness of their data
before participation in the data mashup. This assumption is
reasonable because we have a limited number of attributes in
the dataset to be shared among data providers.

1) Trust measurement: Our proposed method evaluates the
trust of participating data providers based on the following
conditions: (1) A data provider is found as honest and gains a
positive score; (2) A data provider is found as dishonest and
is penalized with a negative score; (3) A single data provider
of an attribute that no others own is accepted based on the
existing trust score T'Spp, > 0 without an increase in the
trust score; and (4) A data provider who does not register for
an attribute has no effects on the trust score.

To demonstrate the effectiveness of our approach, we
conduct two cases of experiments that are independent of
each other. This means that for each case data providers
hold different sets of overlapping attributes with their arrival
sequences. In each case, we assume v = (.5, but it does not
need to be fixed to a specific weight.

Consider the first case with the participating data providers’
attributes and their arrival sequences. DP; +— Aj:sy,, A7:S4,,
Ag.‘Stl, Ag.’Stl, AlO-'StZy Au.’Stl; DPy — Ag.'8t2, Ag.’Stl,
A4.‘St1, A5.‘St2, A7.‘St2, Ag.‘Stg, A13.‘5t1; DP; — Al.'StQ,
A4.'St2, A5.’St1, A6~.5t1, Ag.‘Stz, All‘.stgr A13.'5t2; and DP4
— Al'.stg! AQ.’Stl, A5.’5t3, Ag.‘StQ, AlO-'Stlx All-'st;;: A12-'5t1-
Fig. [ depicts the trust scores analysis for Case 1 based on
the demand of a data consumer on attributes A4, ..., A;3.

It is observed that the D P, trust score never drops during
the verification process in contrast to the other competing data
providers. The flat lines from As to Ag at trust score level
0.5, and Ag to A;o at trust score level 2.5, indicate that those
attributes are not submitted by DP; and DP,, respectively.

This is not always the case; for instance, there are flat lines
from A, to As at trust score level 0.5, A5 to Ag at trust score
level 0.5, and A;;1 to Ao at trust score level 2.0, indicating
that DPs, DP;, and DP, are the single data providers on
those attributes. DP,, DP5, and DP, are accepted because
they are maintaining an aggregated trust score > 0 at that
point of the verification. However, their trust scores do not
increase because they own an attribute that no others own.
It is assumed that DP; has 5% of missing data on Ag and
Aq1, DP;3 has 5% of missing data on As, and DP, has 1%
of missing data on A;. They impute missing data by using
the kNN imputation method in order to claim it as original
data. Our trust verification approach restricts this dishonest
behavior of data providers; for instance, DP; at Ag and Ay,
DPs at Ay, and DP, at Ay, by penalizing them with negative
weight in their trust scores. Fig. Bh depicts the aggregated
trust scores for Case 1. D P, attains the maximum trust score
3.0 in competing with the other data providers, whereas D P;
ends up with the minimum trust score 1.0. There is a tie on
aggregated trust scores between DP3; and D P;.

Consider the second case with the participating data
providers’ attributes and their arrival sequences. DP; +—>
Al.'Stl, A6~'3t3: A7.‘St1, Ag.'stz, Ag.‘Sta, Alo.'8t2, A12.‘3t2;
DP2 — AQ.'StQ, A5.‘St2, AG.'St4, A7.’St2, AS-.Stl; Ag.‘StQ,
A11~'8t1; DPg — A3.’St1, A5.’St1, AG.'Stl, Ag.’Sts, Ag.‘Stl,
Alg.‘stl, Alg.'StQ; and DP4 — AQ.‘Stl, A4.‘St1, A6.‘St2, Ag.'8t4,
Ajo:se,, Ai11:8t,, Ais:sy . Fig. E}) depicts the trust scores
analysis for Case 2 based on the demand of a data consumer
on attributes A1, ..., As.

It is observed that DP;, DP,, and D P, maintain their trust
scores quite well except for a fall of 0.5 in their trust scores
at Ag, As, and A;3, respectively. The flat lines from A; to
As at trust score level 0.0, and A3 to As at trust score level
0.5, indicate that those attributes are not submitted by DP;
and DP,, except at A; and Ay, respectively. Since DP; and
DPy are the single data providers on A; and Ay, their trust
scores do not increase. However, they are accepted because
they maintain an aggregated trust score > (0. We observe that
DP; is inconsistent in maintaining its trust level throughout
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the verification process. It is worthwhile to note that our trust
verification process restricts the arbitrary behavior of dishonest
DP; and D P; to undermine the trust levels of DP, and D Pj.
Fig. Bb depicts the aggregated trust scores for Case 2. DP,
attains the maximum trust score 2.5 in competing with the
other data providers, whereas D P; ends up with a negative
trust score of -1.0. This results in the rejection of D P; from
the final selection in the data mashup.

2) Impact of privacy protection and trust score on DP’s
monetary value: In this section, we analyze the impact of
e-differential privacy requirements along with the aggregated
trust score on each data provider’s monetary value. Recall
from Section that both revenue per demand Rew; and
demand rate (); are enumerated in descending order. Suppose
Rev; = {$0.6,$0.5,$0.4,$0.3} and Q; = {9,8,7,6} for data
providers DP;, DP,, DPs, and D Py, respectively. The inputs
for Rev; and (); do not need to be fixed to a particular value,
it is just assumed here for simplicity.

Case 1 Table [[V](a) shows the selection of attributes from
each accepted data provider. Baseline accuracy (BA) on the
integrated data of accepted data providers is 85.3% using the
secure multiple party classifier without disclosing their
raw data. We vertically partition the Adult dataset into four
partitions V Py, V P,, V P3, and V Py for data providers D P,

@ Aggregated Trust Scores

Trust Scores

drop off m}

Data Providers
(b) Case 2

Fig. 5: Aggregated trust scores

DP,, DPs, and D Py, respectively. Further, we split the dataset
into 30,162, and 15,060 records for the training and testing
set, respectively. The valuation of each data provider’s attribute
is $0.47, $0.41, $0.36, and $0.30, representing ValAttrpp,,
ValAtterz, ValAtters, and ValAtt’l’Dp4 by Eq. @) The
attribute count of each data provider is CntAttrpp, = 3,
CntAtter2 = 4, CntAtterg = 3, and CﬂtAtt’l"Dp4 = 3.
The size of the dataset for each data provider |D;| = 45, 222.

TABLE IV: Selection of attributes from data providers

DP; DP, | DP3 | DPy DP;, DP> | DPy
Ay As As Ao Ay As Ao
Ag Ay As A1z A7 Ag Ay
Az A1z | A | Ao Az | A | Ao
As As
(a) Case 1 (b) Case 2

Fig. [f] depicts the impact of privacy protection and trust
scores on DPy, DP,, DPs, and DP,’s monetary value. e-
differential privacy is enforced with privacy parameters ¢ =
0.2, 0.4, 0.6, and 0.8 and specialization levels 3 < h < 19.

Fig. [6h depicts the impact on DPy, DP>, DPs, and DPy’s
monetary value when the threshold is € = 0.2. We observe that
D Py attains the highest monetary share due to more informa-
tion utility and its aggregated trust score. When specialization
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Fig. 6: Impact of e-differential privacy requirements and Trust scores on DP;, DP,, DPs, and D P, monetary value (Case 1)

level h increases from 3 to 7 and 11 to 15, DP;, DP,, and
DP; get increases in their monetary shares, while DPy’s
monetary share falls by approximately $11K, though still
achieving a higher share than other data providers. Initially,
D P, has no monetary share when h = 3, but it increases with
the increase in the specialization level h except when h = 19.
DP,, DP;, and D P5’s monetary shares become closer to each
other when h = 11.

Fig. @) depicts the impact on DP;, DP,, DP5, and DPy’s
monetary value when the threshold is ¢ = 0.4. We observe
that D Py attains the highest monetary share because of greater
information utility and its aggregated trust score. Though D P;
does not get the highest share, its monetary share becomes
closer to DP, at h = 11, 15, and 19 with the difference of
approximately $3K to $5K. Interestingly, DP,’s monetary
share exhibits non-increasing monotonicity with the increase
in specialization level h, while DP;’s monetary share in-
creases with the increase in specialization level h except when
h = 19. We notice that DP; has no monetary share when
h = 7 because of a lack of information utility for classification
analysis. The trust score does not add any monetary value if
a data provider fails to contribute to information utility. The
trend on D P, and D P;’s monetary share is not obvious with
the increase in h.

Fig. @ depicts the impact on DPy, DP,, DPs, and DPy’s
monetary value when the threshold is € = 0.6. We observe
that D P, gains the maximum value of monetary share when
h = 3 and h = 7, and DP; gains the maximum value
of monetary share when h 11 and A 15, whereas
DP, gains the maximum value of monetary share when
h = 19. This is because it has greater information utility
in competing with the other data providers at the indicated
levels of specialization. We observe that D P»’s monetary share
increases monotonically as the increase in specialization level
h, whereas DP,’s monetary share falls with the increase in
specialization level h, except when h = 19.

Fig. [6d depicts the impact on DP;, DP,, DPs, and DPy’s
monetary value when the threshold is e = 0.8. We observe
that DP, achieves the highest monetary share because of
greater information utility and its aggregated trust score. We
observe that DP;’s monetary share generally increases as
the specialization level h increases, whereas D P,’s monetary
share falls with the increase in specialization level h, except
when h 11. We notice that when h 15, all data

providers’ monetary shares become closer, with a difference
of approximately $4K.

Case 2 Table [[Vl(b) shows the selection of attributes from
each accepted data provider. Baseline accuracy (BA) on the
integrated data of accepted data providers is 85.4%, using
the secure multiple party classifier [21] without disclosing
their raw data. We vertically partition the Adult dataset into
three partitions V P;, V P, and V Ps for data providers D P,
DP,, and DP,, respectively. Further, we split the dataset
into 30,162, and 15,060 records for the training and testing
set, respectively. Since DP; has dropped from the list of
accepted data providers, D P, acquires the position of D Ps.
Now, the valuation of each data provider’s attribute is $0.47,
$0.41, and $0.36, representing ValAttrpp,, ValAtirpp,,
and ValAttrpp, by Eq. (T4). The attribute count of each
data provider is CntAttrpp, = 3, CntAttrpp, = 3, and
CntAttrpp, = 4. The size of dataset for each data provider
|D;| = 45,222.

Fig. [7| depicts the impact of privacy protection and trust
scores on DP;, DPs, and D P,’s monetary value. e-differential
privacy is enforced with privacy parameters ¢ = 0.2, 0.4, 0.6,
and 0.8, and specialization levels 3 < h < 19.

Fig. depicts the impact on DP;, DP,, and DPy’s
monetary value when the threshold is e = 0.2. We observe
that D P, attains the highest monetary share because of higher
information utility and its trust level, except when h = 19.
We observe that DP;’s monetary share increases as the
specialization level h increases, except when h = 7, whereas
DP,’s monetary share generally falls with the increase in
specialization level h except when h = 15. DP; gains the
maximum value of approximately $32K of his monetary share
when h = 19.

Fig. depicts the impact on DP;, DP,, and DPy’s
monetary value when the threshold is € = 0.4. We observe
that D Py attains the highest monetary share because of higher
information utility and its trust level, except when h = 19.
The trend on DP;, DP,, and DP,’s monetary share is not
obvious with the increase in specialization level h. D P, gains
the maximum value of approximately $33K of his monetary
share when h = 19.

Fig. depicts the impact on DP;, DP,, and DPy’s
monetary value when the threshold is € = 0.6. We observe that
DPy achieves the highest monetary share because of higher
information utility and its trust level, except when h = 15.
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Fig. 7: Impact of e-differential privacy requirements and Trust scores on DP;, DP,, and D P, monetary value (Case 2)

DP,’s monetary share drops sharply when h increases from
3to 7 and 11 to 15, while DP; and D P, have a significant
increase in their monetary shares with this increase in h. D P
gains the maximum value of approximately $29K of monetary
share when h = 15.

Fig. depicts the impact on DP;, DP,, and DP;,’s
monetary value when the threshold is € = 0.8. We observe
that D P, gains the maximum value of monetary share when
h = 3, 7, and 11, whereas DP; gains the maximum value
of monetary share when h = 15 and 19. This is because
they have more information utility in competing with the
other data providers at the indicated levels of specializations.
DP,’s monetary share generally increases as the increase in
specialization level h, except when h = 15. DP; and DP, do
not exhibit monotonicity with the increase in h.

VII. CONCLUSION

In this article, we propose a novel entropy-based trust
computation algorithm to verify the correctness of data from
untrusted multiple data providers who own overlapping at-
tributes over the same set of records. We achieve three main
benefits in delegating the verification role to the semi-trusted
cloud service provider. First, our method ensures that the
cloud service provider cannot derive customers’ private data
from the information collected during the verification process.
Second, the overhead of computation on the cloud server
is also reduced because only an encrypted information gain
message and its keyed hash are exchanged between a data
provider and the cloud server, instead of exchanging encrypted
individual data records during the verification process. Third,
it also reduces the burden on data consumers to determine
which data providers can serve their demands on requested
attributes and what are their attained trust scores. Furthermore,
we evaluate the robustness of our approach when a data
provider employs machine learning method for imputation of
missing values on its data. There is no significant difference
in perspective to the performance of the imputation method.
It is conditional to what proportion of data is missing and
whether the data contains repeated patterns. If the prediction
of a missing data happens to be as precise data, then it
will be considered as true data. We incorporate the VCG
auction mechanism to determine the pricing on data providers’
attributes. It maximizes the total valuation obtained by data
providers since there is no incentive to lie or deviate from

truthful reporting for a data provider. From the perspective of
privacy protection, the accepted data providers as a result of
trust computation set up their joint privacy requirements for
the data mashup. During the data mashup process, every data
provider competes with the other participating data providers
to produce more data utility. It is evident from the experiments
that an accepted data provider whose data attributes result in
more information gain, and whose trust level is higher than
the other competitors, can get a significantly larger share of
the monetary value.
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