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connecting with medical practitioners, pharmacists, and laboratories and accessing resources to manage their own health-related

concerns. Many healthcare institutions are connecting with each other to facilitate the exchange of healthcare data, with the goal of

effective healthcare data management. The contents generated over these platforms are often shared with third parties for a variety

of purposes. However, sharing healthcare data comes with the potential risk of exposing patients’ sensitive information to privacy

threats. In this article we address the challenge of sharing healthcare data while protecting patients’ privacy. We first model a complex

healthcare dataset using a heterogeneous information network that consists of multi-type entities and their relationships. We then

propose DiffHetNet, an edge-based differentially private algorithm, to protect the sensitive links of patients from inbound and outbound

attacks in the heterogeneous health network. We evaluate the performance of our proposed method in terms of information utility

and efficiency on different types of real-life datasets that can be modeled as networks. Experimental results suggest that DiffHetNet

generally yields less information loss and is significantly more efficient in terms of runtime in comparison with existing network

anonymization methods. Furthermore, DiffHetNet is scalable to large network datasets.
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Fig. 1. Network schema

1 INTRODUCTION

In the past decade, heterogeneous information networks (HINs) have gained increasing attention in various application

domains, such as social media, communications, energy, and health informatics, mainly due to its ubiquitousness and

capability of representing rich semantics [58]. Many complex networks are modeled as graphs, where entities are

described by nodes and their relationships are represented by edges. Recent database technologies have evolved to

accommodate the need of storing large networks of connected data. The healthcare industry follows certain standards

and requirements for managing healthcare data [24], such as providing better and timely services and mitigating privacy

risks by protecting patients’ sensitive information against privacy threats. To address these challenging requirements,

we model a complex de-identified healthcare dataset that contains patients’ medical histories, medications, laboratory

tests, and demographics, using a heterogeneous information network that consists of multi-type entities and their

multi-type relationships. A network schema of a heterogeneous health information network (HHIN) is illustrated in

Fig. 1, which is a graphical representation of real-life health-related data. In the illustrated network schema, Patient,

Disease, Medication, and Lab Test are entities, whereas contracts, uses, and undergoes represent relationships between

entities. We use the terms network and graph interchangeably.

Fig. 2 provides an overview of privacy-preserving data publishing of HHIN. In the presented scenario a health

information custodian (HIC) collects health-related data from multiple data sources (where a data source is denoted by

DS in the figure). The collected data from all sources pertains to the same set of patients and is maintained in a single

repository. The fusion of all the collected data results in a typical heterogeneous network. The goal of HIC is to publish

the collected data to a data recipient for data analysis without compromising the patients’ privacy. To address this

real-life problem for health-network data and to bring additive advantages to HIC by properly balancing privacy and

utility requirements, we propose a method that converts de-identified health network data into a differentially-private

version.

It has been a common practice by the HICs tomaintain health-related data in central storage to facilitate administrative

operations, improve healthcare services, and support medical research [27]. Health data contains sensitive information

about patients, and HICs must ensure the protection of patients’ private information during the collection, use, and

release of health data as mandated by regional and global data privacy laws [3, 24, 70]. Many health-service providers

follow the practice of obtaining patients’ consent when sharing their health data [31], and some use de-identification
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Fig. 2. Privacy-preserving health network data publishing

methods [57] to strip out explicitly identifying information. However, HICs have faced increasing privacy breaches of

different natures [2, 4, 31] due to negligence of administrative employees, compliance failures, and the deployment of

weak de-identification methods [6]. We argue that de-identification alone is not sufficient for privacy protection when

data is required to be released openly without restricting it to authorized partners and covered entities.

Health social networking sites such as MedXCentral, Sermo and PatientsLikeMe have been increasingly adopted by

healthcare professionals and patients for exchanging health-related information. The contents generated over these

platforms are often shared with third parties for a variety of purposes, which poses risks of privacy breaches [41, 69].

Data sharing carries mutual benefits to both the HIC and the data recipient, but it comes with conflicting requirements

on data privacy and data utility. To bridge the gap between these two conflicting requirements, several privacy models

were proposed in the literature for network or graph anonymization. These models can be apprehended into two types:

𝑠𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 and 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 models.

There is a line of research [5, 44, 77, 79] based on syntactic privacy models that focuses on preserving structural

information in networks. The works in [44, 77] prevent node re-identification, whereas some other works [5, 12, 79]

focus on protecting against both node re-identification and edge disclosure in the presence of structural background

knowledge of an adversary. Most of these works focus on undirected networks. It is not a good practice to utilize the

same methods for anonymizing directed graphs. Generally, if a directed network is anonymized under syntactic-based

models without considering the direction of edges it may be prone to re-identification attacks [9], and it also causes a

loss of information utility because of the structural properties of the network. Among all privacy models, the works

of [5, 12] are relatively better for privacy protection. They both are rooted in 𝑘-isomorphism. Chen et al. [10] show

that an adversary with moderate background knowledge can identify certain links among nodes on a 𝑘-isomorphic

graph [12] due to its deterministic nature. The work in [5] provides (𝑘 , 𝛿)-privacy to resist against 𝑘-core attacks. It is

also scalable to massive network data, but its application is limited to homogeneous networks, where nodes and edges

are to be of a single type.

Another line of research [8, 10, 14, 25, 30, 71] applies differential privacy (DP) for anonymizing network data. It is a

semantic model that provides strong privacy guarantees to an individual independently of an adversary’s background

knowledge [15]. Two frameworks, namely interactive and non-interactive, have been introduced regarding the utilization

of the privacy budget 𝜖 [10, 15, 75]. The primary difference is that in the interactive framework the data custodian holds

the raw network data, and a data analyst submits a set of queries in real time, for which the data custodian provides

differentially-private answers. Each query would utilize a fraction of 𝜖 to produce a noisy answer. When the entire 𝜖

has been consumed, a data analyst would not be able to get the answer by querying the database. On the other hand, in
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the non-interactive framework, the data custodian first anonymizes its raw network data by utilizing the entire privacy

budget. Later, the anonymous data is released to the data analyst, who can perform analysis without any limitations on

the data usage. This approach, widely known as privacy-preserving data publishing (PPDP) [20], is more appropriate

in many real-life network data-sharing scenarios because of the flexibility for a data analyst to perform an analysis

without specifying a target analysis. Therefore, in this article we focus on the non-interactive framework for network

data publishing.

The intuition of differential privacy is that an individual’s information should not be revealed from the output of the

analysis in the anonymized data whether or not the individual opted in to be part of the database. Node-differential

privacy [8, 14, 30] and edge-differential privacy [10, 25, 71] are the most common formulations for network data

anonymization in the literature. In node-DP, two graphs are neighboring graphs if they differ by at most one node and,

by extension, all its edges. In edge-DP, two graphs are neighboring graphs if they differ by at most one edge. In this

article we follow the formulation of edge-differential privacy to tackle the problem of protecting sensitive links of a

patient in the heterogeneous health network. We focus on preventing the disclosure of sensitive relationships between

patient nodes and non-patient nodes from adversarial inbound and outbound privacy attacks.

Compared with existing work on edge-DP [10], our solution to the problem is different in several aspects. First,

in contrast to homogeneous network solutions, our solution aims to protect sensitive links of an individual in a

heterogeneous network that is characterized by having multiple types of nodes and edges. Second, our proposed solution

takes the direction of edges into account to maintain the structural properties of the network. Third, our solution

extracts the network structural properties without performing vertex labeling [10] (which is required in order to form

dense regions for effective anonymization) on an input network; thus, our solution is not sensitive to the density of the

input network. Finally, the underlying procedure for anonymization is also different. Our solution comprises two phases,

where each phase provides both indegree and outdegree protection for the input network. The two phases integrate

the exponential mechanism that uses the degree-centrality function, which yields a real-valued score. For an input

network, the first phase protects vulnerable nodes by picking nodes that are prone to adversarial attacks due to having

fewer incoming or outgoing connections. In the second phase, we preserve information utility by choosing nodes

having higher scores and connecting them to the nodes that were picked in the first phase to protect their inbound and

outbound connections.

Contributions. This is the first edge-differentially-private, non-interactive framework providing a practical solu-

tion to health information custodians (HICs) who wish to release real-life heterogeneous health-network data. Our

contributions are summarized as follows:

• We model complex, de-identified healthcare data as a heterogeneous information network that consists of

multi-type entities along with their directional relationships. Existing solutions [10, 25, 71] consider nodes and

edges to each be of a single type and edges to be bidirectional (or undirected). Thus, these solutions cannot

maintain important semantics and structural information of the heterogeneous network.

• We propose DiffHetNet, a differentially-private method to protect patients’ sensitive links in a health network.

Compared with the anonymization method for undirected networks in [10], our method offers better protection

against an adversary’s inbound and outbound attacks for learning the existence of a patient’s sensitive informa-

tion. Experimental results suggest that our method generally yields less information loss and is significantly

more efficient in terms of runtime when compared with related anonymization methods from the literature.

Furthermore, our method effectively extracts the structural properties of an input network, and it is not sensitive
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to the density of edges in the network. Our experiments demonstrate the density-insensitivity feature of our

method.

• We evaluate the performance of our proposed method with respect to information utility and efficiency using

different real-life network datasets. In addition, we demonstrate that our approach is scalable to large network

datasets.

The rest of this article is organized as follows. In Section 2, we review the related work. In Section 3, we define

the problem. In Section 4, we present our proposed differentially-private algorithm. In Section 5, we compare our

proposed method with the existing methods and evaluate the performance in terms of information utility, efficiency,

and scalability. In Section 6, we provide a discussion on our approach, limitations, and future work. Finally, Section 7

concludes this article and present the background knowledge related to information networks, network measures,

differential privacy for network data, and information-loss measures in appendices.

2 RELATEDWORK

We group the related work into two categories: network data anonymization under non-differential privacy models,

and network data anonymization under differential privacy models.

2.1 Network data anonymization under non-differential privacy models

A family of works [12, 44, 77, 79] has proposed to preserve the structural information in graph networks. Liu and

Terzi [44] proposed an approach to construct an anonymous graph of 𝑘-degree anonymity, which requires generation

of at least 𝑘 − 1 other nodes, for every node 𝑣 . This notion of anonymity prevents identity disclosure from structural

attacks based on adversary knowledge on a certain degree of nodes. Zhou and Pei [77] proposed 𝑘-neighborhood

anonymization to prevent an adversary’s attack with 1-neighborhood background knowledge about the victim. The

goal of this approach is to ensure that the identity of an individual may not be revealed with a confidence greater than

1/𝑘 in the sanitized version of the original graph. Cheng et al. [12] proposed 𝑘-isomorphism, a solution that generates

𝑘 disjoint subgraphs for an input graph𝐺 . 𝑘-isomorphism prevents an adversary inference on re-identification of nodes

and disclosure of edges in the published 𝑘-secure graph, denoted by 𝐺𝑘 .

Zou et al. [79] developed K-Match algorithm, which has the following techniques: graph partitioning, graph alignment,

and edge copy to achieve 𝑘-automorphism. According to this algorithm, for each node 𝑣 in the published graph, denoted

by𝐺∗, there exist 𝑘−1 symmetric nodes to resist any structural attacks. They argue that an adversary cannot distinguish

𝑣 from its other 𝑘 − 1 symmetric nodes based on any structural information, and also it cannot identify the target

node with a probability higher than 1/𝑘 . Fung et al. [19] presented a method to 𝑘-anonymize a social network while

preserving frequent-sharing patterns and maximal frequent-sharing patterns. The purpose of the aforementioned graph

anonymization algorithms is to defend against graph structural attacks. Zhang et al. [76] argued that these algorithms

are not effective in preserving the privacy of an anonymized heterogeneous information network. Kumar et al. [39]

proposed an algorithm based on the fuzzy sets to preserve the privacy of users in online social networks. Their method

applies to homogenous networks, in which nodes and edges are of a single type. Generally, all the above works provide

prevention against node re-identification, edge disclosure, or both, based on the assumption that the adversary has

access to limited background knowledge about a victim. We propose a solution that does not make any assumptions

about the adversary’s knowledge of victims by adopting the differential privacy model [15], which provides strong

privacy guarantees independently of an adversary’s background knowledge.
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2.2 Network data anonymization under differential privacy models

In the literature, node-differential privacy [8, 14, 30] and edge-differential privacy [10, 25, 71] are the most prevalent

formulations for network data anonymization. Node-DP is too strong to get the desired utility in a sparse network. To

overcome this problem Kasiviswanathan et al. [30] developed a customized notion of low-sensitivity based projection

operators to preserve certain graph statistics. They employed Laplace and Cauchy distributions for output perturbation.

In addition, they devised a generic method to apply any differentially-private algorithm for bounded-degree graphs

to an arbitrary graph. They assumed that the tail of the degree distribution decreases rapidly, which resembles the

characteristics of scale-free networks [29]. A similar problem was also studied by Borgs et al. [8]. They proposed a

node-DP algorithm for fitting a high-dimensional statistical model to a sparse network by the use of non-parametric

block model approximation. They employed Lipshitz extensions inside the exponential mechanism [46] to control

the sensitivity of the score functions. Raskhodnikova et al. [53] proposed some Lipschitz extensions for designing a

node-private algorithm to release the degree distribution of a graph. The extensions use convex programming and can

be computed in polynomial time. It provides more accurate graph statistics than [30].

Day et al. [14] proposed a graph projection technique to transform an input graph to be 𝜃 -degree-bounded for

releasing node-private degree distributions. They showed that the sensitivity from the projection is 2𝜃+1 when releasing

a degree histogram, whereas for a cumulative degree histogram the sensitivity is 𝜃+1. Their results indicate a significant

improvement over the flow-based approach [53] in releasing node degree distributions. Song et al. [60] proposed a

node-private algorithm for online graphs based on the assumption of a bounded maximum degree in the entire graph

sequence. They showed that the sequence of differences in the computed graph statistics has low sensitivity, which can

yield better privacy-accuracy trade-off.

The group of works [10, 25, 71], based on edge-DP, prevents disclosure of sensitive relationships among nodes.

Sala et al. [55] proposed a partition-based approach to divide the 𝑑𝐾-2-series into subseries and then inject the noise

proportional to its local maximum degree to generate synthetic graphs. They used large privacy parameters 𝜖 ∈ [5, 100]
to evaluate degree-based metrics and node-separation metrics on the resulting DP-synthetic graphs. Under stringent

privacy parameters (e.g., 𝜖 ≤ 1.0), the error is large because of the high noise injected by the 𝑑𝐾-Perturbation Algorithm

(𝑑𝐾-PA) into 𝑑𝐾-2, resulting in a significant deviation from the original graph. Wang et al. [71] determined degree

correlation parameters from the input graph and then enforced edge-DP on graph-model parameters to generate a

perturbed graph. They adopted the concept of smooth sensitivity [49] for calibrating noise magnitude to guarantee

privacy.

Chen et al. [10] proposed DER, in which a notion of correlation parameter 𝑘 is introduced to provide a similar

differential privacy guarantee when releasing network data with the consideration of data correlation. They formed

dense regions from an adjacency matrix of input graph by first identifying a good vertex labeling, then adopting a

standard quadtree [17] to explore the dense regions, and finally, making use of the exponential mechanism to reconstruct

the leaf nodes of a quadtree. They assumed any record in database D can be correlated to at most 𝑘 − 1 other records. It
is different from 𝑘-edge differential privacy [23], where the goal is to protect 𝑘 edges’ collective information but not to

conceal the presence of any single edge in the correlated setting. Hu et al. [25] proposed a differentially-private method

to protect sensitive edges by converting a deterministic graph into an uncertainty form. In this method, they computed

the probability for each edge independently of an original structure of the network to inject uncertainty. Lin et al. [43]

proposed a DP-graph structural-clustering algorithm, called DP-SCAN, in which they define edge-DP of adjacent graphs,

and then add the Laplace noise proportional to the global sensitivity of the function. This algorithm partitions an
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input graph into several clusters, bridge connections, and outliers while preserving sensitive information. The above

edge-DP methods focus on preserving privacy in homogeneous networks, whereas our proposed edge-DP algorithm

protects individuals’ sensitive links in heterogeneous networks. Existing solutions assume that edges are bidirectional

and that nodes and edges are of a single type, each. In contrast, heterogeneous networks are characterized by having

multiple types of nodes and edges. Thus, solutions that are intended for homogeneous networks will not be able to

maintain important semantics and structural information if applied to heterogeneous networks. We propose a solution

for anonymizing network data that not only takes into account the types of nodes and edges in a given network, but

also considers the direction of edges in the network. It applies to a scenario where data is required to be anonymized

before sharing with a third party for research or commercial purposes.

3 PROBLEM DEFINITION

Suppose a HIC wants to publish collected healthcare-network data in a privacy-preserving manner to a data recipient

or a data miner for gaining valuable insights, predicting outbreaks of epidemics, preventing chronic diseases, reducing

the cost of healthcare delivery, and improving outcomes for patients, etc. The raw data are fused across multiple data

sources, resulting in a typical heterogeneous network, 𝐺 = (𝑉 , 𝐸), with a node type-mapping function 𝜑 : 𝑉 → E and

an edge type-mapping function𝜓 : 𝐸 → R. Each node 𝑣 ∈ 𝑉 belongs to one particular node type in the node type set

E : 𝜑 (𝑣) ∈ E, and each edge 𝑒 ∈ 𝐸 belongs to a particular relation type in the relation type set R : 𝜓 (𝑒) ∈ R. If two
edges belong to the same relation type, the two edges share the same starting node type as well as the ending node

type. Fig. 1 illustrates the network schema of a heterogeneous health information network (HHIN), where multiple

types of nodes |E | > 1 and multiple types of relations |R | > 1 exist in the network. We illustrate the problem in the

following example.

Example 3.1. Consider a heterogeneous directed health network illustrated in Fig. 3. In this example, Patient (𝑃), Disease
(𝐷), Medication (𝑀), and Lab Test (𝐿𝑇 ) are nodes of different types in the node type set E, whereas contracts (𝐿(1) ), uses
(𝐿(2) ), and undergoes (𝐿(3) ) are the types of relationships between nodes in the relation type set R. The number of nodes

types |E | = 4, and types of relationships |R | = 3. The total number of nodes |𝑉 | = 14, and edges |𝐸 | = 26. Below we discuss

potential linkage attacks on a patient’s privacy.

In an indegree linkage attack, an adversary attempts to link structural background knowledge in the context of incoming

connections to a node. For a given two types of nodesU,V and their relation 𝐿(𝑖) in the relation type set R, where 𝑢 ∈ U
and 𝑣 ∈ V , the set of incoming connections to 𝑣𝑖 from 𝑢𝑖 with relation-type 𝐿(𝑖) are the possible candidates for an indegree

linkage. In this example, 𝑃2 undergoes 𝐿𝑇1, 𝐿𝑇2, and 𝐿𝑇3. It is safe for 𝑃2 because the patient has had multiple lab tests.

However, among the lab tests, 𝐿𝑇 3 is taken only by 𝑃2, and none are taken by the other patients. Thus, there is a change of

indegree linkage attack.

In an outdegree linkage attack, an adversary attempts to link structural background knowledge in the context of outgoing

connections from a node. For a given two types of nodes U, V and their relation 𝐿(𝑖) in the relation type set R, where
𝑢 ∈ U and 𝑣 ∈ V , the set of outgoing connections from 𝑢𝑖 to 𝑣𝑖 with relation-type 𝐿(𝑖) are the possible candidates for

an outdegree linkage. In this example, 𝑃1, 𝑃2, and 𝑃3 contract 𝐷2. In the context of indegree linkage, 𝐷2 is safe because

multiple patients have contracted it, so an adversary may not be confident in relation to which patient contracted disease

𝐷2. However, among the patients, 𝑃3 is only contracted with 𝐷2 and none of the other diseases. So, there is a chance of

outdegree linkage attack.
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Fig. 3. An example of original health network

In this article, we propose amethod to achieve edge-differential privacywith the goal of preventing the aforementioned

linkage attacks in a heterogeneous network while releasing the data to a third party for research purposes. It is different

from the work based on edge-differential privacy under correlation [10] for a homogeneous undirected network as

detailed in previous sections. We first present the definition of edge-differential privacy for heterogeneous networks,

followed by our problem statement.

Definition 3.2. (Edge-differential privacy of heterogeneous networks). Given a heterogeneous graph 𝐺1 = (𝑉1, 𝐸1), where
𝑉1 or 𝐸1 are of multiple types (as per Definition A.2), a heterogeneous graph 𝐺2 = (𝑉2, 𝐸2) is a neighboring graph to 𝐺1 if

the difference between𝐺1 and𝐺2 is at most one edge (i.e., |𝑉1 ⊕𝑉2 | + |𝐸1 ⊕ 𝐸2 | = 1). A sanitization mechanismM provides

edge-differential privacy if for any two neighboring heterogeneous graphs, and for any possible sanitized graph𝐺 , we have

Pr[M(𝐺1) = 𝐺] ≤ 𝑒𝜖 × Pr[M(𝐺2) = 𝐺] .

Problem (Edge-differential privacy in HHIN). Given a heterogeneous health information network 𝐺 = (𝑉 , 𝐸),
where each node 𝑣 ∈ 𝑉 belongs to one particular node type in the node type set E, and each edge 𝑒 ∈ 𝐸 belongs to a

particular relation type in the relation type set R, nodes are of multiple types |E | > 1 and relationships are of multiple

types |R | > 1, and privacy budget 𝜖 , the goal is two-fold:

• To publish an anonymized version of network 𝐺 , denoted by 𝐺 ′, that protects patients’ privacy by preventing

adversarial inference on each incoming and outgoing edge 𝑒 ∈ 𝐸 in accordance with edge-differential privacy.
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Fig. 4. Anonymized version of the example health network

• To minimize the impact of anonymization on all edges 𝐸 in 𝐺 by reducing the errors generated by the mean

absolute error, the average relative error, and the Kullback-Leibler divergence, as defined in Eqs. 10, 11, and 12,

respectively.

4 PROPOSED SOLUTION

In this section, we present an edge-based differentially-private solution to protect the sensitive links of a patient from

adversarial inbound and outbound attacks in a heterogeneous health network, while minimizing information loss

inflicted on edges. Our solution addresses the concern of a health information custodian (HIC) on preserving privacy

and the concern of a data recipient on information utility. Section 4.1 presents an overview of our proposed DiffHetNet,

an algorithm based on edge-differential privacy for anonymizing heterogeneous network data. Section 4.2 presents the

operations for exploring subgraphs favoring lower scores when selecting candidate nodes. Section 4.3 presents the

operations for generating noisy counts. Section 4.4 presents the operations for exploring subgraphs favoring higher

scores when selecting candidate nodes. Section 4.5 presents the process of edge perturbation in the network. Section 4.6

presents the privacy and utility analysis.
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4.1 Overview

We first provide a high-level description of our proposed method in Algorithm 1, followed by detailed discussions of

each step.

4.1.1 High-level description. We study the problem of protecting patients’ privacy when sharing healthcare data. We

propose a privacy-preserving solution to this problem. However, our solution is also applicable to other network-data

publishing scenarios sharing the same privacy and utility concerns.

The intuition is that many people would not suffer from a critical disease resulting in fewer connections from

patient-nodes to the disease (i.e., non-patient) node. The probability of finding a potential sensitive connection of a

patient to the disease is very high. We discover those vulnerable connections and intend to protect privacy of patient

sensitive information. Conversely, many people would have a common disease that is not treated as sensitive. It does

not reflect threat to a patient privacy because probability of identifying a patient is very low. Our proposed solution

is based on edge-differential privacy to anonymize a heterogeneous network. We impose edge-differential privacy

on the relationships between patient nodes and non-patient nodes to prevent adversarial indegree and outdegree

linkage attacks, i.e., identifying sensitive relationships. We provide an illustration of privacy attacks in Example 3.1.

Compared with existing works that preserve privacy in homogeneous networks [10, 25, 71], our proposed solution

not only considers different types of nodes and edges in a given network, but it also takes into account the direction

of edges in the network. Our solution takes a heterogeneous graph 𝐺 and a privacy budget 𝜖 as inputs and outputs a

differentially-private graph 𝐺 ′.

We observe that nodes with a low number of directed edges are more vulnerable to adversary linkage attacks than

nodes with a high number of edges. Our aim is to identify such nodes, i.e., nodes with a low number of directed edges.

To do so, we consider the following two cases based on the direction of edges: indegree linkage to identify patients, and

outdegree linkage with respect to the adversary’s confidence about a target patient’s relationship. In the first case, the

identified node is a non-patient node, e.g., a disease or lab test. Consequently, the privacy of patients connected to such

a node is at risk because very few patients have a relationship with this node, e.g., contracted a disease or received a lab

test. In the second case, the identified node is a patient node. The privacy of the patient node is at risk because the

patient’s node is connected to only a few other nodes. A patient node with a low number of (outdegree) edges results in

a high level of an attacker’s confidence with respect to a particular relationship associated with this node, e.g., a patient

contracting a disease.

Based on the above observation, we want to protect vulnerable nodes from identification attacks by connecting these

nodes to less vulnerable ones. Our proposed solution accomplishes this goal across two phases. The first phase searches

the network and identifies nodes with a low number of directed edges. The second phase preserves information utility

by choosing nodes with a high number of directed edges, since these nodes are less vulnerable to identification attacks.

After that, the second phase connects the nodes picked in this phase to the nodes that were picked in the first phase to

protect their inbound and outbound connections.

4.1.2 Algorithm. Algorithm 1 presents the anonymization operations, which we split into two phases. Before describing

the lines of Algorithm 1, we explain how the input privacy budget 𝜖 is distributed throughout the algorithm. The input

privacy budget 𝜖 is divided into three portions in Line 1. The first portion, denoted by 𝜖𝑠𝑙𝑜 , is consumed when exploring

lower-scoring candidate nodes. The second portion, denoted by 𝜖𝑛𝑐 , is utilized when generating a noisy count for each

candidate node. The third portion, denoted by 𝜖𝑠ℎ𝑖 , is consumed when determining higher-scoring candidate nodes. 𝜖𝑠𝑙𝑜
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Algorithm 1 DiffHetNet Algorithm

Input: Original network 𝐺 = (𝑉 , 𝐸), privacy budget 𝜖

Output: Anonymous differentially-private network 𝐺 ′

1: Allocation of privacy budget 𝜖 ← 𝜖𝑠𝑙𝑜 + 𝜖𝑛𝑐 + 𝜖𝑠ℎ𝑖 ; /* for indegree and outdegree of directed network*/

2: Set 𝛼𝑏 = 𝑑𝑖𝑟 ; // input direction

3: Lower-scoring candidates 𝐶
𝛼𝑏
𝑙𝑜
← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑆𝐺𝑠𝐼𝑛𝑂𝑢𝑡𝐷𝑒𝑔𝐹𝑎𝑣𝐿𝑜𝑤𝑆𝑐𝑜𝑟𝑒𝑠 (𝛼𝑏 , 𝜖

𝛼𝑏
𝑠𝑙𝑜
,𝐺);

4: for 𝑐𝑖 ∈ 𝐶𝛼𝑏
𝑙𝑜

do

5: 𝜖
𝛼𝑏
𝑛𝑐
′ ← 𝜖

𝛼𝑏
𝑛𝑐

|𝐶𝛼𝑏
𝑙𝑜
|
;

6: Noisy count 𝑁𝑐𝛼𝑏 ← 𝑔𝑒𝑛𝑁𝑜𝑖𝑠𝑦𝐶𝑜𝑢𝑛𝑡 (𝑐𝑖 , 𝛼𝑏 , 𝜖
𝛼𝑏
𝑛𝑐
′,𝐺);

7: Higher-scoring candidates 𝐶
𝛼𝑏
ℎ𝑖
← 𝑓 𝑖𝑛𝑑𝐶𝑎𝑛𝑑𝑠𝐹𝑎𝑣𝐻𝑖𝑔ℎ𝑆𝑐𝑜𝑟𝑒𝑠𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝐼𝑛𝑂𝑢𝑡𝐷𝑒𝑔(𝑁𝑐𝛼𝑏 , 𝑐𝑖 , 𝛼𝑏 , 𝜖

𝛼𝑏
𝑠ℎ𝑖
,𝐺);

8: Anonymized sub-network �̃�𝛼𝑏 ← 𝑒𝑑𝑔𝑒𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛(∀𝐶𝛼𝑏
ℎ𝑖
, 𝑁𝑐𝛼𝑏 , 𝑐𝑖 , 𝛼𝑏 ,𝐺);

9: end for
10: Generate 𝐺 ′ from �̃�𝛼𝑏

;

11: return 𝐺 ′;

is allocated to the first phase, and 𝜖𝑛𝑐 and 𝜖𝑠ℎ𝑖 are allocated to the second phase. We divide 𝜖 such that the summation

of 𝜖𝑠𝑙𝑜 and 𝜖𝑠ℎ𝑖 constitutes the majority of 𝜖 (i.e., 80%), and 𝜖𝑛𝑐 (i.e., 20%) is less than 𝜖𝑠𝑙𝑜 and 𝜖𝑠ℎ𝑖 , respectively. The

reason for allocating a larger portion of 𝜖 to 𝜖𝑠𝑙𝑜 (phase 1) is because Algorithm 1 in Line 3 will attempt to discover

vulnerable candidate nodes (due to having fewer incoming or outgoing connections). In order to accurately discover

nodes that are more prone to adversarial attacks, differential privacy necessitates allocating a larger portion of privacy

budget. Similarly, the reason for allocating a larger portion of the budget to 𝜖𝑠ℎ𝑖 (phase 2) in Line 7 is because we intend

to preserve more information utility by choosing candidates that are less vulnerable to identification attacks.

Algorithm 1 in Line 3 explores subgraphs in the input network 𝐺 and picks candidate nodes having lower scores,

denoted by𝐶
𝛼𝑏
𝑙𝑜

. The score for each candidate is computed using the degree-centrality function that yields a real-valued

score. We design a procedure that uses the exponential mechanism to favor candidates with lower scores. Next, we

generate a noisy count, denoted by 𝑁𝑐𝛼𝑏 , that represents the number of newly-generated edges to be added to each

node 𝑐𝑖 ∈ 𝐶𝛼𝑏
𝑙𝑜

by using the Laplace mechanism in Line 6. Based on the generated noisy count, Line 7 scans the input

network𝐺 and uses the exponential mechanism to pick nodes favoring higher scores, denoted by𝐶
𝛼𝑏
ℎ𝑖

. Subsequently, we

protect the corresponding inbound and outbound connections of each node 𝑐𝑖 by adding edges from 𝐶
𝛼𝑏
ℎ𝑖

, or removing

corresponding edges, to have an anonymized version of sub-network �̃�𝛼𝑏
in Line 8. Finally, the differentially-private

sub-networks of both indegree and outdegree are combined to form an anonymized network 𝐺 ′.

4.2 Selecting candidates favoring lower scores

The rationality of exploring subgraphs in the heterogeneous network𝐺 is that nodes having fewer incoming or outgoing

connections are more prone to adversarial attacks. Procedure 1 attempts to discover vulnerable candidate nodes in the

network. It takes a heterogeneous network 𝐺 , a privacy budget 𝜖
𝛼𝑏
𝑠𝑙𝑜

, and the type of degree direction 𝛼𝑏 = {𝑖𝑛 |𝑜𝑢𝑡} as
inputs, and it outputs a list of candidate nodes having lower scores, denoted by 𝐶

𝛼𝑏
𝑙𝑜

.

Line 1 allocates a portion of the given privacy budget to each candidate by dividing the given budget from the

total number of nodes under a specified direction. Line 4 computes the score for each node 𝑣 using the normalized

degree-centrality metric for a directed graph that yields a real-valued score for each node 𝑣 under the node type 𝑉𝜏𝑖 in

the node type set E and the corresponding relation-type 𝐿(𝑖) in the relation type set R. It is defined as follows:

𝐶𝐷 (𝐺, 𝑣, 𝐿𝛼𝑏(𝑖) ) =
𝑑𝛼𝑏 (𝑣)

𝑣∈𝑉
𝜏𝑖
,𝐿

𝛼𝑏
(𝑖 ) ∈R

|𝑉 | − 1 (1)
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Procedure 1 exploreSGsInOutDegFavLowScores Procedure

Input: Original network 𝐺 = (𝑉 , 𝐸)
Input: Privacy budget 𝜖

𝛼𝑏
𝑠𝑙𝑜

, direction 𝛼𝑏

Output: Lower-scoring candidates 𝐶𝛼𝑏
𝑙𝑜

1: 𝜖
𝛼𝑏
𝑠𝑙𝑜
′ ← 𝜖

𝛼𝑏
𝑠𝑙𝑜

|𝑉𝛼𝑏

𝜏𝑖
|
;

2: 𝐶
𝛼𝑏
𝑙𝑜
← ∅;

3: for each pair of neighboring vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 do
4: Compute the score for every 𝑣 ∈ 𝑉𝜏𝑖 according to Eq. (1);

5: Select 𝑣 ∈ 𝑉𝜏𝑖 with probability ∝ exp( 𝜖
𝛼𝑏
𝑠𝑙𝑜
′

2Δu · u(𝐺, 𝑣, 𝐿
𝛼𝑏
(𝑖) )) favoring lower score;

6: Add 𝑣 to the list 𝐶
𝛼𝑏
𝑙𝑜

;

7: end for
8: return 𝐶

𝛼𝑏
𝑙𝑜

;

Example 4.1. We continue from Example 3.1. Consider the type of degree direction 𝛼𝑏 = {𝑜𝑢𝑡}, i.e., representing
the outgoing connections, the type of node 𝑉𝜏𝑖 = {𝑃}, i.e., representing a patient’s node label, and the relation-type

𝐿(1) = {𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠}, i.e., representing the relationship to the adjacent node(s) of type𝑉𝜏 𝑗 = {𝐷}, i.e., representing a disease’s
node label, in Fig. 3. The normalized degree-centrality scores of nodes {𝑃1, 𝑃2, 𝑃3} = {0.23, 0.23, 0.08} by Eq. (1), whereas

the number of outgoing connections 𝑑𝑜𝑢𝑡 of nodes {𝑃1, 𝑃2, 𝑃3} = {3, 3, 1}.

DiffHetNet makes novel use of the exponential mechanism in Line 5. In this step, the exponential mechanism favors

lower scores to choose a candidate node 𝑣 from a set of candidate nodes under the node type 𝑉𝜏𝑖 . It is presented in

Theorem 4.2. The sensitivity of Δu is 1, because the addition or removal of a single edge in𝐺 would change𝐶𝐷 (𝐺, 𝑣, 𝐿𝛼𝑏(𝑖) )
by at most 1.

Theorem 4.2. Choosing a candidate score from a set of candidate scores satisfies 𝜖 ′-differential privacy.

Proof. Let 𝐶𝑎𝑛𝑑𝑖 be the set of candidate scores from which a single score is to be chosen for lower scores. Our

algorithm selects a candidate score 𝑣𝑖 ∈ 𝐶𝑎𝑛𝑑𝑖 with the following probability:

exp( 𝜖
𝛼𝑏
𝑠𝑙𝑜
′

2Δu · u(𝐺, 𝑣𝑖 , 𝐿
𝛼𝑏
(𝑖) ))∑

𝑣∈𝐶𝑎𝑛𝑑𝑖 exp(
𝜖
𝛼𝑏
𝑠𝑙𝑜
′

2Δu · u(𝐺, 𝑣, 𝐿
𝛼𝑏
(𝑖) ))

(2)

where u(𝐺, 𝑣𝑖 , 𝐿𝛼𝑏(𝑖) ) is a score computed from a utility function according to Eq. (1), and Δu is the sensitivity of the

utility function u. According to Theorem C.6, selecting a score with probability proportional to exp( 𝜖
′u(𝐺,𝑡 )
2Δu ) satisfies

𝜖 ′-differential privacy. □

The scores are inverted for the exponential mechanism to favor lower-scoring candidates. At each iteration, the

lower-scoring candidate selected by the exponential mechanism is added to the list 𝐶
𝛼𝑏
𝑙𝑜

in Line 6. This process runs

until equilibrium is reached or there are no more lower-scoring candidates in the network. Finally, the list of selected

lower-scoring candidate nodes is returned by this procedure.

4.3 Generating noisy counts

After obtaining the list of lower-scoring candidate nodes 𝐶
𝛼𝑏
𝑙𝑜

, Procedure 2 generates a noisy count for each candidate

𝑐𝑖 in the list. A portion of the given budget, denoted by 𝜖
𝛼𝑏
𝑛𝑐
′
, is allocated to each candidate by dividing it from the

total number of lower-scoring candidate nodes. Line 1 generates a noisy count 𝑁𝑐𝛼𝑏 from the Laplace distribution
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Procedure 2 genNoisyCount Procedure

Input: Original network 𝐺 = (𝑉 , 𝐸)
Input: Privacy budget 𝜖

𝛼𝑏
𝑛𝑐
′

Input: Selected candidate 𝑐𝑖 , direction 𝛼𝑏
Output: Noisy count 𝑁𝑐𝛼𝑏

1: 𝑁𝑐𝛼𝑏 ← Lap(1/𝜖𝛼𝑏𝑛𝑐 ′);
2: if 𝑁𝑐𝛼𝑏 < 0 then
3: 𝑁𝑐𝛼𝑏 = 0;

4: end if
5: if 𝑁𝑐𝛼𝑏 ≥ 1 then
6: if 𝑐𝑖 ∈ 𝑉𝜏𝑖 then
7: 𝑁𝑐𝛼𝑏 = 𝑁𝑐𝛼𝑏 mod (ln |U𝑉

𝜏 𝑗
|);

8: end if
9: end if
10: return 𝑁𝑐𝛼𝑏 ;

Lap(1/𝜖𝛼𝑏𝑛𝑐 ′). It can be a positive or negative value. The noise count 𝑁𝑐𝛼𝑏 of a selected candidate 𝑐𝑖 is calibrated

according to the potential connecting candidate 𝑐 ′
𝑗
of node type 𝑉𝜏 𝑗 by considering the set of all possible candidates

that can exist in any network dataset. Formally, it is defined as follows:

𝑁𝑐𝛼𝑏 = 𝑁𝑐𝛼𝑏 mod (ln |U𝑉
𝜏 𝑗
|) (3)

where |U𝑉
𝜏 𝑗
| represents the size of the universal set of all possible nodes under the given node type that can exist in

any network data.

4.4 Selecting candidates favoring higher scores

The rationality of selecting nodes with a high number of directed edges in the heterogeneous network 𝐺 is to preserve

information utility. These nodes are less vulnerable to identification attacks, and drawing edges from them have a low

impact on the overall structure of the network. The composition of a heterogeneous network entails nodes and edges

to be of multiple types, so the centrality scores for the influential nodes pose different semantics according to their

respective types and the incoming and outgoing directions of their edges.

Procedure 3 takes the network 𝐺 , a privacy budget 𝜖
𝛼𝑏
𝑠ℎ𝑖

, a noisy count 𝑁𝑐𝛼𝑏 , a candidate node 𝑐𝑖 , and the type of

degree direction 𝛼𝑏 as inputs and outputs a list of candidate nodes having higher scores, denoted by𝐶
𝛼𝑏
ℎ𝑖

. Line 1 allocates

a portion of the given privacy budget to each candidate by dividing the given budget from the product of the total

number of lower-scoring candidate nodes and the noisy count. Line 5 computes the score for each node 𝑣 using the

normalized degree-centrality metric for a directed graph by Eq. (4) that yields a real-valued score for each node 𝑣 under

the node type 𝑉𝜏 𝑗 in the node type set E. 𝛼𝑏 represents the opposite degree direction. The score is computed as follows:

𝐶𝐷 (𝐺, 𝑣, 𝛼𝑏 ) =
𝑑𝛼𝑏 (𝑣)𝑣∈𝑉

𝜏 𝑗

|𝑉 | − 1 (4)

Example 4.3. We continue from Example 3.1. Let us assume that Procedure 1 returns {𝑃3 = 0.08} as one of the lower-
scoring outdegree candidate nodes having the relation-type 𝐿(1) = {𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠} with 𝐷2. To protect its outbound connection
we need to find indegree candidate nodes having higher scores based on the exponential mechanism. The type of a potential

candidate’s degree direction is 𝛼𝑏 = {𝑖𝑛}, i.e., representing the incoming connections, the type of node 𝑉𝜏 𝑗 = {𝐷}, i.e.,
representing a disease’s node label in Fig. 3. The potential candidate 𝐷1’s centrality score is computed by Eq. (4) is 0.15.

DiffHetNet makes novel use of the exponential mechanism in Line 6. In contrast to the presented Theorem 4.2, this

step utilizes the exponential mechanism to choose a candidate node 𝑣 favoring a higher score from a set of candidate
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Procedure 3 findCandsFavHighScoresProtectInOutDeg Procedure

Input: Original network 𝐺 = (𝑉 , 𝐸)
Input: Privacy budget 𝜖

𝛼𝑏
𝑠ℎ𝑖

, Noisy count 𝑁𝑐𝛼𝑏

Input: Selected candidate 𝑐𝑖 , direction 𝛼𝑏
Output: Higher-scoring candidates 𝐶𝛼𝑏

ℎ𝑖

1: 𝜖
𝛼𝑏
𝑠ℎ𝑖
′ ← 𝜖

𝛼𝑏
𝑠ℎ𝑖

|𝐶𝛼𝑏
𝑙𝑜
| · |𝑁𝑐𝛼𝑏 |

;

2: 𝐶
𝛼𝑏
ℎ𝑖
← ∅;

3: while |𝑐𝑖 | < |𝑁𝑐𝛼𝑏 | do
4: for each pair of neighboring vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 do
5: Compute the score for every 𝑣 ∈ 𝑉𝜏 𝑗 according to Eq. (4);

6: Select 𝑣 ∈ 𝑉𝜏 𝑗 with probability ∝ exp( 𝜖
𝛼𝑏
𝑠ℎ𝑖
′

2Δu · u(𝐺, 𝑣, 𝛼𝑏 )) favoring higher score;
7: Add 𝑣 to the list 𝐶

𝛼𝑏
ℎ𝑖

;

8: end for
9: end while
10: return 𝐶

𝛼𝑏
ℎ𝑖

;

Procedure 4 edgePerturbation Procedure

Input: Original network 𝐺 = (𝑉 , 𝐸)
Input: Candidates 𝐶𝛼𝑏

ℎ𝑖
, Noisy count 𝑁𝑐𝛼𝑏

Input: Selected candidate 𝑐𝑖 , direction 𝛼𝑏
Output: Anonymized network �̃�𝛼𝑏

1: if 𝑁𝑐𝛼𝑏 == 0 then
2: Remove corresponding edges of 𝑐𝑖 from network �̃�𝛼𝑏

;

3: end if
4: while 𝑐 ′

𝑗
∈ 𝐶𝛼𝑏

ℎ𝑖
do

5: if 𝑐𝑖 ∈ 𝑉𝛼𝑏
𝜏𝑖

then
6: Add edge (𝑐 ′

𝑗
, 𝑐𝑖 ) or vice versa to network �̃�𝛼𝑏

;

7: Set the corresponding relation type 𝐿(𝑖) ;
8: end if
9: end while
10: return �̃�𝛼𝑏

;

nodes under the node type 𝑉𝜏 𝑗 . At each iteration, the higher-scoring candidate selected by the exponential mechanism

is added to the list 𝐶
𝛼𝑏
ℎ𝑖

in Line 7. This process repeats until the number of candidate nodes is less than the size of the

noisy count. Finally, the list of selected higher-scoring candidate nodes is returned by this procedure.

4.5 Edge perturbation

This procedure takes the network 𝐺 , lower-scoring candidate node 𝑐𝑖 selected by Procedure 1, a noisy count 𝑁𝑐𝛼𝑏

by Procedure 2, list of higher-scoring candidate nodes 𝐶
𝛼𝑏
ℎ𝑖

by Procedure 3, and the type of degree direction 𝛼𝑏 as

inputs, and it outputs an anonymized version of sub-network �̃�𝛼𝑏
. It protects the corresponding inbound or outbound

connections of each candidate node 𝑐𝑖 in the list of lower-scoring candidates𝐶
𝛼𝑏
𝑙𝑜

by either removing the corresponding

edges from �̃�𝛼𝑏
or by adding edges from higher-scoring candidate nodes 𝐶

𝛼𝑏
ℎ𝑖

.

Line 2 removes the corresponding edge pairs (𝑐𝑖 , 𝑐 𝑗 ) or vice versa of candidate node 𝑐𝑖 from �̃�𝛼𝑏
when the noisy

count is 0. Line 5 matches the selected candidate’s node type 𝑉
𝛼𝑏
𝜏𝑖

along with the degree direction 𝛼𝑏 , and then it adds

an edge (𝑐 ′
𝑗
, 𝑐𝑖 ) or vice versa (Line 6) if it does not exist already in the given network 𝐺 or was added previously in the

�̃�𝛼𝑏
. Next, the corresponding relationship 𝐿(𝑖) is assigned based on the types of source and destination nodes in Line

7. This process repeats for each potential candidate 𝑐 ′
𝑗
in the list of higher-scoring candidate nodes 𝐶

𝛼𝑏
ℎ𝑖

. Finally, the

anonymized version of sub-network �̃�𝛼𝑏
is returned by this procedure.
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Example 4.4. Fig. 4 illustrates a possible anonymized version of the example health network.We continue from Example 3.1.

Let us assume that Procedure 3 returns {𝐷1 = 0.15} as one of the higher-scoring indegree candidate nodes for the node
𝑃3 by Procedure 1. The corresponding edge is added between 𝑃3 and 𝐷1, and the relationship 𝐿(1) is assigned based on

the types of source and destination nodes. Now consider that Procedure 1 returns {𝐿𝑇 4 = 0.15} as one of the lower-scoring
indegree candidate nodes having the relation-type 𝐿(3) = {𝑢𝑛𝑑𝑒𝑟𝑔𝑜𝑒𝑠} with 𝑃3 and 𝑃4. To protect its inbound connection,
we need to find higher-scoring outdegree candidate nodes based on the exponential mechanism. Suppose Procedure 3 returns

{𝑃1 = 0.15} as one of the higher-scoring outdegree candidate nodes for the node 𝐿𝑇4. The corresponding edge is added
between 𝑃1 and 𝐿𝑇 4, and the relationship 𝐿(3) is assigned based on the types of source and destination nodes.

4.6 Analysis

In this section, we present the privacy and utility analysis of Algorithm 1.

4.6.1 Privacy analysis. We prove that Algorithm 1 satisfies 𝜖-differential privacy over heterogeneous network data

under the given network schema of Fig. 1.

Theorem 4.5. For a given privacy budget 𝜖 , Algorithm 1 is 𝜖-differentially private over heterogeneous network data.

Proof. Algorithm 1 picks lower-scoring candidates from a set of candidate nodes by employing the exponential

mechanism according to Theorem 4.2 in Line 3. Each candidate is dedicated with a privacy budget portion 𝜖
𝛼𝑏
𝑠𝑙𝑜
′ =

𝜖
𝛼𝑏
𝑠𝑙𝑜

|𝑉𝛼𝑏

𝜏𝑖
|

by leveraging sequential composition property (Theorem C.7). A noisy count is generated for each candidate 𝑐𝑖 ∈ 𝐶𝛼𝑏𝑙𝑜
by drawing noise from Laplace distribution Lap( Δ𝑓𝜖 ) (according to Theorem C.5) using a privacy budget portion

𝜖
𝛼𝑏
𝑛𝑐
′ = 𝜖

𝛼𝑏
𝑛𝑐

|𝐶𝛼𝑏
𝑙𝑜
|
in Line 6. Next, for each candidate 𝑐𝑖 , the algorithm picks potential higher-scoring candidate(s) from a

set of candidate nodes using the exponential mechanism in Line 7. Each candidate is dedicated with a privacy budget

portion 𝜖
𝛼𝑏
𝑠ℎ𝑖
′ =

𝜖
𝛼𝑏
𝑠ℎ𝑖

|𝐶𝛼𝑏
𝑙𝑜
| · |𝑁𝑐𝛼𝑏 |

by leveraging sequential composition property. Finally, the algorithm post-processes [35]

the differentially private inputs 𝑐𝑖 ∈ 𝐶𝛼𝑏
𝑙𝑜

, 𝑁𝑐𝛼𝑏 , and 𝐶
𝛼𝑏
ℎ𝑖

to perturb the network. Hence, Algorithm 1 is 𝜖-differentially

private because 𝜖 = 𝜖𝑠𝑙𝑜 + 𝜖𝑛𝑐 + 𝜖𝑠ℎ𝑖 by the property of sequential composition (Theorem C.7). □

4.6.2 Utility analysis. We measure the utility loss on the anonymized network with respect to the original network by

mean absolute error, average relative error, and Kullback–Leibler divergence presented in Section D.

Considering the network schema of Fig. 1, the goal is to generate a sanitized graph 𝐺 ′ so as close to 𝐺 as possible to

minimize the error

∑ |𝑉 |
𝑖=1
|𝐶𝐷 (𝐺 ′, 𝑣𝑖 ) −𝐶𝐷 (𝐺, 𝑣𝑖 ) |. When 𝐺 ′ is identical to 𝐺 ,

∑ |𝑉 |
𝑖=1
|𝐶𝐷 (𝐺 ′, 𝑣𝑖 ) −𝐶𝐷 (𝐺, 𝑣𝑖 ) | = 0; when

𝐺 ′ is totally different from 𝐺 ,
∑ |𝑉 |
𝑖=1
|𝐶𝐷 (𝐺 ′, 𝑣𝑖 ) −𝐶𝐷 (𝐺, 𝑣𝑖 ) | = |𝑉𝛼𝑏

𝜏𝑖
| ·∑𝑘

𝑗=1 |𝑉
𝛼𝑏
𝜏 𝑗 |, where 𝑖 ≠ 𝑗 .

4.6.3 Conditions. In Section 4.1.2 we discuss the distribution of privacy budget 𝜖 and its consumption across all the

phases of Algorithm 1. The utility guarantee of our proposed algorithm is dependent on the privacy parameter 𝜖 .

Consider 𝑠 and �̃� are the scores of a node 𝑣 ∈ 𝑉𝛼𝑏
𝜏𝑖

in 𝐺 and 𝐺 ′, respectively. We specify the conditions for comparing

scores. When �̃� < 𝑠 : (1) no new edge is added to a node 𝑣 , and an existing edge has removed from the node 𝑣 , and (2) a

worst case would be when all existing edges are removed from the node 𝑣 ; when �̃� = 𝑠: (1) no new edge is added to or

removed from a node 𝑣 , and (2) an equal number of edges are added and removed from the node 𝑣 ; when �̃� > 𝑠: (1) a

new edge is added to a node 𝑣 while maintaining all existing edges of the node 𝑣 , and (2) a worst case would be when

newly added edges to the node 𝑣 are reached to the maximum.
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Table 1. Statistics of the datasets

Dataset |𝑉 | |𝐸 | Edge Density

ca-GrQc 5, 242 28, 980 0.001055

wiki-Vote 7, 115 103, 689 0.002049

MIMIC-T1 13, 947 103, 023 0.000530

MIMIC-MultiType 5, 786 183, 795 0.005491

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our DiffHetNet algorithm in terms of both information utility and

efficiency. We compare our method DiffHetNet with the DER [10] method and its variant DE and a random graph [12]

(referred to as Random). In DE, the step of ArrangeEdge is simply replaced by randomly inserting edges in each leaf

region based on the noisy count. We use three real-life datasets, namely ca-GrQc
1
, wiki-Vote

1
, and MIMIC

2
from three

different types of networks. ca-GrQc is an undirected network, extracted from the scientific collaboration network

of arXiv GR-QC (General Relativity and Quantum Cosmology) category, where two authors are connected if they

co-authored at least one paper. wiki-Vote is a directed network extracted from the Wikipedia adminship voting network,

where a Wikipedia user is considered for promotion to adminship based on the community votes in favor of or against

the promotion. MIMIC contains health-related data from a large number of Intensive Care Unit (ICU) patients. It

integrates de-identified, comprehensive health data of patients admitted to the Beth Israel Deaconess Medical Center in

Boston, Massachusetts. It is accessible to researchers internationally under a data use agreement. MIMIC-T1 represents

a network of a single relation type having nodes that are of different types, i.e., the number of node types |E | = 2, and

types of relationships |R | = 1, whereas MIMIC-MultiType represents a network of multiple nodes and relations types,

i.e., the number of node types |E | = 4, and types of relationships |R | = 3. The statistics of the datasets are shown in

Table 1. All experiments were performed on a PC with Intel Core i7 2.80GHz and 16GB RAM.

5.1 Measuring information loss

We measure the information loss on the anonymized network with respect to the original network by mean absolute

error, average relative error, and Kullback–Leibler divergence introduced in Section D.

Fig. 5 presents the mean absolute error (MAE) by the DiffHetNet method. Fig. 5(a) depicts the MAE under privacy

budget 𝜖 varying from 0.6 to 1.0 on the MIMIC-MultiType dataset. It exhibits no change with the increase in 𝜖 . Fig. 5(b)

depicts the MAE under a privacy budget varying from 0.6 to 1.0 while fixing the data size to be 0.4 × |𝑉 | on the

ca-GrQc, wiki-Vote, andMIMIC-T1 datasets. The absolute errors on the ca-GrQc dataset are slightly greater than the other

datasets. However, they remain unchanged with the increase in 𝜖 and are consistently small on all datasets. Fig. 5(c)

depicts the MAE under varying data size while fixing the privacy budget to be 𝜖 = 1.0 on the ca-GrQc, wiki-Vote, and

MIMIC-T1 datasets. It generally decreases with the increase in size on all datasets. The results suggest that DiffHetNet

well preserves the global structure of the anonymized network.

Fig. 6 presents the average relative error (ARE) by the DiffHetNet method. Fig. 6(a) depicts the ARE under privacy

budget 𝜖 varying from 0.6 to 1.0 on theMIMIC-MultiType dataset. It generally increases monotonically with the increase

in 𝜖 . Fig. 6(b) depicts the ARE under varying privacy budget from 0.6 to 1.0 while fixing the data size to be 0.4 × |𝑉 |
on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. It exhibits non-decreasing monotonicity with the increase in 𝜖 on

1
It is publicly available in the Stanford large network dataset collection at: http://snap.stanford.edu/data/index.html

2
Available at: https://mimic.physionet.org
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(a) (b) (c)

Fig. 5. Mean absolute error by DiffHetNet method under varying 𝜖 in (a) and (b), and fixed 𝜖 = 1.0 and varying data size in (c)

(a) (b) (c)

Fig. 6. Average relative error by DiffHetNet method under varying 𝜖 in (a) and (b), and fixed 𝜖 = 1.0 and varying data size in (c)

all datasets. The relative errors on the ca-GrQc dataset are higher than the other datasets because more vulnerable

candidate nodes are protected in the network. Fig. 6(c) depicts the ARE under varying data size while fixing the privacy

budget to be 𝜖 = 1.0 on the ca-GrQc, wiki-Vote, andMIMIC-T1 datasets. The relative errors generally decrease on ca-GrQc

and MIMIC-T1 datasets with the increase in data size, while on wiki-Vote they first decrease when data size increases

from 0.2 × |𝑉 | to 0.4 × |𝑉 | and later increase with the increase in data size. The reason for this non-monotonicity is

that the addition of noise considerably changes the degree-centrality scores for the potentially vulnerable nodes in the

anonymized network.

Fig. 7 presents the comparison of different methods on average relative error (ARE). Figs. 7(a) and 7(b) depict the

ARE of DiffHetNet, DER, DE, and Random under varying privacy budget 𝜖 from 0.6 to 1.0 while fixing the data size to be

0.4× |𝑉 | on ca-GrQc and wiki-Vote datasets. The relative errors of DER and its variant DE, when 𝑘 = 1 (static correlation

parameter) are smaller on both ca-GrQc and wiki-Vote datasets. However, their relative errors increase with an increase

of 𝑘 . It is observed that DiffHetNet performs better than DER when the correlation parameter 𝑘 = 20, and it is closer to

DE when 𝑘 = 1 on the wiki-Vote dataset. The relative errors of Random are greater than the other methods in all settings.

Our method DiffHetNet does not specify static correlation parameter 𝑘 because of the dynamicity nature of the network.

Figs. 7(c) and 7(d) depict the ARE of DiffHetNet and DER under varying data size, while fixing the privacy budget to

be 𝜖 = 1.0 on ca-GrQc and wiki-Vote datasets. The relative errors of DiffHetNet decrease on ca-GrQc when data size
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(a) ca-GrQc (b) wiki-Vote

(c) ca-GrQc (d) wiki-Vote

Fig. 7. Comparison of DiffHetNet, DER, DE, and Random methods on average relative error under varying 𝜖 in (a) and (b), and
DiffHetNet and DER on average relative error under varying data size in (c) and (d)

increases, while on the wiki-Vote dataset they first decrease when data size increases from 0.2 × |𝑉 | to 0.4 × |𝑉 |, and
later increase with the increase in data size. The relative errors of the DER method on both datasets are small because

the correlation parameter is set as low 𝑘 = 1.

Fig. 8 presents the KL-divergence by the DiffHetNet method. Fig. 8(a) depicts the KL-divergence under varying

privacy budget 𝜖 from 0.6 to 1.0 on theMIMIC-MultiType dataset. It generally increases monotonically with the increase

in 𝜖 . When 𝜖 = 1.0, it reaches 0.19. Fig. 8(b) depicts the KL-divergence under varying privacy budget from 0.6 to 1.0

while fixing the data size to be 0.4 × |𝑉 | on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. It exhibits non-decreasing

monotonicity with the increase in 𝜖 on all datasets. The KL divergences on the ca-GrQc dataset are higher than the other

datasets. The maximum difference on them is 0.19 when 𝜖 = 1.0. Fig. 8(c) depicts the KL-divergence under varying data

size while fixing the privacy budget to be 𝜖 = 1.0 on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. The KL divergences

exhibit decreasing monotonicity on ca-GrQc and MIMIC-T1 datasets with the increase in data size, while they are not

monotonic on wiki-Vote with the increase in data size.

Fig. 9 presents the comparison of different methods on KL-divergence. Figs. 9(a) and 9(b) depict the KL divergences

of DiffHetNet, DER, DE, and Random under varying privacy budget 𝜖 from 0.6 to 1.0 while fixing the data size to be

0.4 × |𝑉 | on ca-GrQc, and wiki-Vote datasets. In Fig. 9(a), the KL divergences of DER when 𝑘 = 1 (static correlation

parameter) are small on the ca-GrQc dataset. However, they increase with an increase of 𝑘 . It is observed that DiffHetNet
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(a) (b) (c)

Fig. 8. KL-Divergence by DiffHetNet method under varying 𝜖 in (a) and (b), and fixed 𝜖 = 1.0 and varying data size in (c)

(a) ca-GrQc (b) wiki-Vote

Fig. 9. Comparison of DiffHetNet, DER, DE, and Random methods on KL-Divergence under varying 𝜖 in (a) and (b)

performs better than DER when the correlation parameter 𝑘 = 20, and closer to DE when 𝑘 = 1 on the ca-GrQc dataset.

Fig. 9(b) depicts that DiffHetNet outperforms all the other methods on the wiki-Vote dataset. A significant difference of

⪆ 0.7 in KL divergences can be observed between DiffHetNet and DER (𝑘 = 20) under varying 𝜖 . The KL divergences of

Random are greater than the other methods in all settings on both datasets.

5.2 Link prediction

We compute the accuracy of link prediction methods on anonymized data (i.e., by DiffHetNet method) compared to

non-anonymized data. Figs. 10(a-d) depict the average accuracies of Adamic-Adar, common neighbors, and preferential

attachment link prediction methods [42, 78], denoted by AALP, CNLP, and PALP, respectively, under varying privacy

budget 𝜖 from 0.6 to 1.0 while fixing the data size to be 0.4 × |𝑉 | on different datasets. Fig. 10(a) exhibits nondecreasing

monotonicity in the accuracies of AALP and CNLP with the increase in 𝜖 on the ca-GrQc dataset. However, PALP

accuracy decreases when 𝜖 = 0.8. Fig. 10(b) exhibits non-decreasing monotonicity in the accuracies of AALP and

CNLP with the increase in 𝜖 on the wiki-Vote dataset except 𝜖 = 0.8 and 𝜖 = 0.7, respectively. However, PALP accuracy

decreases slightly when 𝜖 = 0.7 and 0.8. Fig. 10(c) exhibits non-decreasing monotonicity in the accuracies of AALP,
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(a) ca-GrQc (b) wiki-Vote

(c) MIMIC-T1 (d) MIMIC-MultiType

Fig. 10. Accuracy of Adamic-Adar, common neighbors, and preferential attachment link prediction methods on datasets (a) ca-GrQc,
(b) wiki-Vote, (c) MIMIC-T1, and (d) MIMIC-MultiType under varying privacy budget 𝜖 .

CNLP, and PALP with the increase in 𝜖 on the MIMIC-T1 dataset. Fig. 10(d) depicts average link prediction accuracy

on the MIMIC-MultiType dataset. The accuracies of AALP, CNLP, and PALP generally decrease with the increase in 𝜖 .

Overall, our method preserves high accuracy in predicting links.

5.3 Efficiency

Fig. 11(a) depicts the runtime of the DiffHetNet method under varying data size |𝑉 | while fixing the privacy budget to

be 𝜖 = 1.0 on the ca-GrQc, wiki-Vote, and MIMIC-T1 datasets. We observe that on all three datasets runtime grows with

the increase in data size from 0.2 to 1.0. The runtime to produce anonymization results by DiffHetNet on MIMIC-T1

with 1.0 × |𝑉 | data size is approximately 16 s. Fig. 11(b) depicts the comparison of DiffHetNet and DER methods on

runtime when 𝜖 = 1.0 and data size is 1.0 × |𝑉 | on both ca-GrQc and wiki-Vote datasets. DiffHetNet takes approximately

10 s and 11 s on the ca-GrQc and wiki-Vote datasets, respectively. The results show that our method is more efficient in

running time over the DER method. In Fig. 11(c), we fix 𝜖 to 1.0 and evaluate the scalability of DiffHetNet using three

datasets: ca-GrQc-Plus, wiki-Vote-Plus, and MIMIC-T1-Plus. The X-axis represents the number of records in thousands,

ranging from 100, 000 to 500, 000 records. An edge going from one node to another node represents a single record.

We consider no multiple edges (no duplicate records). For each 100K records, we add randomly-generated nodes and
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(a) Varying data size with fixed 𝜖 = 1.0 (b) Comparison of DiffHetNet and DER (c) Scalability

Fig. 11. Runtime comparison of DiffHetNet

edges for ca-GrQc and wiki-Vote to extend their original size. We name these two extended datasets ca-GrQc-Plus and

wiki-Vote-Plus, respectively. As for MIMIC-T1-Plus, this dataset is the result of extracting 500K records from the MIMIC

data table (MIMIC-III v1.4), which contains 651, 047 records representing ICD (International Classification of Diseases)

diagnoses for patients. The runtime of each dataset increases nearly linearly with respect to the increase in the size of

the dataset. This result suggests that our method is scalable to large network datasets.

6 DISCUSSION AND FUTUREWORK

Data is an integral part of almost every industry, including healthcare. Data often contains explicit identifying in-

formation associated with personal data such as name, social insurance number, birth date, address, phone number,

marital status, health record, and so on. A data custodian who holds person-specific information must be responsible for

managing the use, disclosure, and privacy protection of collected data. Privacy is a fundamental human right [3], and

for this several privacy legislation and regulations such as Personal Information Protection and Electronic Documents Act

(PIPEDA) by Canada, Health Insurance Portability and Accountability Act (HIPAA) by the United States, and General Data

Protection Regulation (GDPR) by the European Union, across the globe have been imposed for protecting personal data.

GDPR is the most robust and influential data privacy law recognized globally. This standard has become the measuring

stick for other regulations. It follows the micro-management model of privacy regulations and applies to all the sectors.

The fundamental difference between the US and EU privacy laws is that the US is more concerned with data integrity as

a commercial asset, while the EU, with the GDPR, is more centric on individual rights before the interest of businesses.

For example, if a company fails to protect the privacy of EU data subjects, it will be accountable by the law.

Many organizations believe that enforcing regulatory compliance, such as the Gramm-Leach-Bliley Act (GLBA),

which protects the privacy and security of individually identifiable financial information, or simply employing common

de-identification methods, such as HIPAA Safe Harbor method, which involves removing 18 types of identifiers from

personal data, is sufficient for privacy protection. However, HIPAA de-identification works when the purpose is solely

to share data among the contractually bound partners. Yet, de-identification alone is not sufficient for privacy protection

when data is required to be shared outside of authorized partners because the released data can be linked with an external

source of information to identify an individual [20, 32, 56, 67]. That’s why we need a rigorous anonymization method.

It is worth to note that the terms de-identification and anonymization has been used in literature interchangeably [13].

However, anonymization is a more stringent standard of de-identification. Our proposed network data anonymization
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solution does not limit a custodian to share with contractually bound partners since the purpose is to release anonymized

data openly.

According to GDPR
3
, anonymous data is defined as “information which does not relate to an identified or identifiable

natural person or to personal data rendered anonymous in such a manner that the data subject is not or no longer

identifiable”. If an anonymous data satisfies these criteria, it will be considered safe, and there will be no penalties

or monetary fines applied. Yet, the provision of anonymous data defined by GDPR is ambiguous [51]. The Article 29

Working Party, an independent European advisory body for data protection, stipulated three reidentification risks of

data subjects, including singling out, linkability, and inference [1]. Their guidelines suggested that an anonymization

technique would be robust if it protects against the stated reidentification risks. Differential privacy provides strong

privacy guarantees against reidentification attempts [50] and has been used to develop efficient anonymization methods

over the last decade in research. Recently, US Census Bureau [52] discovered that traditional techniques for data

de-identification are not sufficient to defend against new threats. They found that an adversary can identify victims

from the released statistics using external data sources. They are modernizing privacy protections using differential

privacy to disguise personal information in the data. Similar to other applications [33], differential privacy has also

been adopted to protect health-related data [16, 37, 48]. It provides a control parameter 𝜖 that allows a data custodian to

calibrate how much noise to add so that the results strike a better balance between privacy and accuracy for data utility.

Our proposed method aims to publish consolidated health network data in a differentially private manner to preserve

patients’ privacy. We employ MIMIC
4
data to form a heterogeneous network and subsequently preserve patient privacy

by releasing an anonymized version of the heterogeneous network. However, our approach does not rely on this

dataset. Any network data with similar properties can be used for our purpose. In contrast with blockchain-based

health information exchange (HIE) solutions, data is securely exchanged between peers by maintaining integrity [7, 11],

but it is not anonymized for a safe release to unauthorized parties. To illustrate the applicability of our solution, we

model it with 4 types of nodes and 3 types of edges, where the intuition is to protect a patient’s sensitive information.

It is still applicable when the network grows either in the number of nodes, edges, or both. We compare our method

with DER [10], which applies to homogeneous undirected networks. The results presented in Fig. 11(b) show that our

method is more efficient in running time over the DER despite the fact that we are considering the direction of edges,

which requires more noise to be added to suppress sensitive links. In Fig. 11(c), we measure the increase of runtime

with respect to the size of the input dataset.

The proposed method has some limitations that can be addressed in the future work. In our work, we dedicate 40% ×
𝜖 to explore vulnerable nodes in the first phase, 20% × 𝜖 to generate noisy count for each vulnerable candidate in the

second phase, and the remaining 40% × 𝜖 to pick nodes that are less vulnerable (Refer to Sections 4.1.1, 4.1.2 for more

details). The intention behind this distribution is to protect vulnerable nodes from identification attacks and to minimize

information loss. To tackle this limitation, we intend to investigate the optimal allocation of the privacy budget 𝜖 , which

is an open research question. This can be achieved under a less strict privacy model, such as Rényi Differential Privacy

(RDP) [47]. RDP is a relaxation of the pure version of differential privacy. It shares several important properties with

the standard definition of differential privacy. Our experiments have shown reasonably good results in information loss

(Section 5.1) and link prediction (Section 5.2) with the more stringent version of different privacy. Consequently, we

anticipate that relaxing the privacy requirement with RDP will only further reduce the information loss and improve

the accuracy of link prediction. For another future research, we aim to investigate other vulnerabilities in the hybrid

3
https://eur-lex.europa.eu/eli/reg/2016/679/oj

4
Available at: https://mimic.physionet.org
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setting (containing both directed and undirected links) of a heterogeneous network, which an adversary may exploit

for privacy breaches.

7 CONCLUSION

In this article, we propose a practical solution to health information custodians (HICs) for publishing collected healthcare

data to data recipients or researchers in a privacy-preserving manner. First, we model a complex de-identified healthcare

dataset as a heterogeneous information network that consists of multi-type nodes and their multi-type edges. Then,

we propose an edge-based differentially-private algorithm to protect the sensitive links of patients from inbound

and outbound attacks in the heterogeneous health network. We evaluate the performance of our method in terms

of information utility and efficiency on different types of real-life datasets that can be modeled as networks. The

experimental results suggest that our method generally yields less information loss and is significantly more efficient in

terms of runtime compared to existing network anonymization methods. It is also evident from the experiments that

our method is scalable to large network datasets.
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A TYPES OF INFORMATION NETWORKS

Generally, an information network is a representation that models the real world, focusing on objects and the interactions

between objects [63]. These interactions in the network can be symmetric and asymmetric. In a symmetric interaction the

relationship between objects can be in both directions, whereas asymmetric represents a one-way relationship. Typical

examples of information networks are social networks, collaboration networks, health networks, and communication

networks.

Definition A.1. (Homogeneous information network) [63]. Given a network, 𝐺 = (𝑉 , 𝐸) with an entity type-mapping

function 𝜑 : 𝑉 → E and a relation type-mapping function𝜓 : 𝐸 → R, it is called a homogeneous information network if

there exists only one type of entities and relations (i.e., |E | = |R | = 1).

Definition A.2. (Heterogeneous information network) [63]. The information network is called a heterogeneous information

network if the types of entities |E | > 1 or the types of relations |R | > 1.

The network schema describes the meta structure of a heterogeneous information network, in which type constraints

on the set of objects and relationships are specified. Many complex networks are modeled by heterogeneous networks

to capture rich semantics. Traditional mining methods [38, 68] are designed for homogeneous networks, which cannot

be directly applied to solve the problems of heterogeneity in many real-world networks. Various mining methods have

been proposed to tackle the problem of heterogeneity for network analysis, such as ranking-based classification and

clustering [26, 66], meta-path-based similarity search [64], relationship prediction and relation strength learning [61, 62],

and community evolution [65]. Recently, advanced embedding methods for homogeneous networks [21, 54] and

heterogeneous networks [18, 22, 59] have gained increasing attention for large-scale network analysis. On the one hand,

these mining and embedding methods for heterogeneous networks serve different requirements of network analysis,

but on the other hand, the privacy of an individual is at stake unless proper protection measures are deployed.

B NETWORK MEASURES

Below are some widely adopted graph metrics [40]. These measures contribute to the analysis of the structural properties

of a network.

B.1 Betweenness centrality

The intuition of this measure is to determine the importance of a node in connecting other nodes. The betweenness of a

node 𝑣𝑖 in the network is computed by

𝐶𝐵(𝑣𝑖 ) =
∑

𝑗≠𝑖≠𝑘∈𝑉

𝜎𝑣𝑗 ,𝑣𝑘 (𝑣𝑖 )
𝜎𝑣𝑗 ,𝑣𝑘

(5)

Manuscript submitted to ACM

Page 26 of 29Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd



Differentially Private Release of Heterogeneous Network for Managing Healthcare Data 27

where |𝑉 | is the number of nodes in the network, 𝜎𝑣𝑗 ,𝑣𝑘 is the total number of shortest paths from node 𝑣 𝑗 to node 𝑣𝑘 ,

and 𝜎𝑣𝑗 ,𝑣𝑘 (𝑣𝑖 ) is the number of those paths that pass through 𝑣𝑖 . To normalize the betweenness centrality, divide the

metric in Eq. (5) by ( |𝑉 | − 1) ( |𝑉 | − 2) for directed graphs and by ( |𝑉 | − 1) ( |𝑉 | − 2)/2 for undirected graphs.

B.2 Degree centrality

A node is in the “central” if it has many direct neighbors. For a directed network, indegree is the number of incoming links

representing the popularity of a node, whereas outdegree is the number of outgoing links representing the sociability of

a node. In an undirected network, the degree of a node is simply the number of directly connected neighbors ignoring

edge directions. The normalized degree centrality 𝐶𝐷 for a node 𝑣𝑖 is computed by

𝐶𝐷 (𝑣𝑖 ) =
𝑑 (𝑣𝑖 )
|𝑉 | − 1 (6)

where 𝑑 (𝑣𝑖 ) is the degree of node 𝑣𝑖 .

B.3 Closeness centrality

In this measure, a node is in the “central” if it is close to many other nodes, and of which the closeness can be measured

by the shortest paths for reaching those nodes. The normalized closeness centrality 𝐶𝐶 for a node 𝑣𝑖 is computed by

𝐶𝐶 (𝑣𝑖 ) =
|𝑉 | − 1∑ |𝑉 |

𝑗≠𝑖
𝑑 (𝑣 𝑗 , 𝑣𝑖 )

(7)

where 𝑑 (𝑣 𝑗 , 𝑣𝑖 ) is the shortest-path distance between 𝑣 𝑗 and 𝑣𝑖 . If the direction between nodes 𝑣𝑖 and 𝑣 𝑗 is not specified,

then the total number of nodes |𝑉 | is used in Eq. (7) instead of the path length.

B.4 Harmonic centrality

It is a variant of closeness centrality that deals with the scenario of unconnected networks. It is the sum of the reciprocal

of the shortest path distances from all other nodes to a given node. The normalized harmonic centrality 𝐶𝐻 for a node

𝑣𝑖 is computed by

𝐶𝐻 (𝑣𝑖 ) =
1

( |𝑉 | − 1) ×
|𝑉 |∑
𝑗≠𝑖

1

𝑑 (𝑣 𝑗 , 𝑣𝑖 )
(8)

If there is no path from 𝑣 𝑗 to 𝑣𝑖 , then 1/𝑑 (𝑣 𝑗 , 𝑣𝑖 ) becomes 0.

C DIFFERENTIAL PRIVACY FOR NETWORK DATA

Differential privacy [15] is a widely known privacy model with an assumption that all the records in the database

are independent of each other. A line of research [28, 36, 73, 74] indicates that differential privacy may not guarantee

privacy against adversaries with arbitrary background knowledge when data records are correlated. To tackle this issue,

a notion of correlation parameter 𝑘 is proposed by [10] that provides a similar differential privacy guarantee when

releasing network data. The intuition of their solution is to add extra Laplace noise in the anonymization process to

compensate for the effect of correlation.

Definition C.1. (𝜖-differential privacy under correlation) [10]. A sanitization mechanismM provides 𝜖-differential

privacy if for any two datasetsD1 andD2 with a correlation parameter 𝑘 that differs on at most one record (i.e., symmetric
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difference |D1△D2 | ≤ 1), and for any possible sanitized dataset
ˆD, we have

Pr[M(D1) = ˆD] ≤ 𝑒
𝜖
𝑘 × Pr[M(D2) = ˆD],

where the probability is taken over the randomness ofM.

In the literature, node-differential privacy [8, 14, 30] and edge-differential privacy [10, 25, 71] are the most prevalent

formulations for anonymizing network data. In node-DP, two graphs 𝐺 and𝐺 ′ are neighboring graphs if they differ by

at most one node and, by extension, all its edges. Whereas in edge-DP, two graphs 𝐺 and 𝐺 ′ are neighboring graphs if

they differ by at most one edge or an isolated node (a node that has no edges). The following definitions define two

types of neighboring graphs under node- and edge-differential privacy, respectively.

Definition C.2. (Neighborhood under node-differential privacy) [23]. Given graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes

and 𝐸 is a set of edges, two graphs 𝐺 and 𝐺 ′ are neighbors if |𝑉 ⊕ 𝑉 ′ | = 1 and 𝐸 ⊕ 𝐸 ′ = {(𝑢, 𝑣) |𝑢 ∈ (𝑉 ⊕ 𝑉 ′) or
𝑣 ∈ (𝑉 ⊕ 𝑉 ′)}.

Definition C.3. (Neighborhood under edge-differential privacy) [23]. Given graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes

and 𝐸 is a set of edges, two graphs 𝐺 and 𝐺 ′ are neighbors if |𝑉 ⊕ 𝑉 ′ | + |𝐸 ⊕ 𝐸 ′ | = 1.

The Laplace mechanism [15] and exponential mechanism [46] are the two most common mechanisms for achieving

𝜖-differential privacy. These mechanisms depend on the privacy parameter 𝜖 and the sensitivity [15] of a function that

maps the input database to real values. The sensitivity of the function 𝑓 is defined as follows:

Definition C.4 (Sensitivity). For any function 𝑓 : 𝐺 → R𝑑 , the sensitivity of 𝑓 is

Δ𝑓 = max

𝐺,𝐺′
| |𝑓 (𝐺) − 𝑓 (𝐺 ′) | |1 (9)

for all 𝐺,𝐺 ′ differing at most by one edge or node (including all its adjacent edges).

Laplace mechanism was introduced by Dwork et al. [15]. It is appropriate when the output of function 𝑓 is a real

value, and 𝑓 should return a noisy answer to preserve privacy. The noise is calibrated based on the privacy parameter 𝜖

and the sensitivity of the utility function Δ𝑓 . Formally, the Laplace mechanism takes as inputs a network dataset 𝐺 ,

the privacy parameter 𝜖 , and a function 𝑓 and outputs
ˆ𝑓 (𝐺) = 𝑓 (𝐺) + Lap(𝜆), where Lap(𝜆) is a noise drawn from the

Laplace distribution with probability density function Pr(𝑥 |𝜆) = 1

2𝜆
exp(−|𝑥 |/𝜆), where 𝜆 =

Δ𝑓
𝜖 . The variance of this

distribution is 2𝜆2, and the mean is 0.

Theorem C.5. For any function 𝑓 : 𝐺 → R𝑑 , the algorithmM that adds independently generated noise with distribution

Lap(Δ𝑓 /𝜖) to each of the 𝑑 outputs satisfies 𝜖-differential privacy.

Exponential mechanism was proposed by McSherry and Talwar [46]. It is appropriate when it is desirable to choose

the best response, because adding noise directly to the count can destroy its value. Given an arbitrary range T , the
exponential mechanism is defined with respect to a utility function u : (𝐺 × T) → R that assigns a real-valued score

to every output 𝑡 ∈ T , where a higher score means better utility. The exponential mechanism induces a probability

distribution over the range T and then samples an output 𝑡 .

Theorem C.6. Given a utility function u : (𝐺 × T) → R with sensitivity Δu = max∀𝑡,𝐺,𝐺′ |u(𝐺, 𝑡) − u(𝐺 ′, 𝑡) |, an
algorithmM that chooses an output 𝑡 with probability proportional to exp( 𝜖u(𝐺,𝑡 )

2Δu ) satisfies 𝜖-differential privacy.
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Sequential composition and parallel composition are the two important composition properties of differential pri-

vacy [45]. The first property stipulates that if a sequence of differentially private computations take place in isolation on

the same input data, then the entire sequence gives the accumulated privacy guarantee. The second property stipulates

that if differentially private computations take place on each chunk separately over the split dataset, where chunks are

disjoint, then the privacy cost does not accumulate, but it depends only on the worst guarantee of all computations.

Theorem C.7 (Sequential composition [45]). Let eachM𝑖 provide 𝜖𝑖 -differential privacy. A sequence ofM𝑖 (𝐺) over
the network 𝐺 provides (

∑
𝑖 𝜖𝑖 )-differential privacy.

Theorem C.8 (Parallel composition [45]). Let eachM𝑖 provide 𝜖-differential privacy. A sequence ofM𝑖 (𝐺𝑖 ) over a
set of disjoint networks 𝐺𝑖 provides 𝜖-differential privacy.

D INFORMATION LOSS MEASURES

Below are some generic measures to quantify the information loss when releasing anonymized network𝐺 ′. The general

goal is to minimize information loss and to improve data utility.

D.1 Mean absolute error

This measures the absolute error by comparing the degree centrality score of a node 𝑣𝑖 in the anonymized network

𝐺 ′ with respect to the original network 𝐺 . The mean absolute error (𝑀𝐴𝐸) [72] for all the nodes in the network is

computed as follows:

𝑀𝐴𝐸 (𝐺,𝐺 ′) = 1

|𝑉 | ×
|𝑉 |∑
𝑖=1

|𝐶𝐷 (𝐺 ′, 𝑣𝑖 ) −𝐶𝐷 (𝐺, 𝑣𝑖 ) | (10)

D.2 Average relative error

This measures the relative error of a node 𝑣𝑖 in the anonymized network𝐺 ′ with respect to the original network𝐺 [31].

The average relative error (𝐴𝑅𝐸) for all the nodes in the network is computed as follows:

𝐴𝑅𝐸 (𝐺,𝐺 ′) = 1

|𝑉 | ×
|𝑉 |∑
𝑖=1

|𝐶𝐷 (𝐺 ′, 𝑣𝑖 ) −𝐶𝐷 (𝐺, 𝑣𝑖 ) |
𝐶𝐷 (𝐺, 𝑣𝑖 )

(11)

D.3 Kullback–Leibler divergence

Degree distribution captures the important structural properties of a network. This one computes the frequency count

of the occurrence of each degree to differentiate the number of connections between nodes in a network. For a directed

network, the frequency counts for the indegree and outdegree of a node are computed based on the type of degree

direction. Given the degree distributions of the original network and the anonymized network, 𝐷𝐷 (𝐺) and 𝐷𝐷 (𝐺 ′),
we measure their difference by Kullback–Leibler divergence [34] as follows:

𝐾𝐿𝐷𝑖𝑣 (𝐷𝐷 (𝐺) | |𝐷𝐷 (𝐺 ′)) =
|𝑉 |−1∑
𝑖=0

𝐷𝐷 (𝐺) [𝑖] · ln
(
𝐷𝐷 (𝐺) [𝑖]
𝐷𝐷 (𝐺 ′) [𝑖]

)
(12)
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