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ABSTRACT Haze removal techniques employed to increase the visibility level of an image play an
important role inmany vision-based systems. Several traditional dark channel prior-basedmethods have been
proposed to remove haze formation and thereby enhance the robustness of these systems. However, when
the captured images contain disproportionate haze distributions, these methods usually fail to attain effective
restoration in the restored image. Specifically, disproportionate haze distribution in an image means that the
background region possesses heavy haze density and the foreground region possesses little haze density.
This phenomenon usually occurs in a hazy image with a deep depth of field. In response, a novel hybrid
transmission map-based haze removal method that specifically targets this situation is proposed in this work
to achieve clear visibility restoration and effective information maintenance. Experimental results via both
qualitative and quantitative evaluations demonstrate that the proposed method is capable of performing with
higher efficacy when compared with other state-of-the-art methods, in respect to both background regions
and foreground regions of restored test images captured in real-world environments.

INDEX TERMS Haze removal, disproportionate haze distribution, dark channel prior.

I. INTRODUCTION
Among the predominant causes of low-visibility in digital
image acquisition is the absorption and scattering of light
by large amounts of turbid medium via atmospheric move-
ments. However, in many vision-based applications such as
surveillance systems [1]–[5], intelligent transportation sys-
tems [6], or face annotation systems [7], often only a few
objects can be featured in video camera footage due to
low-visibility constraints such as haze, fog, and mist. The
primary aim of a haze removal technique is to increase the vis-
ibility level of an image while recovering object information,
thereby enhancing the performance of these vision-based
applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

Haze removal techniques can be separated into two major
groups depending on the data type it process, one are those
non-single image information techniques [8]–[13], and the
other one are those single image information techniques
[14]–[23]. Among the two groups, removing haze from single
image shows more challenging due to the lack of multiple
data sources or temporal information.

In the literature of single image information based meth-
ods, there exist two major categories: the data-driven meth-
ods that utilized machine learning techniques to learn the
mapping between hazy image and either the corresponding
haze-free image or the transmission map [16]–[20], [24].
However, although learning-based method can achieve fine
results on images with even haze distributions, it often suf-
fers from failure recovery when it comes to those images
with disproportionate haze distributions. The reasons behind
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such failure are that, under the assumption of haze particles
are evenly distributed within an image, the design of neural
networks often consists of multiple mean-pooling layers, and
the utilization of synthesized hazy images also lacks the
consideration on the disproportionate haze distribution prob-
lem. This design leads to a relatively smoothed estimation
of haze distribution, thereby failed on the recovery of those
disproportionate haze.

On the other hand, approaches in the second category
designed hand-crafted priors to recover the hazy image show
good results and generalization ability [14], [21], [25]–[34].
Fattal [25] proposed a haze removal method that is based
on an independent component analysis by assuming that the
transmission and surface shading are uncorrelated to esti-
mate the transmission map and further recover the visibility
of a hazy image. Tan’s method [26] restored hazy images
by both maximizing the local contrast and constraining the
intensity of each pixel to be less than the intensity of global
atmospheric light. He et al. [14] developed a haze removal
method primarily based on an assumption that there is at
least one pixel possessing low intensity that exists within
a local patch in outdoor haze-free images outside of sky
regions. In Bui et al.’s work [21], they constructed a statistical
color ellipsoid prior as well as utilized a fuzzy segmentation
process to simultaneously estimates the transmission and exe-
cutes the refinement process to efficiently enhance the hazy
image.

Among the prior-based approaches, the specific dark chan-
nel prior-based methods [14], [27]–[31] are very efficient
for visibility restoration. He et al. proposed the dark chan-
nel prior assumption to estimate haze thickness [14]. This
assumption is based on the key observation that an outdoor
haze-free image without a sky region possesses at least one
pixel of lower intensity between the RGB color channels. The
approach ofWang andWu [27] adopted the dark channel prior
and the soft matting technique to estimate the haze thickness
and refine the transmission map. Eventually, the haze-free
image can be attained based on the use of its restoration
function. The dark channel prior was refined by the approach
of Ullah et al. [28]. in which the dark channel of the incoming
hazy image was initially produced in the HSI color space.
Then, the soft matting technique was also employed to refine
the transmission map, and the haze-free image was there-
fore attained. Xu et al.’s method [29] employed He et al.’s
transmission estimation function [14] to produce the haze
thickness of the incoming hazy image in the transmission
map, and additionally utilized the fast bilateral filter to refine
the transmission map instead of the soft matting technique.
Moreover, Xu et al. employ a threshold setting to determine
whether or not the restoration process is necessary for the
restoration function to further improves the efficiency. In
Gao et al.’s work [30], they firstly proposed to use two
priors, namely, depth-edge aware prior and airlight impact
regularity prior, and an airlight refinement algorithm to refine
the dark channel. Secondly, an adaptive sharpening model
for eliminating the airlight additive influence as well as the

convolution effects is utilized to enhance the image details.
Hu et al.’s method [31] proposes to improve the atmospheric
scattering model via adaptively compensate the illumination
intensity and using joint local-global illumination adjustment
to accomplish haze removal.

However, these dark channel prior-based methods often
fail to restore hazy images that have disproportionate haze
distributions. This is due to the haze density cannot be effec-
tively estimated in the transmission map by using the dark
channel prior with only a single patch-size for the images.
To overcome this problem, we propose a novel hybrid trans-
missionmap-based haze removal algorithm using the existing
dark channel prior. The proposed method specifically targets
the hazy images that contain disproportionate haze distribu-
tions. These images usually contain heavy haze formation in
their background regions and little haze formation in their
foreground regions. Since the proposed algorithm lies within
this scope of dark channel prior strategies, we discuss here-
after the most commonly used dark channel prior-based tech-
niques that have been considered effective for haze-density
estimation.

II. BACKGROUND
In general, observed light is irregularly absorbed and scat-
tered by atmosphere-turbid media (e.g., haze) in poor weather
conditions. An observation model was therefore proposed in
previous works to represent the formation of a hazy image
according to this atmospheric phenomenon [33]. For each
incoming pixel, the observation model can be expressed as
follows:

I (x) = J (x) t (x)+ A (1− t (x)) (1)

where x represents each pixel position of the hazy image I ,
the haze-free image J , and the transmission map t , respec-
tively; A represents the global atmospheric light. Inspired by
this model, investigations of the dark channel prior-based
approaches [14], [27]–[29] have been proposed to enhance
the visibility of hazy images captured during poor weather
conditions. A detailed survey of these investigations is
presented below.

According to the dark channel prior assumption, He et al.
adopts a minimum filter to estimate the transmission map t̃
of the hazy image, which can be regarded as haze thickness,
in order to restore the visibility of hazy images [14]. Hence,
the transmission map t̃p15×15 can be obtained by:

t̃p15×15 (x) = 1− ω min
y∈p15×15 (x)

{
min

c∈{r,g,b}

Ic(y)
Ac

}
(2)

where c ∈ {r, g, b}, p15×15(x) represents a local patch centered
at position x, y is the corresponding pixel within the local
patch p15×15(x), and min

c∈{r,g,b}
represents the minimum filter

that is used to pick up the minimum value of the pixel from
the incoming hazy image Ic. Here, the right term for Eq. (2)
is a dark channel prior process with an adjusted constant ω,
by which to calculate the haze thickness of an incoming hazy
image Ic. In addition, the adjusted constant ω can be fixed
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FIGURE 1. Comparison of restoration results produced via the methods of He et al., Gao et al. and Hu et al..

to 0.95, which is suggested by [14] to maintain some haze
formation in the restored image. This is because the restored
image may look unnatural if its haze formation is entirely
removed. In the beginning of the procedure, all pixels of the
incoming hazy image are initialized between 0 and 1.

According to [14], the size of a local patch p15×15(x) experi-
mentally set to 15×15 yields much better results for visibility
restoration. However, an image restored via the use of the
transmission map t̃p15×15 , which is produced by employing
Eq. (2), results in generation of block artifacts. To overcome
this problem, He et al. adopted the soft matting technique
to refine the transmission map t̃p15×15 . Initially, the element
(m, n) of the matting Laplacian matrix L is given as∑
k|(m,n)∈ωk

(
δmn −

1
|ωk |

(
1+ (Im − µk)T

(∑
k

+
ε

|ωk |
U3

)−1
(In − µk)

))
(3)

where Im and In represent the pixels of the input color image
I at position m and n, respectively; µk and

∑
k represent

the mean matrix and the covariance matrix of the pixels in
window ωk , respectively; δmn represents Kronecker delta; U3
represents an identity matrix, the size of which can be set to
3; |ωk | represents the number of pixels in the window ωk .
Subsequently, the refined transmission map tp15×15 can be
attained from the solution of the sparse linear system, which
is obtained as follows:

(L + λU) tp15×15 = λt̃p15×15 (4)

where L andU represent the Laplacianmatrix and the identity
matrix with the same size as L, respectively. Note that λ can
be set to 10−4, empirically.
As the last step of their approach, He et al. adopted the

refined transmission map tp15×15 to restore the incoming hazy
image Ic as the haze-free image Jc. This restoration function
can be expressed as:

Jc (x) =
Ic (x)− Ac

max{tp15×15 (x) , t0}
+ Ac (5)

where c ∈ {r, g, b}, t0 represents the lower bound of the
refined transmission map tp15×15 , and Ac represents the global
atmospheric light. Note that t0 is empirically set to 0.1 accord-
ing to [14].Moreover,Ac is set to the highest intensity value in
each RGB color channel of the incoming hazy image Ic within

a region that is extracted from the top 0.1 percent brightest
pixels in the dark channel of the incoming hazy image Ic.

A. DISCUSSION
In general, the use of the dark channel prior can effec-
tively estimate haze thickness for ideal hazy images that
contain uniform haze distributions (e.g., the background and
foreground regions contain proportionate haze formation),
as indicated in Fig. 1. However, when the images contain
disproportionate haze distributions, such that which occurs in
images with deep depths of field, the use of the dark channel
prior results in an ineffective estimation of haze thickness
in the transmission map produced when using the single
patch-size (e.g., 3× 3 or 15× 15).
For example, He et al.’s method [14] employs the dark

channel prior to produce a transmission map via a single
patch-size (e.g., 3 × 3 or 15 × 15) in order to restore a
hazy image with disproportionate haze formation, as shown
in Fig. 2. Specifically, the red square in Fig. 2 (a) presents the
haze-free foreground region in the captured image. As shown
in the red square in Fig. 2 (d), the information of the fore-
ground region can be effectively maintained in the restored
image produced via the use of the patch-size 15 × 15.
In contrast with the red square in Fig. 2 (d), the red square
in Fig. 2 (e) clearly contains artifact effects due to the use
of the transmission map produced by using patch-size 3× 3.
This is because the patch-size 3× 3 possesses smaller search
regions than the patch-size 15 × 15. In other words, there is
a lower probability of finding the pixel of low intensity in
the dark channel when using a patch-size of 3 × 3. Thus,
the haze-free foreground region in the transmission map used
when adopting a patch-size of 3 × 3 is often misjudged as
containing haze. For this reason, the haze-free foreground
region in the restored image contains artifact effects in the
red square in Fig. 2 (e).
In contrast, the blue square in Fig. 2 (a) presents the haze

background region in the captured image. As can be observed
in the blue square in Fig. 2 (e) and Fig. 2 (d), the visibility of
the background region within the image restored by using the
single patch-size 15 × 15 is poorer than the image restored
by using the single patch-size 3× 3. This is because the haze
thickness in the dark channel is estimated by employing the
patch-size 15× 15, which possesses larger search regions for
the extraction of low intensity pixels than the patch-size 3×3
does. For this reason, the haze thickness in the transmission
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FIGURE 2. Restoration results produced via different single patch-sizes by the dark channel prior method: (a) is the incoming hazy image;
(b) and (c) present the transmission map and its corresponding intensity value within regions of background and foreground generated by
utilizing a single patch-size of 15 × 15 and 3 × 3, respectively; (d) and (e) show the restored images produced by using the single patch-size
of 15 × 15 and 3 × 3, respectively.

map that uses patch-size 15 × 15 is thinner than that is
estimated by using the patch-size 3× 3, thereby reducing the
capability of haze removal, as indicated by the blue square
and blue waveform in Fig. 2 (c). According to the blue square
in Fig. 2 (e) and 2 (d), it is apparent that the visibility of the
background region restored by using the patch-size 3 × 3 is
more effective than that which is restored via the use of the
patch-size 15× 15 in regard to the deep depth of field of the
hazy image.

In order to attain clear visibility restoration within the
background region and the maintenance of the intrinsic
structure within the foreground region, we combine the
advantages of two transmission maps generated by these
two single patch-sizes to produce the hybrid transmission
map and restore hazy images with disproportionate haze
formation.

B. CONTRIBUTIONS
In this paper, we propose a novel haze removal method con-
sisting of the proposed haze thickness estimation (HTE)mod-
ule and the proposed haze formation removal (HFR) module
for hazy images in order to obtain effective restoration results.
During the proposed HTE module, we first produce a hybrid
transmission map by preserving the strengths of the two
types of transmission maps produced by adopting patch-sizes
15 × 15 and 3 × 3. Subsequently, clear visibility restoration
and effective information maintenance can be achieved via
the use of the hybrid transmission map in the proposed HFR
module.

In comparisonwith the traditional dark channel prior-based
methods, the proposed method yields two major
contributions:
1) Clear visibility restoration: the proposed method

can more sufficiently remove haze formation from
real-world hazy images than the traditional dark channel
prior-based methods.

2) Effective information maintenance: the proposed
method can more effectively preserve the intrinsic

structure of a haze-free foreground region in the restored
image.

The paper is divided into five main sections. The details
of the proposed novel haze removal method are presented
in Section III. Section IV presents the experimental results
that contrast the proposed method with other state-of-the-art
methods by using both qualitative and quantitative analyses.
Section V concludes this paper.

III. PROPOSED METHOD
The need and challenges of haze removal techniques were
explained in the previous section. To overcome its chal-
lenges, we first incorporate the respective strengths of both
transmission maps via the use of a saliency map with a
Laplacian-pyramids-based merging technique to yield the
hybrid transmission map. Next, haze formation can be
effectively removed by using the hybrid transmission map.

To this end, we performed a closer investigation and
analyzed these two transmission maps, and made the
following observations:

1) Haze thickness increases for each transmission map as
distance increases between the camera and captured
object in the image.

2) As discussed in pervious section, the haze thickness
estimated by using a patch-size 3 × 3 is heavier than
that estimated by using a patch-size 15× 15, according
to these two transmission maps.

3) For most restored images, the use of each transmis-
sion map produces different restoration results for
background regions and foreground regions, as shown
in Fig. 3. In other words, the restored images rarely show
clear visibility restoration while maintaining effective
structure for each region.

A. HAZE THICKNESS ESTIMATION
According to these observations, we employed the transmis-
sion maps produced with a patch-size of 15×15 for restoring
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FIGURE 3. Restored images obtained by using each transmission map; the first row shows the original hazy images; the second row shows the images
restored by using the transmission map through a patch-size of 3 × 3; the third row shows the images restored by using the transmission map through a
patch-size of 15 × 15.

haze-free foreground regions of the images. Accordingly,
the first transmission map t̃p15×15 is based on patch-size
15× 15 and is given by

t̃p15×15 (x) = 1− ω min
y∈p15×15 (x)

{
min

c∈{r,g,b}

Ic(y)
Ac

}
(6)

where y denotes pixel indices within the patch-size p15×15 .
Here, ω denotes the predefined parameters and can be set to
0.95 according to [14].

Additionally, transmissionmaps producedwith a patch-size
of 3 × 3 are used to recover hazy background regions. To
implement this transmission map t̃p3×3 , we compute

t̃p3×3 (x) = 1− ω min
y∈p3×3 (x)

{
min

c∈{r,g,b}

Ic(y)
Ac

}
(7)

where p3×3 represents a patch-size centered at a pixel index
x, and y denotes a pixel index within the single patch-size
p3×3 . Moreover, a soft matting technique [35] is employed
by which these two transmission maps t̃p15×15 (x), t̃p3×3 (x)
can be refined as tp15×15 (x), tp3×3 (x) and thereby avoid the
production of halo artifacts in the restored image.

Here, each region can be segmented by using the saliency
maps of the hazy images [36]. However, the combination of
two transmission maps via the saliency map by using the
traditional fusion methods would suffer from generation of
undesired artifacts (e.g., halo effects) along the edges of fore-
ground objects [37]. Hence, the Laplacian-pyramids-based
merging technique is used to reliably integrate these three
maps into a hybrid transmission map for effective restoration
of hazy images while avoiding undesired artifacts. Accord-
ingly, the hybrid transmission map th can be represented as
follows:

th (x) =
1∑

L=Lmax−1

(f L (x)+ f L+1 (x)↑L) (8)

where

f L (x) = (S (x)↓L) LL
(
tp15×15 (x)

)
+ ((1− S (x))↓L) LL

(
tp3×3 (x)

)
(9)

and LL(·) represents the processes of Laplacian pyramids
[38]; f L (x) represents the fused pyramids; Lmax denotes
the number of pyramid levels and can be set to 5; ↑ and ↓

FIGURE 4. The flowchart of the proposed haze removal method.

represent upsampling processing and downsampling process-
ing, respectively. Note that S represents the binary saliency
mask and can be acquired by using the method of Yang et al.
according to [36].

B. HAZY FORMATION REMOVAL
After the hybrid transmission map th is generated during
the proposed HTE module, the haze-free image Jc, which
features both clear visibility restoration of background as
well as complete maintenance of foreground objects, can be
produced as follows:

Jc (x) =
Ic (x)− Ac

max{th (x) , t0}
+ Ac (10)

where Ic (x) represents the incoming hazy image, and t0 is
defined as 0.1 according to [14]. Note that the atmospheric
lights Ac can be extracted from the corresponding region of
the image Ic (x) of the statistics of top 0.1% brightest pixels
of the dark channel. As indicated previously, the flowchart of
the proposed haze removal method is shown in Fig. 4.
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FIGURE 5. Image sampled from the ‘‘Animal’’ sequence: (a) input hazy image, with its corresponding foreground and background regions restored by the
methods of (b) He et al. via a transmission map with a patch-size 3 × 3; (c) He et al. via the transmission map with a patch-size 15 × 15; (d) DehazeNet
[16]; (e) Gao et al. [30]; (f) Hu et al. [31]; (g) CEP [21] and (h) the proposed method.

IV. EXPERIMENTAL RESULTS
In this section, we compare the performance of the pro-
posed haze removal method with some of the other state-
of-the-art methods [14], [16], [21], [30], [31]. These include
the methods of He et al. [14] (which uses two patch-sizes:
p15×15 = 15 and p3×3 = 3), Cai et al. [16] (learning-based
dehaze algorithm, denoted as DehazeNet), Bui and Kim [21]
(denoted as CEP), Gao et al. [30], and Hu et al. [31]. For these
comparisons, we use qualitative and quantitative evaluations
to assess restoration results generated via each haze removal
method for hazy image sequences entitled ‘‘Animal,’’
‘‘People,’’ and ‘‘Scene,’’ as can be seen in Figs. 5-7 (a).

Here, we will demonstrate that the proposed method can
achieve more effective restoration results for both back-
ground and foreground regions of hazy images than can the
other state-of-the-art methods. To this end, in our compar-
isons, each test image is split into two sub-images according
to themean opinion score (MOS) of visual evaluations, which
were performed by fifty experts in the image processing field,
as well as fifty non-experts. The following subsections will
present the quantitative and qualitative comparisons between
each compared method in detail.

A. QUALITATIVE EVALUATIONS
In the first part, a visual assessment is conducted to evaluate
the quality of restoration results. As shown in Figs. 5-7 (a),

these hazy images contain disproportionate haze distribution
consisting of a background region with heavy haze formation
and a foreground region with little haze formation.

As shown in the red squares in Fig. 5 (b), it is apparent
that the hazy image recovered by He et al.’s method often
suffers from insufficient haze removal in the background
region via the transmission maps generated with a patch-size
15 × 15. The use of patch-size 15 × 15 is well-suited for
images containing proportionate haze distribution. In other
words, images with proportionate haze distributions can be
effectively restored by using the patch-size 15×15. However,
when an image contains disproportionate haze distribution,
the visibility of the background region within the image
restored by adopting the patch-size 15× 15 is less clear than
that of an image restored by using the patch-size 3×3. This is
because the use of patch-size 15×15 has a higher probability
of extract the pixels of low intensity in the dark channel
compared with the use of a patch-size 3×3. Such phenomena
can also be observed in the twoDCP-basedmethods as shown
in Figs. 5-7 (b)-(c), (e)-(f), while they achieve fine results
on the foreground but fail to recover the background. As
for the DehazeNet method in Figs. 5-7 (d), it is evident that
the hazy image recovered by the method cannot effectively
achieve clear visibility restoration in the background region
of the restored image. The main reason is that the neural
network design of DehazeNet constitutes multiple large-size
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FIGURE 6. Image sampled from the ‘‘People’’ sequence: (a) input hazy image, with its corresponding foreground and background regions restored
by the methods of (b) He et al. via a transmission map with a patch-size 3 × 3; (c) He et al. via the transmission map with a patch-size 15 × 15;
(d) DehazeNet [16]; (e) Gao et al. [30]; (f) Hu et al. [31]; (g) CEP [21] and (h) the proposed method.

FIGURE 7. Image sampled from the ‘‘Scene’’ sequence: (a) input hazy image, with its corresponding foreground and background regions
restored by the methods of (b) He et al. via a transmission map with a patch-size 3 × 3; (c) He et al. via the transmission map with a
patch-size 15 × 15; (d) DehazeNet [16]; (e) Gao et al. [30]; (f) Hu et al. [31]; (g) CEP [21] and (h) the proposed method.

pooling layers, thus it often generates smoothed transmission
maps, and further result in failure removal of those haze in

the background area. Despite the fine recovery on the back-
ground, the CEPmethod [21] overcompensate the foreground
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TABLE 1. Qualitative evaluation results. The efficiency of the algorithm scores from 1 to 5, while higher score corresponding to better image quality.

TABLE 2. Comparison of restoration rates attained by BRISQUE for a hazy image consisting of heavy haze formation within the background region and
little haze formation within the foreground region.

as shown in Figs. 5-7 (g). In addition, as can be observed in
the blue squares in Fig. 5 (b), the hazy image restored by
He et al.’s method via the use of the transmission maps
generated with a patch-size of 3×3 often results in excessive
restoration of the foreground region. This is because the use
of patch-size 3 × 3 has a low probability of finding low
intensity pixels within the foreground region in the dark
channel, thereby incorrectly regarding the foreground region
as containing haze formation.

The qualitative evaluation results are shown in Table 1,
while fifty experts in the image processing field as well
as fifty non-experts were asked to score the algorithm
based on two factors: the similarity of foreground region
and haze-removal efficiency on the background region
before/after applying each haze removal algorithm. As shown
in the table, the proposed method obtain the highest overall
MOS among other state-of-the-art algorithms. We employ
the proposed HTE module by which to generate a hybrid
transmission map. Because of this, the proposed approach
can effectively produce a satisfactory restored image that
features both clear visibility restoration and effective struc-
ture maintenance due to use of the proposed HFR module,
as shown in the blue and red squares in Figs. 5-7 (h). Based on
the restoration results and the qualitative evaluation, the pro-
posed method attains more effective restoration results than
the methods of He et al. [14], DehazeNet [16], CEP [21],
Gao et al. [30], and Hu et al. [31].

B. QUANTITATIVE EVALUATIONS
The purpose of this part of our paper is to demonstrate
via quantitative evaluations that the proposed method can
attain effective restoration results for hazy images containing
disproportionate haze distributions.

In general, the objective metrics used for the quantitative
evaluations can be grouped into two types: reference image

approaches and non-reference image approaches. The ref-
erence image evaluation approaches can be accomplished
through the use of both a real-world haze-free reference
image and an incoming hazy image. Since there is no
real-world haze-free background reference image, the ref-
erence image approach cannot be used for assessing the
background regions of our test images. Therefore, in order
to accomplish an objective comparison, we employ the
non-reference image quality assessment approach to evaluate
the background regions. The BRISQUE method proposed
by Mittal et al. [39], which belongs to the non-reference
image approach category, is adopted for assessing the level
of contrast restoration between the image after and before
haze removal. Note that a lower value of BRISQUE repre-
sents more effective recovery results in the restored image.
The quantitative evaluation results of each method are listed
in Table 2.
As demonstrated by Table 2, it is apparent that the pro-

posed method outperforms these DCP-based methods [14],
[30], [31], and other state-of-the-art haze removal meth-
ods [16], [21]. This is due to the proposed haze removal
method’s ability to effectively generate a high-quality image
that exhibits clear visibility restoration for the background
region while intrinsically maintaining the structure of the
foreground region.

From both qualitative and quantitative evaluations, we can
clearly observe that the proposed haze removal method
can provide more effective restoration results than can the
other dark channel prior-based methods [14], [30], [31],
the CEP method [21] and learning-based DehazeNet [16]
method. This is because the proposed method integrates the
advantages of two transmission maps produced by using the
patch-sizes 15 × 15 and 3 × 3 to produce a hybrid trans-
mission map and thereby attain a high-quality restored image
that offers both clear visibility restoration of the background
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region and effective maintenance of the intrinsic structure
information of the foreground region.

V. CONCLUSION
In this paper, we propose a novel haze removal method
constructed by the proposed HTE module and the proposed
HFR module to effectively attain clear visibility restoration
for background regions of hazy images while simultaneously
maintaining the intrinsic structure information of foreground
regions. In the proposed HTE module, we use a Laplacian-
pyramids-based merging technique by which to generate a
hybrid transmission map by integrating the advantages of two
transmission maps produced by using patch-sizes 15×15 and
3×3. After the proposed HTE module is performed, the pro-
posed HFR module adopts the hybrid transmission map to
restore the hazy image, resulting in both clear visibility
restoration in the background region and effective intrin-
sic structure maintenance of the foreground region. Exper-
imental results suggest that our proposed method attains
more effective restoration of a hazy image than the other
state-of-the-art methods in both background and foreground
regions. Both quantitative and qualitative comparisons sup-
port this claim; for instance, the proposed method simultane-
ously achieves the best BRISQUE and MOS comparing with
existing approaches.
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