m-Privacy for Collaborative Data Publishing

by

Slawomir Goryczka, Li Xiong, Benjamin C. M. Fung

Collaborative Data Publishing

- Many data providers, e.g. hospitals, wish to publish anonymized view of their data,
- Different scenarios of anonymization.

Distributed Anonymization

anonymize-and-aggregate

Privacy Concerns in Collaborative Data Publishing

- Potential attackers:
 - Data recipients P_o
 - Data are private due to privacy of *T**
 - Data providers P_1
 - Data may not be private due to instance level knowledge of P₁

aggregate-and-anonymize

Anonymization Example (data)

- Data attributes:
 - Identifiers, e.g. Name
 - Quasi-Identifiers (QI), e.g. Age, Zip

• Sensitive, e.g. Disease Voters registration list T_1 T_2

Name	Age	Zip	Disease	Name	Age	Zip	Disease
Alice	24	98745	Cancer	Dorothy	38	98701	Cancer
Bob	35	12367	Asthma	Mark	37	12389	Flu
Emily	22	98712	Asthma	John	31	12399	Flu

T_3				T_4			
Name	Age	Zip	Disease	Name	Age	Zip	Disease
Sara	20	12300	Epilepsy	Olga	32	12337	Cancer
Cecilia	39	98708	Flu	Frank	33	12388	Asthma

Anonymization Example (attack)

Privacy is defined as *k*-anonymity and (simple)
 I-diversity (*k* = 2, *I* = 2).

 \mathbf{n}^*

		I_a		
Provider	Name	Age	Zip	Disease
P_1		[20-30]	sta sta sta sta sta	Caller
			stastastastasta	Culleel
P_1	Cintiv	120-301		Asunna
P_3^-	Sara	[20-30]	****	Epilepsy
P_1	D_1	[21 25]	*****	Aathma
P_{2}	Lohn		****	Flu
1 2	JOHN	[31-35]		Tiu
P_4	Olga	[31-35]	****	Cancer
P_4	Frank	[31-35]	****	Asthma
P_2	Dorothy	[36-40]	****	Cancer
P_2	Mark	[36-40]	****	Flu
P_3	Cecilia	[36-40]	****	Flu

m-Privacy

An equivalence group of anonymized records is <u>m-private with respect to a</u> privacy constraint C if any coalition of m parties (*m*-adversary) is not able to breach privacy of remaining records.

Private records provided by other parties.

Records provided by *m*-adversary

• An attacker is a single data provider (1-privacy)

m*

		T_b		
Provider	Name	Age	Zip	Disease
P_1	Alice	[20-40]	****	Cancer
P_2	Mark	[20-40]	****	Flu
P_3	Sara	[20-40]	****	Epilepsy
P_1	Emily	[20-40]	987**	Asthma
P_2	Dorothy	[20-40]	987**	Cancer
P_3	Cecilia	[20-40]	987**	Flu
P_1	Bob	[20-40]	123**	Asthma
P_4	Olga	[20-40]	123**	Cancer
P_4	Frank	[20-40]	123**	Asthma
P_2	John	[20-40]	123**	Flu

• An attacker is a single data provider (1-privacy)

m*

		T_b		
Provider	Name	Age	Zip	Disease
P_1	Alice	[20-40]	****	Cancer
P_2	Mark	[20-40]	****	Flu
P_3	Sara	[20-40]	****	Epilepsy
P_1	Emily	[20-40]	987**	Asthma
P_2	Dorothy	[20-40]	987**	Cancer
P_3	Cecilia	[20-40]	987**	Flu
P_1	Bob	[20-40]	123**	Asthma
P_4	Olga	[20-40]	123**	Cancer
P_4	Frank	[20-40]	123**	Asthma
P_2	John	[20-40]	123**	Flu

• An attacker is a single data provider (1-privacy)

		T_b^{a}		
Provider	Name	Age	Zip	Disease
P_1	Alice	[20, 40]	****	Cancer
P_2^-	Mark	[20-40]	****	Flu
P_3	Sara	[20-40]	****	Epilepsy
P_1	Emily	[20-40]	987**	Asthma
P_2	Dorothy	[20-40]	987**	Cancer
P_3	Cecilia	[20-40]	987**	Flu
P_1	Bob	[20-40]	123**	Asthma
P_4	Olga	[20-40]	123**	Cancer
P_4	Frank	[20-40]	123**	Asthma
P_2	John	[20-40]	123**	Flu

• An attacker is a single data provider (1-privacy)

Provider	Name	Age	Zip	Disease
P_1	Alice	[20-40]	****	Cancer
P_2	Mark Sara	[20-40] [20-40]	*****	Flu Epilepsy
P_1 P_2	Emily Dorothy	[20-40] [20-40]	987** 987**	Asthma Cancer
P_3 P_1 P	Cecilia Bob	$ \begin{bmatrix} 20-40 \end{bmatrix} $ $ \begin{bmatrix} 20-40 \end{bmatrix} $ $ \begin{bmatrix} 20-40 \end{bmatrix} $	987** 123** 122**	Asthma
Γ_4 P_4 P_2	Frank John	$ \begin{bmatrix} 20-40\\ \hline 20-40\\ \hline 20-40\\ \hline 20-40\\ \hline $	123** 123** 123**	Asthma

• An attacker is a single data provider (1-privacy)

.		T_b^{m}		
Provider	Name	Age	Zip	Disease
P_1	Alice	[20-40]	****	Cancer
P_2	Mark	[20-40]	*****	Flu
P_3	Sara	[20-40]	*****	Epilepsy
P_1	Emily	[20-40]	987**	Asthma
P_2	Dorothy	[20-40]	987**	Cancer
P_3	Cecilia	[20-40]	987**	Flu
P_1	Bob	[20-40]	123**	Asthma
P_4	Olga	[20-40]	123**	Cancer
P_4	Frank	[20-40]	123**	Asthma
P_2	John	[20-40]	123**	Flu

Parameters *m* and *C*

- Number of malicious parties: m
 - *m* = 0 (0-privacy) is when the coalition of parties is empty, but each data recipient can be malicious
 - *m* = *n*-1 means that no party trusts any other (anonymize-and-aggregate)
- Privacy constraint C:
 - with conditional BK (0-privacy), e.g. k-anonymity, ldiversity
 - with unconditional *BK* ((*n*-1)-privacy), e.g. differential privacy
 - *m*-privacy is orthogonal to *C* and inherits all its advantages and drawbacks

m-Adversary Modeling

• Domain space is exponential!

10,2

- If a coalition of attackers cannot breach privacy of records, then any its subcoalition will not be able to do so as well.
- If a coalition of attackers breaches privacy of records, then all its supercoalitions will do that as well.

Equivalence Group Monotonicity

Adding new records to a private *T** will not change the privacy fulfillment!

- To verify *m*-privacy it is enough to determine privacy fulfillment <u>only</u> for *m*-adversaries,
- EG monotonic privacy constraints: *k*-anonymity, simple *l*-diversity, ...
- Not EG monotonic constraints: entropy *I*-diversity, *t*-closeness, ...

Pruning Strategies

 Number of coalitions to verify: exponential to number of providers, but with efficient pruning strategies!

Efficient Pruning - Adaptive Ordering

- To speed up verification pruning strategies should be used as early as possible and as frequent as possible.
 - For downward pruning, *m*-adversaries with limited <u>attack power</u> should be checked first.
 - For upward pruning, *m*-adversaries with significant <u>attack power</u> should be checked first.
- <u>Privacy fitness score</u> is a measure of the privacy fulfillment with values greater or equal to 1 only if records are private, i.e. it measures attack power. Example:

$$score_{F_{C_1 \wedge C_2}}(T^*) = (1 - \alpha) \cdot \frac{|T^*|}{k} + \alpha \cdot \frac{|\{t[A_S] : t \in T^*\}|}{l}$$

Verification Algorithms

Anonymizer for *m*-Privacy

 We add one more attribute – data provider, which is used as any other attribute in splitting data records.

Anonymizer for *m*-Privacy

 We add one more attribute – data provider, which is used as any other attribute in splitting data records.

Anonymizer for *m*-Privacy

 We add one more attribute – data provider, which is used as any other attribute in splitting data records.

m-Anonymizer (diagram)

Experiments Setup

- Dataset: the *Adult* dataset has been prepared using the Census database from 1994.
- Attributes: age, workclass, education, maritalstatus, race, gender, native-country, <u>occupation</u> (sensitive attribute with 14 possible values).
- Privacy defined as a conjunction of k-anonymity and l-diversity.
- Metrics:
 - Runtime
 - Query error

• *m*-Privacy verification runtime for different algorithms vs *m*

Average privacy fitness score per provider = 0.8 Average privacy fitness score per provider = 2.3

• *m*-Privacy verification runtime for different algorithms vs the average privacy fitness score per provider records (average attack power)

m-Anonymizer runtime and query error for different anonymizers vs size of attacking coalitions *m*

m-Anonymizer runtime and query error for different anonymizers vs number of data records

Summary

- Identify and model privacy threats for collaborative data provider settings by *m*-privacy,
- Introduce and implement efficient strategies for *m*-privacy verification,
- Propose an *m*-privacy verification algorithm that adapts its strategy to input data,
- Design and implement *m*-anonymizer that anonymizes data with respect to *m*-privacy.

Thank you!

Q & A

More Experiments

Experiments for different k and I

10, 2,

Equivalence Group Monotonicity

- A privacy constraint C is EG monotonic if and only if any equivalence group of records T* satisfies C, then all its supersets satisfy C as well.
- Properties:
 - *m*-Privacy with respect to a constraint *C* is EG monotonic if and only if *C* is EG monotonic,
 - If a constraint C is EG monotonic, then the definition of *m*-privacy w.r.t. C may be simplified and requires only determining privacy of records only for coalitions of *m* attackers.