
HIERARCHICAL DOCUMENT CLUSTERING

USING FREQUENT ITEMSETS

by

Benjamin Chin Ming Fung

B.Sc., Simon Fraser University, 1999

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Benjamin Chin Ming Fung 2002

SIMON FRASER UNIVERSITY

September 2002

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Benjamin Chin Ming Fung

Degree: Master of Science

Title of thesis: Hierarchical Document Clustering Using Frequent Item-

sets

Examining Committee: Dr. Qianping Gu

Chair

Dr. Ke Wang, Senior Supervisor

Dr. Martin Ester, Supervisor

Dr. Oliver Schulte, SFU Examiner

Date Approved:

ii

Abstract

Most state-of-the art document clustering methods are modifications of traditional

clustering algorithms that were originally designed for data tuples in relational or

transactional database. However, they become impractical in real-world document

clustering which requires special handling for high dimensionality, high volume, and

ease of browsing. Furthermore, incorrect estimation of the number of clusters often

yields poor clustering accuracy. In this thesis, we propose to use the notion of frequent

itemsets, which comes from association rule mining, for document clustering. The

intuition of our clustering criterion is that there exist some common words, called

frequent itemsets, for each cluster. We use such words to cluster documents and

a hierarchical topic tree is then constructed from the clusters. Since we are using

frequent itemsets as a preliminary step, the dimension of each document is therefore,

drastically reduced, which in turn increases efficiency and scalability.

iii

To my parents

and Akina

iv

“When we see persons of worth, we should think of equaling them; when we see

persons of a contrary character, we should turn inwards and examine ourselves.”

— Confucius

v

Acknowledgments

I owe deep debt of gratitude to my senior supervisor, Dr. Ke Wang, for his skillful

guidance, enthusiasm and valuable criticism of my work over the last year, not to men-

tion his vast amount of knowledge. I am very thankful to my supervisor, Dr. Martin

Ester, for his insightful advice and continuous encouragement during my research.

My gratitude also goes to Dr. Oliver Schulte, for his patiently reading through my

thesis, and providing valuable feedback that has served to improve this thesis. This

thesis would not have been possible without their strongest support to me.

I would like to express my sincere thanks to my fellow graduate students Leo Chen

and Linda Wu whom I had extensive discussions with in the initial phase of this work.

Thanks full of mercy and affection go to my parents who supported me morally

all along my education. Thanks of a special kind to my fiancee, Akina Lo, for her

understanding and never ending encouragement during my research in data mining.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Data Mining and Association Mining 1

1.2 Cluster Analysis . 4

1.3 What is hierarchical document clustering? 7

1.4 Motivation . 8

1.5 Frequent Itemset-based Hierarchical Clustering 9

1.6 Thesis Organization . 10

2 Related Work 11

2.1 Hierarchical Methods . 13

2.1.1 Agglomerative and Divisive Hierarchical Clustering 13

vii

2.1.2 Evaluation of Hierarchical Methods 14

2.2 Partitioning Methods . 15

2.2.1 The k-means algorithm and its variants 15

2.2.2 Evaluation of Partitioning Methods 16

2.3 Frequent Itemset-based Methods . 17

2.3.1 The Apriori Algorithm . 17

2.3.2 The Frequent Pattern-growth Algorithm 18

2.3.3 Transaction Clustering . 19

2.3.4 Hierarchical Frequent Term-based Clustering 19

2.4 Other Clustering Methods . 20

2.4.1 Density-based Methods . 20

2.4.2 Grid-based Methods . 20

3 Constructing Clusters 23

3.1 Constructing Initial Clusters . 26

3.2 Making Clusters Disjoint . 27

4 Building the Cluster Tree 32

4.1 Tree Construction . 32

4.2 Tree Pruning . 35

4.2.1 Child Pruning . 36

4.2.2 Sibling Merging . 38

5 Experimental Evaluation 41

5.1 Data Sets . 41

5.2 Evaluation Method: F-measure . 43

5.3 Experimental Results . 44

5.3.1 Accuracy . 44

5.3.2 Sensitivity to Parameters . 47

5.3.3 Efficiency and Scalability . 48

viii

6 Discussions and Conclusions 52

6.1 Browsing . 52

6.2 Complexity Analysis . 53

6.3 Contributions . 54

6.4 Future Work . 56

Bibliography 59

ix

List of Tables

1.1 Transaction database T . 3

1.2 Frequent itemsets of T . 3

3.1 Document set . 25

3.2 Global frequent itemsets . 25

3.3 Initial clusters . 27

3.4 Disjoint clusters . 30

4.1 Inter-cluster similarity calculation . 40

5.1 Summary descriptions of data sets . 42

5.2 F-measure comparison . 45

5.3 Comparison on class/cluster frequent items 46

x

List of Figures

1.1 Balls with marks in random order . 5

1.2 Balls in groups . 5

2.1 Agglomerative hierarchical clustering algorithm 14

2.2 Basic k-means algorithm . 15

2.3 Bisecting k-means algorithm . 16

2.4 A hierarchical structure for STING clustering 21

4.1 Tree construction algorithm . 33

4.2 Cluster tree built from table 3.4 . 34

4.3 Child pruning algorithm . 36

4.4 Cluster tree after child pruning . 37

4.5 Sibling merging algorithm . 39

4.6 Sibling merged tree . 40

4.7 Cluster tree after child pruning and sibling merging 40

5.1 Sensitivity to MinSup without pre-specifying # of clusters 47

5.2 Comparison on efficiency . 49

5.3 Comparison on efficiency with scale-up document set 50

5.4 Scalability of FIHC . 51

6.1 Cluster labels . 58

xi

Chapter 1

Introduction

Everyday a vast amount of documents, reports, e-mails, and web pages are generated

from different sources, such as enterprises, governments, organizations, and individu-

als. This kind of unstructured data is usually not stored on relational or transaction

database systems, but on web servers, file servers, or even personal workstations.

Large enterprises often spend lots of manpower on organizing these documents into a

logical structure for later use. They pursue a systematic and automatic approach in

organizing these documents without human intervention or preparation work. This

thesis takes on the challenge of developing an accurate, efficient, and scalable method

for clustering documents into a hierarchical structure that facilitates browsing.

Cluster analysis is one of the major topics in data mining. We start this chapter

by describing data mining in brief.

1.1 Data Mining and Association Mining

The nature of database technology and automated data collection tools leads to

tremendous amounts of data stored in databases, data warehouses, and other in-

formation repositories. These large amounts of data are worthless unless they become

knowledge - not to mention analyzing them is a trivial task either. This problem is

called data explosion meaning rich in data, but starved in knowledge.

1

CHAPTER 1. INTRODUCTION 2

Data mining, also known as Knowledge Discovery in Databases (KDD), is a so-

lution of data explosion. Simply stated, data mining is a method of extracting in-

teresting knowledge, such as rules, patterns, regularities, or constraints, from data in

large databases. The extracted knowledge should be non-trivial, previously unknown,

implicit, and potentially useful in that it may serve as an important input for making

decisions.

The key functionalities of data mining are association mining, classification and

prediction, and cluster analysis. We often apply these techniques to different types

of data to solve different problems. Some applications of data mining are target mar-

keting, customer relation management, market basket analysis, cross selling, market

segmentation, forecasting, quality control, fraud detection, and intelligent query an-

swering.

A major breakthrough of this thesis is that we utilize an important notion, fre-

quent itemset, in association mining to cluster text documents. Thus, let us briefly

explain association mining.

Association mining [6, 7] searches for interesting frequent patterns, associations,

correlations, or causal relationships among sets of items or objects in transactional

databases, relational databases, and other information repositories. Market basket

analysis is a typical example of association mining on transaction data. It analyzes

customer buying habits by finding associations among the different items that are

purchased together. The manager of a supermarket may make use of this knowledge

to increase the sales of the associated items. The output of association mining is

usually a rule form, i.e., A ⇒ B. For example,

Laptop ⇒ Modem [support = 5%, confidence = 80%]

Support and confidence are two measures of rule interestingness. The above asso-

ciation rule means that 5% of all transactions under analysis show that laptop and

CHAPTER 1. INTRODUCTION 3

Transaction ID Items Bought
100 A, B, C
200 A, C
300 A, D
400 B, E, F

Table 1.1: Transaction database T

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A, C} 50%

Table 1.2: Frequent itemsets of T
(minimum support = 50%)

modem are purchased together, and 80% of the customers who purchase a laptop also

buy a modem. Association rule mining has two steps:

1. Compute all frequent itemsets, where frequent itemsets are a set of items that

occur together at least as frequently as a pre-determined minimum support

count, i.e., a minimum fraction of transactions contains these itemsets. We will

use Example 1a to illustrate this concept.

2. Generate strong association rules from the frequent itemsets, where these rules

are association rules that satisfy minimum support and minimum confidence.

This step is easy to compute, but it is only useful for association rule mining

and is not applicable to this thesis.

Before presenting an example to explain the notion of frequent itemset, we first

give some formal definitions. A set of items is referred to as an itemset. An itemset

containing k items is called k-itemset. The support of an itemset refers to the per-

centage of transactions containing the itemset. If an itemset satisfies a user-specified

minimum support, then it is a frequent itemset.

CHAPTER 1. INTRODUCTION 4

Example 1a: Table 1.1 shows a small transaction database T of a supermarket

that contains only four transactions with the corresponding items bought. Suppose

the minimum support is set to 50%; that is, an itemset i is frequent only if at least

two out of the four transactions contain itemset i. Table 1.2 presents all the frequent

itemsets of T . For example, the 1-itemset {A} is frequent because it appears in three

transactions and its support is 75%. Similarly, both itemsets {B} and {C} have sup-

port 50%, so they are frequent 1-itemsets. {A, C} is a frequent 2-itemset because both

items A and C appear together in two transactions, so it has support 50%. However,

{A, B} is not a frequent itemset because both items A and B appear together in only

one transaction.

Many algorithms [25] were proposed for computing frequent itemsets, and the

most well-known methods are the Apriori [5, 6] and the FP-growth [24] algorithms.

More details of both algorithms are presented in sections 2.3.1 and 2.3.2 respectively.

1.2 Cluster Analysis

Cluster analysis is an important human activity and it often forms the basis of learning

and knowledge. An example can be found from a child who learns how to distinguish

between animals and plants, or between birds and fishes, by continuously improving

subconscious clustering schemes. Basically, the scheme is learnt by observing the

properties or characteristics (e.g., the presence of wings) of objects. This type of

binary property is easy to measure, but some properties may be more difficult to

measure. An example would be ones that are expressed in a numerical value, e.g., the

height of a person.

Example 1b: This example demonstrates the clustering of balls of the same mark.

Figure 1.1 shows a total of ten balls which are of three different marks. We are inter-

ested in grouping the balls into three clusters by their marks as shown in figure 1.2.

Clustering is applicable to a wide variety of research problems. In the field of

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Balls with marks in random order

Figure 1.2: Balls in groups

business, clustering can help marketers discover distinct groups in their customer

bases and characterize customer groups based on purchasing patterns. In the field

of medicine, clustering diseases, symptoms of diseases, and cures for diseases often

leads to useful taxonomies. In the field of biology, it can be used to categorize genes

with similar functionality and derive plant and animal taxonomies. In the field of

psychiatry, successful therapy always depends on the correct diagnosis of clusters of

symptoms such as paranoia, schizophrenia, etc. In archeology, researchers often apply

cluster analytic techniques to establish taxonomies of stone tools, funeral objects, etc.

In general, cluster analysis often provides a feasible solution whenever one needs to

classify a large amount of information into manageable meaningful structures.

Clustering is a process of partitioning a set of data objects into a set of meaningful

subclasses, called clusters. Formally, given a collection of n objects each of which is

described by a set of p attributes, clustering aims to derive a useful division of the

n objects into a number of clusters. A cluster is a collection of data objects that

are similar to one another based on their attribute values, and thus can be treated

collectively as one group. Clustering is useful in getting insight into the distribution

of a data set.

CHAPTER 1. INTRODUCTION 6

A clustering algorithm attempts to find natural groups of data based on similar-

ity of attributes. The following are some typical requirements of clustering in data

mining [23].

• Scalability. Many clustering algorithms work fine on small data sets; however,

some of them fail to handle large data set containing over ten thousands of data

objects. An immediate solution to this problem is to perform clustering on a

subset (or sample) of a given large data set, but it may lead to biased results.

• High dimensionality. A database can contain several dimensions or attributes.

Most of the clustering algorithms work well on low-dimensional data, but may

fail to cluster data objects in high-dimensional space, especially when the data

objects are very sparse and highly skewed. In high dimensional data sets, nat-

ural clusters usually do not exist in the full dimensional space, but only in the

subspace formed by a set of correlated dimensions. Locating clusters in the

subspace can be challenging. One typical example is document clustering which

is also the focus of this thesis. Many clustering algorithms simply construct a

new dimension for each distinct word in the document set. Due to the large

corpus in English, the space usually contains over ten thousands of dimensions,

which greatly reduces the performance of the algorithm. This problem is also

closely related to the issues of scalability and efficiency.

• Arbitrary shape of clusters. Many algorithms perform clustering based on Eu-

clidean or Manhattan distance measure. Algorithms using this kind of distance

measurement always tend to find spherical clusters with similar density and size.

This limitation often degrades the accuracy.

• Insensitivity to the order of input data. Some clustering algorithms are very

sensitive to the order of input data. The clustering solutions produced from

the same set of data objects may be completely different depending on different

orderings of input data. In other words, the quality of clustering solutions may

vary substantially and become unpredictable.

CHAPTER 1. INTRODUCTION 7

• Noisy data handling. Outliers or erroneous data is a common problem in

database. A robust clustering algorithm should minimize the impact of this

noise; otherwise, it may lead to poor clustering accuracy.

• Prior domain knowledge. Many clustering algorithms require the user to specify

some input parameters. To determine reasonable values of these input param-

eters, some prior domain knowledge is often needed. However, they are hard

to estimate in some cases, especially for data sets containing high-dimensional

objects. Clustering accuracy may degrade drastically if a clustering algorithm

is too sensitive to these input parameters. This not only burdens users, but also

makes the quality of clustering difficult to control.

We will use these requirements to evaluate our clustering method in the conclusion

of this thesis. The major categories of clustering algorithms are discussed in Chapter 2.

1.3 What is hierarchical document clustering?

Document clustering is the automatic organization of documents into clusters or

groups so that documents within a cluster have high similarity in comparison to one

another, but are very dissimilar to documents in other clusters. In other words, the

grouping is based on the principle of maximizing intra-cluster similarity and minimiz-

ing inter-cluster similarity. The major challenge of clustering is to efficiently identify

meaningful groups that are concisely annotated.

Document clustering differs from other techniques, such as classification [1, 10, 48]

or taxonomy building, in that it is fully automated: there is no human intervention

at any point in the whole process and no labeled documents are provided. Thus, clus-

tering is also called unsupervised learning because we learn by “observation” rather

than by “examples”.

The accuracy of the clustering solution is measured by an external evaluation

method F-measure together with a set of manually pre-classified documents which is

CHAPTER 1. INTRODUCTION 8

also known as the set of natural classes. F-measure first identifies the cluster that can

best represent a given natural class in the document set, then it measures the accuracy

of the best cluster against the natural class. Finally, it calculates the weighted aver-

age on the accuracy of each natural class. Section 5.2 will explain F-measure in details.

Instead of producing a flat list of clusters, hierarchical document clustering orga-

nizes clusters into a hierarchy or a tree that facilitates browsing. The parent-child

relationship among the nodes in the tree can be viewed as topics and subtopics in a

subject hierarchy.

1.4 Motivation

Document clustering has been studied intensively because of its wide applicability in

areas such as web mining [30, 22], information retrieval [45], and topological analy-

sis. Another catalyst for developing an effective document clustering algorithm is the

huge amount of unstructured data on the Internet. The majority of this information

is in text format, for example, emails, news, web pages, reports, etc. Organizing them

into a logical structure is a challenging task. More recently, clustering is employed

for browsing a collection of documents [14] or organizing the query results returned

by a search engine [51]. It may also serve as a preprocessing step for other data min-

ing algorithms such as document classification [19]. An ambitious goal of document

clustering is to automatically generate hierarchical clusters of documents [29] that is

similar to the Yahoo! subject hierarchy.

Although standard clustering techniques such as k-means [16, 28] can be applied

to document clustering, they usually do not satisfy the special requirements for clus-

tering documents: high dimensionality, high volume of data, ease for browsing, and

meaningful cluster labels. In addition, many existing document clustering algorithms

require the user to specify the number of clusters as an input parameter. Incorrect

estimation of the value always leads to poor clustering accuracy. Furthermore, many

clustering algorithms are not robust enough to handle different types of document

CHAPTER 1. INTRODUCTION 9

sets in a real-world environment. In some document sets, cluster sizes may vary from

few to thousands of documents. This variation tremendously reduces the resulting

clustering accuracy for some of the state-of-the art algorithms.

The concept of hierarchical clustering and the weaknesses of the standard cluster-

ing methods formulate the goal of this research: Provide an accurate, efficient, and

scalable clustering method that addresses the special challenges of document cluster-

ing. The resulting hierarchy of clusters should facilitate browsing and be suitable for

further processing by other data mining algorithms.

1.5 Frequent Itemset-based Hierarchical Cluster-

ing

In this thesis, we propose a novel approach, Frequent Itemset-based Hierarchical Clus-

tering (FIHC), for document clustering based on the idea of frequent itemsets, which

comes from association rule mining. The intuition of our clustering criterion is that

there exists some frequent itemsets (sets of common words) for each cluster (topic) in

the document set. In other words, some minimum fraction of documents in the cluster

contains these itemsets. Since each cluster has different frequent itemsets, they can

be used to cluster documents. The major features of our approach are as follows:

• Reduced dimensionality. As we are using only frequent itemsets, the dimension

of a document vector, which keeps track of the frequency of the words appearing

in a document, is drastically reduced. This is a key factor for the efficiency and

scalability of FIHC.

• Consistently high clustering accuracy. Experimental results show that FIHC

outperforms the well-known clustering algorithms in terms of accuracy. It is

robust and consistent even when it is applied to large and complicated document

sets.

CHAPTER 1. INTRODUCTION 10

• Number of clusters as an optional input parameter. Many existing clustering

algorithms require the user to specify the desired number of clusters as an input

parameter. FIHC treats it only as an optional input parameter. Close to optimal

clustering quality can be achieved even when this value is unknown.

• A sensible pruning strategy. Building the hierarchical topic tree from frequent

itemsets provides a concrete foundation for pruning in case there are too many

clusters. Pruning does not only remove overly specific clusters, but also increases

the clustering accuracy by merging similar clusters together.

• Easy to browse with meaningful cluster labels. Another feature of the topic tree

is its logical structure for browsing. Each cluster in the tree has a corresponding

frequent itemset as its cluster label which a user may utilize for browsing.

• Efficient and scalable. It is very common that a real world document set may

contain a few hundred thousand of documents. Clustering on this high volume

of data is a challenging task. Our method can complete the clustering process

within two minutes while some of the traditional clustering algorithms cannot

even produce a clustering solution after hours of operation. Experiments show

that our method is significantly more efficient and scalable than all of the tested

competitors.

1.6 Thesis Organization

The outline of this thesis is as follows. Chapter 2 briefly discusses few essential topics

in document clustering and some well-known clustering algorithms. Chapters 3 and 4

present our algorithm in two stages, cluster construction and tree building, with a

running example. Chapter 5 shows the experimental results and the comparison with

other algorithms. We conclude the paper and outline future directions of research in

Chapter 6.

Chapter 2

Related Work

We first briefly review a few essential topics to provide some background knowledge

in document clustering. Some topics originate in the field of information retrieval

[45, 31].

Most document clustering algorithms employ several preprocessing steps including

removing stop words and stemming on the document set. Stop words are the most

common words (e.g., “and”, “or”, “in”) in a language, but they do not convey any

significant information so they are stripped from the document set. Word stemming

is language-specific algorithm that aims to reduce a word to its canonical form. For

example, “computation” might be stemmed to “comput”. For clustering purposes, it

usually does not make any difference whether the stems generated are genuine words

or not. Stemming does not only conflate different variants of a term to a single repre-

sentative form, but also reduces the number of distinct terms needed for representing

a set of documents. A smaller number of distinct terms results in a saving of memory

space and processing time.

Each document is represented by a vector of frequencies of remaining items within

the document. These document vectors form the vector model on which all of the

operations for clustering are performed. There are typically several thousands to ten

thousands of remaining items after stop words removal and stemming. In other words,

11

CHAPTER 2. RELATED WORK 12

the vector space still has a very high dimensionality [39].

As an extra preprocessing step, many document clustering algorithms would re-

place the actual term frequency of an item by the weighted frequency, i.e., term

frequency - inverse document frequency (TF-IDF), in the document vector. The idea

is that if an item is too common across different documents, then it would have little

discriminating power, and vice versa [45]. Experiments show that TF-IDF increases

the clustering accuracy in all tested algorithms. The weighted frequency of term k in

document i is defined as follows:

Wik = fik ∗ (log2 N − log2 dk + 1) (2.1)

where N is the number of documents, dk is the number of documents containing term

k, fik is the absolute frequency of term k in document i, and Wik is the weighted

frequency of term k in document i.

Similar to other document clustering algorithms, our method also employs stop

words removal, stemming, vector model, and TF-IDF. The effect of TF-IDF on our

algorithm is explained in Chapter 3.

To cluster similar documents together, most of the traditional clustering algo-

rithms require a similarity measure between two documents d1 and d2. Many possible

measures are proposed in the literature, but the most common one is the cosine mea-

sure [42] and it is defined below:

similarity(d1, d2) = cosine(d1, d2) =
(d1 • d2)

‖ d1 ‖ · ‖ d2 ‖ (2.2)

where • represents the vector dot product and ‖ ‖ represents the length of a vector.

In sections 2.1 and 2.2, we provide an overview of two major categories of document

clustering, hierarchical and partitioning methods. These traditional methods do not

address the special problem of high dimensionality in document clustering, but some

recently proposed frequent itemsets-based clustering methods do. We briefly explain

CHAPTER 2. RELATED WORK 13

them in section 2.3 and examine the difference between these algorithms and ours.

Some other clustering methods that are not commonly used for clustering documents

are presented in section 2.4 for completeness.

2.1 Hierarchical Methods

A hierarchical method works by grouping data objects (documents) into a tree of

clusters. A hierarchical method can be further classified into agglomerative or divisive

approach [16, 28].

2.1.1 Agglomerative and Divisive Hierarchical Clustering

The agglomerative approach builds the hierarchy from bottom-up. It starts with

the data objects as individual clusters and successively merges the most similar pair

of clusters until all the clusters are merged into one cluster which is the topmost

level of the hierarchy. Algorithms in this family follow a similar template as shown

in figure 2.1. Note that the similarity between two objects or two clusters can be

measured using different methods such as the cosine measure in equation 2.2.

The inter-cluster similarity in step 3 of the algorithm can be computed in different

ways [28]. In single-link clustering, we consider the similarity between one cluster and

another cluster to be equal to the greatest similarity from any member of one clus-

ter to any member of the other cluster. In complete-link clustering, we consider the

similarity between one cluster and another cluster to be equal to the least similarity

from any member of one cluster to any member of the other cluster. In average-

link clustering, we consider the similarity between one cluster and another cluster to

be equal to the average similarity from any member of one cluster to any member

of the other cluster. Different agglomerative algorithms employ different similarity

measuring schemes. A recent comparison [42] shows that the average-link clustering,

UPGMA [16, 28], is the most accurate one in its category.

CHAPTER 2. RELATED WORK 14

1. Compute the similarity between all pairs of clusters and store the result in a
similarity matrix whose ijth entry denotes the similarity between the ith and
the jth clusters.

2. Select the most similar pair of clusters and merge them into a single cluster,
i.e., the total number of clusters is reduced by 1.

3. Compute similarities between the new cluster and each of the old clusters

4. Repeat steps 2 and 3 until a single cluster remains.

Figure 2.1: Agglomerative hierarchical clustering algorithm

The divisive approach builds the hierarchy from top-down. It starts with all the

data objects in the same cluster and iteratively split a cluster into smaller pieces, until

only singleton clusters of individual data objects remain or the distance between the

two closest clusters is above a certain threshold.

2.1.2 Evaluation of Hierarchical Methods

A traditional hierarchical clustering method constructs the hierarchy by subdividing

a parent cluster or merging similar children clusters. It usually suffers from its inabil-

ity to perform adjustment once a merge or split decision has been performed. This

inflexibility may lower the clustering accuracy. Furthermore, due to the fact that a

parent cluster in the hierarchy always contains all objects of its descendants, this kind

of hierarchy is not suitable for browsing. The user may have difficulty to locate her

target object in such a large cluster.

Our hierarchical clustering method is completely different. We first form all the

clusters by assigning documents to the most similar cluster and then construct the

hierarchy based on their inter-cluster similarities. The clusters in the resulting hier-

archy are non-overlapping. The parent cluster contains only the general documents

CHAPTER 2. RELATED WORK 15

1. Randomly select k data objects as the initial centroids.

2. Assign all data objects to the closest (the most similar) centroid.

3. Recompute the centroid of each cluster.

4. Repeat steps 2 and 3 until the centroids do not change.

Figure 2.2: Basic k-means algorithm

of the topic. If a document belongs to a more specific topic, then it is assigned to a

descendant cluster of the parent. This hierarchy is similar to the human-generated

Yahoo! subject hierarchy and is more suitable for browsing.

2.2 Partitioning Methods

To construct k clusters, a partitioning method creates all k clusters at once and

then iteratively improves the partitioning by moving data objects from one group to

another. K-means and its variants [14, 28, 33] are the most well-known partitioning

methods.

2.2.1 The k-means algorithm and its variants

The basic k-means algorithm partitions a set of data objects into k clusters so that the

inter-cluster similarity is low but the intra-cluster similarity is high. The algorithm

is shown in figure 2.2.

There are many variants of the k-means method. They may be different in the

selection of the initial k centroids, the calculation of dissimilarity, and the methods for

calculating cluster means. In document clustering, [42] demonstrates that one of the

CHAPTER 2. RELATED WORK 16

1. Select a cluster to split. There are several ways to pick which cluster to split, but
experiment shows that there is no significant difference in terms of clustering
accuracy. Usually, either the largest cluster or the one with the least overall
similarity is chosen at this step.

2. Employ the basic k-means algorithm to subdivide the chosen cluster.

3. Repeat step 2 for a constant number of times. Then perform the split that
produces the clustering with the highest overall similarity.

4. Repeat the above three steps until the desired number of clusters is reached.

Figure 2.3: Bisecting k-means algorithm

variants, bisecting k-means, outperforms the basic k-means as well as the agglomer-

ative approach in terms of accuracy and efficiency. The bisecting k-means algorithm

is illustrated in figure 2.3. Strictly speaking, the bisecting k-means algorithm is a

divisive hierarchical clustering method.

2.2.2 Evaluation of Partitioning Methods

Both the basic and bisecting k-means algorithms are relatively efficient and scalable.

The complexity of both algorithms is linear in the number of documents. In addition,

they are so easy to implement that they are widely used in different clustering appli-

cations.

A major disadvantage of k-means is that it requires the user to specify k, the

number of clusters, in advance which may be impossible to estimate in some cases.

Incorrect estimation of k may lead to poor clustering accuracy. Also, it is not suitable

for discovering clusters of very different size which is very common in document clus-

tering. Moreover, the k-means algorithm is sensitive to noise and outlier data objects

as they may substantially influence the mean value, which in turn lower the clustering

CHAPTER 2. RELATED WORK 17

accuracy. The k-medoids algorithm [28] is proposed to resolve this problem. Instead

of using the mean value as a reference point for clustering, the medoid, which is the

most centrally located object in a cluster, can be used. The k-medoids algorithm is

more robust than k-means, but it is less efficient than k-means.

A partitioning method aims for flat clustering, but the repeated application of

the same method can also provide a hierarchical clustering. Similarly, a hierarchical

method can be used to generate a flat partition of k clusters.

2.3 Frequent Itemset-based Methods

Both hierarchical and partitioning methods do not really address the problem of high

dimensionality in document clustering. Frequent itemset-based clustering method is

shown to be a promising approach for high dimensionality clustering in recent liter-

ature [9]. It reduces the dimension of a vector space by using only frequent itemsets

for clustering.

Frequent itemset extraction is a preliminary step for the clustering methods, in-

cluding ours, in this category. Therefore, we first briefly mention two well-known

methods, Apriori [5, 6] and FP-growth [24], for this purpose. Details of the algo-

rithms can be found in the referenced papers.

2.3.1 The Apriori Algorithm

The Aprori algorithm [5, 6] is a well-known method for computing frequent itemsets

in a transaction database. Corresponding with the concept of transaction data, we

treat documents as transactions, and words in documents as items in transactions.

The Apriori algorithm uses a level-wise search, where k-itemsets are used to explore

(k + 1)-itemsets, to mine frequent itemsets from the database. The generate-and-test

approach of the algorithm works well in terms of reducing the candidate set. How-

ever, a huge number of candidate itemsets may be generated. Suppose there are m

CHAPTER 2. RELATED WORK 18

frequent 1-itemsets. Then m(m−1)
2

candidate 2-itemsets are generated. In addition,

the algorithm requires multiple scans of the entire database to check for frequent

itemsets. More specifically, it requires (n + 1) scans, where n is the size of the largest

frequent k-itemset. These bottlenecks may greatly affect the overall efficiency of fre-

quent itemset-based clustering methods. Many variations of the Apriori and frequent

itemset extraction algorithm have been proposed [25, 23, 2, 3] to address these weak-

nesses. Some examples are hash-based technique, transaction reduction, partitioning,

sampling, and dynamic itemset counting.

2.3.2 The Frequent Pattern-growth Algorithm

To avoid generating a huge set of candidate itemsets as in the Apriori algorithm, [24]

presents an efficient frequent itemset extraction algorithm, Frequent-pattern growth

(FP-growth). This algorithm adopts a divide-and-conquer approach to minimize the

candidate generation process to only those most likely to be frequent, and employs a

compact prefix-tree data structure, frequent-pattern tree (FP-tree), to avoid repetitive

scanning of the database.

The FP-growth algorithm performs exactly two scans of the transaction database

and mines on the compact data structure, FP-tree, to find all frequent itemsets with-

out generating all possible candidate sets. [24] shows that FP-growth is about an

order of magnitude faster than Apriori in large databases. This gap grows wider

when the minimum support threshold reduces. Although the FP-growth algorithm is

efficient, sometimes, it is infeasible to construct a main memory-based FP-tree when

the database is large, which is very common for the case of document clustering. To

create a scalable version of FP-growth, we can first partition the database into a set

of projected databases, and then construct an FP-tree and mine it in each projected

database [23].

CHAPTER 2. RELATED WORK 19

2.3.3 Transaction Clustering

[47] introduces a new criterion for clustering transactions using frequent itemsets. The

intuition of the criterion is that there should be many frequent items within a cluster

and little overlapping of such items across clusters.

In principle, this method can also be applied to document clustering by treating

a document as a transaction; however, the method does not create a hierarchy for

browsing. The repeated application of the same clustering method on each level of

clusters can provide a hierarchy, but the resulting hierarchy, similar to the traditional

hierarchical methods, suffers from the problem that the parent cluster contains too

many documents. As a result, it is not suitable for browsing.

2.3.4 Hierarchical Frequent Term-based Clustering

The recently developed algorithm Hierarchical Frequent Term-based Clustering (HFTC)

[9] attempts to address the special requirements in document clustering using the no-

tion of frequent itemsets. HFTC suggests that this frequent term-based approach is

efficient and the resulting hierarchy is natural for browsing. Although both HFTC

and our algorithm are frequent itemsets-based hierarchical clustering algorithms, they

are completely different in terms of their clustering criterion, their strategy for iden-

tifying clusters, and their hierarchical structure results. HFTC greedily picks up the

next frequent itemset (representing the next cluster) to minimize the overlap of the

documents that contain both the itemset and some remaining itemsets. The clus-

tering result very much depends on the order of picking up itemsets, which in turn

depends on the greedy heuristic used. The resulting clusters are further partitioned

applying the same method to build a lattice of overlapping clusters. In our algorithm,

we do not follow a sequential order of selecting clusters. Rather, we assign documents

to the best clusters with all clusters available. Experiments show that our algorithm

produces better clusters and is more scalable.

CHAPTER 2. RELATED WORK 20

2.4 Other Clustering Methods

The clustering methods presented in this section are not commonly used or in some

cases, are not even suitable for clustering documents; however, they play important

roles in cluster analysis in data mining. We introduce the spirit behind these methods

which may initiate some ideas on document clustering for future research.

2.4.1 Density-based Methods

Density-based clustering methods are based on a simple concept: clusters are dense

regions in the data space that are separated by regions of lower object density. Their

general idea is to continue growing the given cluster as long as the density in the

neighborhood exceeds some threshold. In other words, for each data point within a

given cluster, the neighborhood of a given radius has to contain at least a minimum

number of data points. Methods in this category are good at filtering out outliers and

discovering clusters of arbitrary shapes. The well-known algorithms in this category

are DBSCAN [18] and OPTICS [8].

2.4.2 Grid-based Methods

Grid-based clustering methods quantize the space into a finite number of cells that

form a grid structure. Then all of the clustering operations are performed on this

grid structure. The computational complexity of all of the previously mentioned

clustering methods is at least linearly proportional to the number of objects. The

unique property of grid-based clustering approach is that its computational complexity

is independent of the number of data objects, but dependent only on the number of

cells in each dimension in the quantized space.

STING (STatistical INformation Grid) [49] is a typical grid-based clustering method

which divides the spatial area into rectangular cells. The algorithm constructs several

levels of such rectangular cells, and these cells form a hierarchical structure; that is,

each cell is partitioned to form a number of cells at the next lower level. Figure 2.4

CHAPTER 2. RELATED WORK 21

Figure 2.4: A hierarchical structure for STING clustering

illustrates the idea. Statistical information, such as means, maximum, and minimum

values, of each grid cell are precomputed and stored for later query processing. The

clustering quality of STING highly depends on the the granularity of the lowest level

of the grid structure. If the granularity is too coarse, then the accuracy of clustering

solution will degrade. However, if the granularity is too fine, the processing time will

increase drastically. Another limitation of STING is that it can only represent clusters

in either horizontal or vertical rectangular shape. Although this method is efficient,

its limitations substantially lower the accuracy of the clustering result.

CLIQUE (CLustering In QUEst) [4] is a hybrid clustering method that combines

the idea of both grid-based and density-based approaches. Its goal is to perform clus-

tering on high dimensional data in large databases efficiently. CLIQUE first partitions

the n-dimensional data space into non-overlapping rectangular units. It attempts to

discover the overall distribution patterns of the data set by identifying the sparse and

dense units in the space. A unit is dense if the fraction of total data points contained

in it exceeds an input model parameter. It explores the space based on a simple

CHAPTER 2. RELATED WORK 22

property of the candidate search space: If a k-dimensional unit is dense, then its pro-

jections in (k−1)-dimensional space are also dense. This heuristic greatly reduces the

search space and is the key factor of efficiency of CLIQUE; however, the simplicity of

the algorithm often degrades the accuracy of the clustering result.

Chapter 3

Constructing Clusters

The agglomerative or partitioning methods are “document-centered” in that the pair-

wise similarity between documents plays a central role in constructing a cluster. Our

method is “cluster-centered” in that we measure the “cohesiveness” of a cluster di-

rectly, using frequent itemsets. In this chapter, we first introduce some definitions

and then present the cluster construction method.

A global frequent itemset refers to a set of items (words) that appear together in

more than a user-specified fraction of the document set. A global frequent item refers

to an item that belongs to some global frequent itemset. The global support of an

itemset is the percentage of documents containing the itemset. A global frequent

itemset containing k items is called a global frequent k-itemset.

The main idea of the clustering stage is based on a simple observation: the doc-

uments under the same topic should share a set of common words. Some minimum

fraction of documents in the document set must contain these common words, and

they correspond to the notion of global frequent itemsets which form the basis of the

initial clusters. An essential property of frequent itemset is its representation of words

that commonly occur together in documents. To illustrate that this property is im-

portant for clustering, we consider two global frequent items, “apple” and “window”.

The documents that contain the word “apple” may discuss about fruits or farming.

23

CHAPTER 3. CONSTRUCTING CLUSTERS 24

The documents that contain the word “window” may discuss about renovation. How-

ever, if both words occur together in many documents, then we may identify another

topic that discusses about operating systems or computers. By precisely identifying

these hidden topics as the first step and then clustering documents based on them,

we can improve the accuracy of the clustering solution.

To generate all global frequent itemsets from a document set, we apply the Apriori

or the FP-growth algorithm on the document vectors with a user-specified minimum

global support. While mining the global frequent itemsets, we treat documents as

transactions, and words in documents as items in transactions. Then for each docu-

ment, we store the weighted frequencies only for global frequent items. We call these

frequencies the feature vector for the document. This low-dimensional feature vector

is used in place of the original high-dimensional document vector. In other words, our

vector model is formed by the feature vectors rather than by the document vectors.

The reduced dimension is equal to the number of global frequent items. As a result,

it significantly improves the efficiency and scalability of all subsequent clustering op-

erations.

Example 3a: Consider the twelve documents in table 3.1. They are selected from the

Classic [13] document set and their document names indicate their natural classes.

After applying the Apriori algorithm to the document vectors, we compute the global

frequent items: “flow”, “form”, “layer”, “patient”, “result”, and “treatment”. Thus,

each document is represented by a feature vector which is supposed to be a vector of

inverse document frequencies (IDF), as discussed in Chapter 2. For the purpose of

better understandability, however, we use simply the frequency of an item, i.e., the

number of occurrences of a word in a document, without applying TF-IDF in the

running example in this thesis. For example, the feature vector of document med.6 is

(0, 0, 0, 9, 1, 1) which represents the frequencies of the global frequent items “flow”,

“form”, “layer”, “patient”, “result”, and “treatment” in document med.6 respectively.

The twelve feature vectors in table 3.1 form the vector model for our subsequent clus-

tering operations.

CHAPTER 3. CONSTRUCTING CLUSTERS 25

Document name Feature vector
(flow, form, layer, patient, result, treatment)

1 cisi.1 (0 1 0 0 0 0)
2 cran.1 (1 1 1 0 0 0)
3 cran.2 (2 0 1 0 0 0)
4 cran.3 (2 1 2 0 3 0)
5 cran.4 (2 0 3 0 0 0)
6 cran.5 (1 0 2 0 0 0)
7 med.1 (0 0 0 8 1 2)
8 med.2 (0 1 0 4 3 1)
9 med.3 (0 0 0 3 0 2)
10 med.4 (0 0 0 6 3 3)
11 med.5 (0 1 0 4 0 0)
12 med.6 (0 0 0 9 1 1)

Table 3.1: Document set

Global frequent itemset Global support
{flow} 42%
{form} 42%
{layer} 42%
{patient} 50%
{result} 42%

{treatment} 42%
{flow, layer} 42%

{patient, treatment} 42%

Table 3.2: Global frequent itemsets
(minimum global support = 35%)

CHAPTER 3. CONSTRUCTING CLUSTERS 26

Table 3.2 specifies all the global frequent k-itemsets with their global supports.

For example, the global support of the global frequent item {patient} is 50% because

half of the documents in the set contain the item “patient”. In this example, an

itemset is frequent only if its global support is larger than or equal to 35%.

The cluster construction has two steps: constructing initial clusters and making

clusters disjoint.

3.1 Constructing Initial Clusters

An initial cluster is constructed for each global frequent itemset. All the documents

containing this itemset are included in the same cluster. Since a document usually

contains more than one global frequent itemset, the same document may appear in

multiple initial clusters, i.e., initial clusters are overlapping. The purpose of initial

clusters is to ensure the property that all the documents in a cluster contain all the

items in the global frequent itemset that defines the cluster. These items can be con-

sidered as the mandatory items for every document in the cluster. We use this global

frequent itemset as the cluster label to identify the cluster. The cluster label has two

other purposes. First, it establishes the hierarchical structure in the tree construction

stage. Second, it is presented to the user to facilitate browsing. We remove the over-

lapping of clusters in section 3.2.

Example 3b: For each global frequent itemset in table 3.2, we construct a cluster

where its cluster label is formed by the items in the corresponding global frequent item-

set. For example, the cluster label of C(patient, treatment) is {patient, treatment}.
Let us use document med.6 to illustrate how to construct the initial clusters. Doc-

ument med.6 appears in clusters C(patient, treatment), C(patient), C(result), and

C(treatment) because it contains all the global frequent itemsets of these clusters,

i.e., it contains all the cluster labels of these clusters. The initial clusters are shown

in table 3.3. The third column is explained in the next example.

CHAPTER 3. CONSTRUCTING CLUSTERS 27

Cluster Documents in cluster Cluster frequent items
& their cluster supports (CS)

C(flow) cran.1, cran.2, cran.3, {flow, CS=100%},
cran.4, cran.5 {layer, CS=100%}

C(form) cisi.1, cran.1, cran.3, {form, CS=100%}
med.2, med.5

C(layer) cran.1, cran.2, cran.3, {layer, CS=100%},
cran.4, cran.5 {flow, CS=100%}

C(patient) med.1, med.2, med.3, {patient, CS=100%},
med.4, med.5, med.6 {treatment, CS=83%}

C(result) cran.3, med.1, med.2, {result, CS=100%},
med.4, med.6 {patient, CS=80%},

{treatment, CS=80%}
C(treatment) med.1, med.2, med.3, {treatment, CS=100%},

med.4, med.6 {patient, CS=100%},
{result, CS=80%}

C(flow, layer) cran.1, cran.2, cran.3, {flow, CS=100%},
cran.4, cran.5 {layer, CS=100%}

C(patient, treatment) med.1, med.2, med.3, {patient, CS=100%},
med.4, med.6 {treatment, CS=100%},

{result, CS=80%}
Table 3.3: Initial clusters

(minimum cluster support = 70%)

3.2 Making Clusters Disjoint

Each document belongs to one or more initial clusters (all documents that do not be-

long to any initial cluster are assigned to a “null” cluster). Therefore, initial clusters

overlap. In this step, we assign a document to the “best” initial cluster so that each

document belongs to exactly one cluster. This step also guarantees that every docu-

ment in the cluster still contains the mandatory items (i.e., the items in the cluster

label).

Intuitively, an initial cluster Ci is good for a document docj if there are many

CHAPTER 3. CONSTRUCTING CLUSTERS 28

global frequent items in docj that appear in many documents in Ci. Thus, we can

consider the set of frequent items of each cluster as a reference point for the cluster,

and then use these cluster frequent items for clustering similar documents. Formally,

we say that an item x is cluster frequent in a cluster Ci if x is contained in some min-

imum fraction of documents in Ci. The cluster support of x in Ci is the percentage of

the documents in Ci that contain x. Example 3c illustrates how to compute cluster

frequent items from initial clusters.

Example 3c: The third column in table 3.3 shows the cluster frequent items and

their cluster supports for each initial cluster. For example, the cluster frequent items

of cluster C(patient, treatment) are “patient”, “treatment”, and “result”. Both “pa-

tient” and “treatment” have cluster supports 100% because all the documents in the

cluster contain these items. The cluster support of “result” is 80% because four out

of the five documents contain this item.

Equation 3.1 measures the goodness of an initial cluster Ci for a document docj.

To make clusters non-overlapping, we assign each docj to the initial cluster Ci of the

highest scorei. After this assignment, each document belongs to exactly one cluster.

Score(Ci ← docj) = [
∑
x

n(x) ∗ cluster support(x)]− [
∑

x′
n(x′) ∗ global support(x′)]

(3.1)

where x represents a global frequent item in docj and the item is also cluster frequent

in Ci, x′ represents a global frequent item in docj that is not cluster frequent in Ci,

n(x) is the weighted frequency of x in the feature vector of docj, and n(x′) is the

weighted frequency of x′ in the feature vector of docj.

The weighted frequencies n(x) and n(x′) are defined by the standard inverse doc-

ument frequency (TF-IDF) of items x and x′ respectively, as discussed in Chapter 2.

Let us explain the rationale behind the score function. The first term of the function

CHAPTER 3. CONSTRUCTING CLUSTERS 29

rewards cluster Ci if a global frequent item x in docj is cluster frequent in Ci. In order

to capture the importance (weight) of item x in different clusters, we multiply the

frequency of x in docj by its cluster support in Ci. The second term of the function

penalizes cluster Ci if a global frequent item x′ in docj is not cluster frequent in Ci.

The frequency of x′ is multiplied by its global support which can be viewed as the

importance of x′ in the entire document set or as the weight of the penalty on this

item. This part encapsulates the concept of dissimilarity into the score.

A unique property of our score function is that the local frequency, i.e., the number

of occurrences of an item in a document, is taken into account as part of the cluster-

ing criterion. This is different from other frequent itemset-based document clustering

methods [9, 47] where only the presence or the absence of an item in a document is

considered, but the local frequency, which is an important piece of information, is not

utilized. To understand why the local frequency is crucial, consider a global frequent

item “tennis” that appears twenty times in document dock and a global frequent item

“soccer” that appears only once in dock. Suppose there are two clusters: one is about

tennis, and another one is about soccer. If the frequency of an item in dock is ignored,

then both global frequent items are considered to be equally important. Nevertheless,

it is more sensible to classify dock into the “tennis” cluster, rather than the “soccer”

cluster. This important insight is encapsulated in our score function.

Example 3d: Consider table 3.3 again. To find the most suitable cluster for doc-

ument med.6, for example, we need to calculate its scores against each of its initial

cluster:

Score(C(patient) ← med.6) = 9 ∗ 1 + 1 ∗ 0.83− 1 ∗ 0.42 = 9.41

Score(C(result) ← med.6) = 10.6

Score(C(treatment) ← med.6) = 10.8

Score(C(patient, treatment) ← med.6) = 10.8

CHAPTER 3. CONSTRUCTING CLUSTERS 30

Cluster Documents in cluster Cluster frequent items
& their cluster supports (CS)

C(flow) cran.1, cran.2, cran.3, {flow, CS=100%},
cran.4, cran.5 {layer, CS=100%}

C(form) cisi.1 {form, CS=100%}
C(layer) none

C(patient) med.5 {patient, CS=100%},
{treatment, CS=83%}

C(result) none
C(treatment) {treatment, CS=100%},

{patient, CS=100%},
{result, CS=80%}

C(flow, layer) none
C(patient, treatment) med.1, med.2, med.3, {patient, CS=100%},

med.4, med.6 {treatment, CS=100%},
{result, CS=80%}

Table 3.4: Disjoint clusters

We use Score(C(patient) ← med.6) to explain the calculation. The global fre-

quent items in med.6 are “patient”, “result”, and “treatment”. Their frequencies in

the feature vector are 9, 1, and 1 respectively. “Patient” and “treatment” are cluster

frequent in cluster C(patient); hence these two items appear in the rewarding part of

the function and their frequencies are multiplied by their corresponding cluster sup-

ports 1 and 0.83 respectively. “Result” is not cluster frequent in cluster C(patient);

therefore, it appears in the penalty part and its frequency is multiplied by its global

support 0.42.

After computing the scores against each of its initial cluster, both clusters C(treatment)

and C(patient, treatment) get the same highest score. Document med.6 is assigned

to C(patient, treatment), which has a larger number of items in its cluster label, i.e.,

a cluster with a more specific topic. After assigning each document to a cluster, ta-

ble 3.4 shows the disjoint clusters. Ignore the third column at this moment.

CHAPTER 3. CONSTRUCTING CLUSTERS 31

There is an important difference between the cluster label and the set of cluster

frequent items associated with a cluster. A cluster label is a set of mandatory items

in the cluster because every document in the cluster must contain all the items in

the label. On the other hand, a cluster frequent item is required to appear in some

fraction of documents in the cluster. We shall use the cluster label as the identity of

a cluster and the set of cluster frequent items as the topic description of a cluster.

After assigning all documents to their best initial clusters, we need to recompute

the cluster frequent items for each cluster in order to reflect the updated clustering.

While re-computing the cluster frequent items of cluster Ci, we also include the doc-

uments in all of its potential descendants, whose cluster labels are the superset of

Ci’s label. The intuition is that potential descendants are likely to be subtopics of a

parent; therefore, it is sensible to include them.

Example 3e: The third column in table 3.4 reflects the updated cluster frequent

items in the non-overlapping clusters. The potential descendant of cluster C(patient)

is cluster C(patient, treatment). While recomputing the cluster frequent items of

C(patient), we would consider all the documents in both C(patient, treatment) and

C(patient). The cluster support of the item “treatment” in cluster C(patient) is 83%

because five out of the six documents contain this item.

Chapter 4

Building the Cluster Tree

The set of clusters produced by the previous stage can be viewed as a set of topics and

subtopics in the document set. In this section, a cluster (topic) tree is constructed

based on the similarity among clusters. In case a tree contains too many clusters,

two pruning methods are applied to efficiently shorten and narrow a tree by merging

similar clusters together.

4.1 Tree Construction

In this section, we explain how to construct a non-overlapping hierarchical cluster

tree. The resulting cluster tree has two objectives: to form a foundation for pruning

and to provide a logical structure for browsing. Each cluster has exactly one parent.

The topic of a parent cluster is more general than the topic of a child cluster and they

must be similar to a certain degree.

Recall that each cluster uses one global frequent k-itemset as its cluster label. Such

clusters are called k-clusters in the following. In the cluster tree, the root node, which

collects the unclustered documents and has cluster label “null”, constitutes level 0.

The 1-clusters appear in level 1 of the tree, and so forth for every level. The depth of

the tree is equal to the size of the largest global frequent k-itemsets.

32

CHAPTER 4. BUILDING THE CLUSTER TREE 33

Sort all clusters by the number of items in their cluster labels in descending order;
For each cluster Ci in the list {

// remove empty leaf node
If Ci contains no document and it has no children clusters then {

Skip this empty cluster Ci, and try cluster Ci+1;
}

// identify all potential parents
k = the number of items in Ci’s cluster label;
PotentialParents = Find all clusters containing cluster label with k− 1 items and
the cluster label is a subset of Ci’s cluster label;

// choose the most similar parent
doc(Ci) = Merge all documents in the subtree Ci into a single combined document;
Compute the scores of doc(Ci) against each PotentialParents;
Set the potential parent cluster that has the highest score to be the parent of Ci;

}

Figure 4.1: Tree construction algorithm

Figure 4.1 illustrates the tree construction algorithm. As k-clusters always appear

in a higher level than (k − 1)-clusters in a tree, we can build a tree bottom-up by

choosing a parent for each cluster starting from the highest level. Given that a cluster

label represents the mandatory items in a cluster, we can construct a natural hierar-

chy based on these labels as follows. For each k-cluster Ci, we identify all potential

parents which are (k − 1)-clusters and have the cluster label being a subset of Ci’s

cluster label. The next step is to choose the “best” parent among these potential par-

ents. The criterion for selecting the best parent is similar to choosing the best cluster

for a document in section 3.2. We first merge all the documents in the subtree of Ci

into a single conceptual document doc(Ci), and then compute the score of doc(Ci)

against each potential parent. The one which has the highest score would become

the parent of Ci. In actual implementation, the operation of merging documents into

doc(Ci) can be accomplished efficiently by adding up all the feature vectors in the

clusters. Note that all empty leaf nodes are removed during the tree construction.

CHAPTER 4. BUILDING THE CLUSTER TREE 34

Figure 4.2: Cluster tree built from table 3.4

It is possible that a small fraction of non-leaf nodes in the tree are empty clusters.

Experiments show that these empty non-leaf nodes often have many children clusters

containing many documents. This situation occurs when documents under a topic

are well categorized into subtopics. An empty node may serve as a good intermediate

node for organizing subtopics under the same category, which in turn ease browsing.

Thus, these empty non-leaf nodes should be kept. In the next pruning step, some of

them will be pruned or become non-empty.

Example 4a: Consider the clusters in table 3.4. We start to build the tree from

2-clusters (i.e., clusters with 2-itemsets as the cluster label). Cluster C(flow, layer) is

removed since it is an empty leaf node. Next, we select a parent for C(patient, treatment).

The potential parents are C(patient) and C(treatment). C(patient) gets a higher

score and becomes the parent of C(patient, treatment). Figure 4.2 depicts the result-

ing cluster tree.

CHAPTER 4. BUILDING THE CLUSTER TREE 35

4.2 Tree Pruning

A cluster tree can be broad and deep, especially when a low minimum global support

is used. Therefore, it is likely that documents of the same topic are distributed over

several small clusters, which would lead to poor clustering accuracy. The aim of tree

pruning is to merge similar clusters in order to produce a natural topic hierarchy

for browsing and to increase the clustering accuracy. Before introducing the pruning

methods, we will first define the inter-cluster similarity, which is a key notion for

merging clusters.

To measure the inter-cluster similarity between two clusters Ca and Cb, we mea-

sure the similarity of Cb to Ca, and the similarity of Ca to Cb. The idea is to treat one

cluster as a document (by combining all the documents in the cluster) and measure

its score against another cluster using our score function defined in equation 3.1. The

only difference is that the score has to be normalized to avoid the effect of varying

document sizes. Formally, the similarity of Cj to Ci is defined as:

Sim(Ci ← Cj) =
Score(Ci ← doc(Cj))∑

x n(x) +
∑

x′ n(x′)
+ 1 (4.1)

where Ci and Cj are two clusters; doc(Cj) stands for combining all the documents

in the subtree of Cj into a single document; x represents a global frequent item in

doc(Cj) that is also cluster frequent in Ci; x′ represents a global frequent item in

doc(Cj) that is not cluster frequent in Ci; n(x) is the weighted frequency of x in the

feature vector of doc(Cj); n(x′) is the weighted frequency of x′ in the feature vector

of doc(Cj).

To explain the normalization by
∑

x n(x) +
∑

x′ n(x′), notice that the global sup-

port and cluster support in the score function are always between 0 and 1. Thus,

the maximum value of the score is
∑

x n(x) and the minimum value of the score is

−∑
x′ n(x′). We can normalize the score by dividing it by

∑
x n(x) +

∑
x′ n(x′), and

the normalized score is within the range of [-1,1]. To avoid negative similarity values,

CHAPTER 4. BUILDING THE CLUSTER TREE 36

Scan the tree from bottom-up;
For each non-leaf node Ci in the tree {

Calculate the Inter Sim of Ci with each of its children including their
descendants;
Prune the child cluster if the Inter Sim is above 1;

}

Figure 4.3: Child pruning algorithm

we add the term +1. As a result, the range of the Sim function is [0,2]. We define the

inter-cluster similarity between Ca and Cb as the geometric mean of two normalized

scores Sim(Ca ← Cb) and Sim(Cb ← Ca):

Inter Sim(Ca ↔ Cb) = [Sim(Ca ← Cb) ∗ Sim(Cb ← Ca)]
1
2 (4.2)

where Ca and Cb are two clusters including their descendants; Sim(Ca ← Cb) is the

similarity of Cb against Ca; Sim(Cb ← Ca) is the similarity of Ca against Cb.

The advantage of the geometric mean is that two clusters are considered to be

similar only if both values of Sim(Ca ← Cb) and Sim(Cb ← Ca) are high. Given

that the range of Sim function is [0,2], the range of Inter Sim function is also [0,2].

Higher values imply higher similarity between two clusters. An Inter Sim value be-

low 1 implies the weight of dissimilar items has exceeded the weight of similar items.

Hence, the Inter Sim value of 1 serves as a good threshold in distinguishing whether

two clusters are similar.

We now present two pruning methods.

4.2.1 Child Pruning

The objective of child pruning is to efficiently shorten a tree by replacing child clusters

by their parent. The pruning criterion is based on the inter-cluster similarity between

CHAPTER 4. BUILDING THE CLUSTER TREE 37

Figure 4.4: Cluster tree after child pruning

a parent and its child. A child is pruned only if it is similar to its parent; therefore,

child pruning does not degrade the purity of the parent. The rationale behind this

method is that when a subtopic (e.g. tennis ball) is very similar to its parent topic

(e.g. tennis), then the subtopic is probably too specific and can be removed.

The procedure is presented in figure 4.3. It scans a tree from bottom-up. For each

non-leaf node, we calculate the Inter Sim with each of its children together with

their descendants and prune the child cluster if the Inter Sim is above 1. When a

cluster is pruned, its children become the children of their grandparent. Note that

child pruning is only applicable from level 2 down to the bottom of a tree since it

is illogical to compare clusters at level 1 with the root, which collects unclustered

documents.

Example 4b: Consider figure 4.2. To determine whether cluster C(patient, treatment)

should be pruned, the inter-cluster similarity between C(patient) and C(patient, treatment)

is calculated as follows:

CHAPTER 4. BUILDING THE CLUSTER TREE 38

Sim(C(patient) ← C(patient, treatment))

= (30 ∗ 1 + 9 ∗ 0.83− 1 ∗ 0.42− 8 ∗ 0.42) / 48 + 1 = 1.70

Sim(C(patient, treatment) ← C(patient))

= (34 ∗ 1 + 8 ∗ 0.8 + 9 ∗ 1− 2 ∗ 0.42) / 53 + 1 = 1.92

Inter Sim(C(patient) ← C(patient, treatment))

= (1.70 ∗ 1.92)
1
2 = 1.81

To calculate Sim(C(patient) ← C(patient, treatment)), we combine all the doc-

uments in cluster C(patient, treatment) by adding up their feature vectors. The

summed feature vector is (0, 1, 0, 30, 8, 9). Then we calculate the score of this com-

bined document against C(patient) and normalize the score by the sum of the frequen-

cies which is 48. Sim(C(patient, treatment) ← C(patient)) is computed using the

same method. Since the inter-cluster similarity is above 1, cluster C(parent, treatment)

is pruned. See figure 4.4.

4.2.2 Sibling Merging

Sibling merging narrows a tree by merging similar subtrees at level 1. It resolves the

problem that a natural class may split into different subtrees. It is a key factor for

yielding high clustering accuracy.

Figure 4.5 shows the sibling merging algorithm. The procedure is to calculate the

Inter Sim for each pair of clusters at level 1 of a tree. We then keep merging the clus-

ter pair that has the highest Inter Sim until the user-specified number of clusters is

reached. In case a user has not specified the desired number of clusters, the algorithm

would terminate when all cluster pairs have Inter Sim below or equal to 1. The pair-

wise comparison ensures that only similar clusters are merged. This often becomes

a scalability bottleneck in agglomerative algorithms. However, in our algorithm, the

number of non-empty clusters at level 1 is always limited by the number of global

frequent items. Thus, it does not affect the scalability of our method. Applying this

CHAPTER 4. BUILDING THE CLUSTER TREE 39

For each pair of clusters at level 1 of the tree {
Calculate the Inter Sim together with their descendants;
Store the result in a matrix;

}

Repeat {
Select the cluster pair that has the highest Inter Sim;
Merge the smaller cluster into the larger cluster with their descendants;
Update the inter–cluster similarity matrix;

} Until the user specified number of clusters are left;

Figure 4.5: Sibling merging algorithm

method to every level in the tree is too computationally expensive. The child pruning

method, however, can efficiently achieve the same goal by pruning similar children to

their parent.

Figure 4.6 demonstrates how the merge should be performed. Suppose we would

like to merge cluster C(b) into cluster C(a). All the documents of C(b) are moved

into C(a) and all children clusters of C(b) are moved under C(a).

Example 4c: Consider the tree in figure 4.4. Sibling merging computes the Inter Sim

for each pair of clusters at the level 1 as in table 4.1. If the user has not specified

the desired number of clusters, then FIHC would terminate and return the tree as in

figure 4.4. Suppose the user has specified the number of clusters to 2. Then the algo-

rithm would prune one cluster at level 1 based on the inter-cluster similarity among

clusters C(flow), C(form), and C(patient). Since C(flow) and C(form) is the pair

with the highest Inter Sim, the smaller cluster C(form) would merge with the larger

cluster C(flow). Figure 4.7 depicts the resulting tree.

CHAPTER 4. BUILDING THE CLUSTER TREE 40

Figure 4.6: Sibling merged tree
Note: a, b, c, d, e, and f are global frequent items. They form the cluster labels.

Clusterpair(Ci, Cj) Sim(Cj ← Ci) Sim(Ci ← Cj) Inter Sim(Ci ↔ Cj)
C(flow) & C(form) 0.71 0.58 0.64

C(flow) & C(patient) 0.58 0.54 0.56
C(form) & C(patient) 0.58 0.58 0.58

Table 4.1: Inter-cluster similarity calculation

Figure 4.7: Cluster tree after child pruning and sibling merging

Chapter 5

Experimental Evaluation

This section presents the experimental evaluation of our method (FIHC) and com-

pares its result with several popular document clustering algorithms, agglomerative

UPGMA [16, 28], bisecting k-means [16, 28, 42], and HFTC [9]. We make use of the

CLUTO-2.0 Clustering Toolkit [27] to generate the results of UPGMA and bisecting

k-means. For HFTC, we obtained the original Java program from the author and then

compiled the program into Windows native code to avoid the overhead of the Java

Virtual Machine. All algorithms, except HFTC, employ IDF as a preprocessing step.

HFTC applies its own preprocessing technique, term frequency variance selection. We

use the Apriori algorithm to extract global frequent itemsets in both HFTC and our

method. The produced results are then fetched into the same evaluation program to

ensure fair comparison across all algorithms.

5.1 Data Sets

Five data sets which have been widely used in document clustering research [42, 9] were

used for our evaluation. They are heterogeneous in terms of document size, cluster

size, number of classes, and document distribution. Their general characteristics are

summarized in table 5.1. The smallest of these data sets contained 1,504 documents

and the largest contained 8,649 documents. To ensure diversity in the data sets, we

obtained them from different sources. For all data sets, we applied a stop-list to

41

CHAPTER 5. EXPERIMENTAL EVALUATION 42

Data Set Number of Number of Class Size Average Number of
Documents Classes Class Size Terms

Classic4 7094 4 1033 – 3203 1774 12009
Hitech 2301 6 116 – 603 384 13170
Re0 1504 13 11 – 608 116 2886

Reuters 8649 65 1 – 3725 131 16641
Wap 1560 20 5 – 341 78 8460

Table 5.1: Summary descriptions of data sets

remove common words, and the words were stemmed using Porters suffix-stripping

algorithm [37]. Each document is pre-classified into a single topic, i.e., a natural class.

The class information is utilized in the evaluation method for measuring the accuracy

of the clustering result. During the cluster construction, the class information is

hidden from all clustering algorithms.

The Classic4 data set is combined from the four classes CACM, CISI, CRAN,

and MED abstracts [13]. It was widely used to evaluate various information retrieval

systems in the past. The Hitech data set was derived from the San Jose Mercury

newspaper articles that are distributed as part of the TREC collection [43]. It contains

documents about computers, electronics, health, medical, research, and technology.

The Wap data set was originally from the WebAce project [22]. Each document

corresponds to a web page listed in the Yahoo! subject hierarchy [50]. A recent

research [35] uses this Wap data set to represent the characteristics of web pages in a

comprehensive comparison of document clustering algorithms. Data sets Reuters and

Re0 were extracted from newspaper articles [34]. For both data sets, we only use the

articles that are uniquely assigned to exactly one topic for evaluation purpose. All of

these data sets, except Reuters, can also be obtained from [27].

CHAPTER 5. EXPERIMENTAL EVALUATION 43

5.2 Evaluation Method: F-measure

A commonly used external measurement, the F-measure [33, 42], is employed to eval-

uate the accuracy of the produced clustering solutions. It is a standard evaluation

method for both flat and hierarchical clustering structures. It produces a balanced

measure of precision and recall. We treat each cluster as if it were the result of a

query and each class as if it were the relevant set of documents for a query. The

recall, precision, and F-measure for natural class Ki and cluster Cj are calculated as

follows:

Recall(Ki, Cj) =
nij

|Ki| (5.1)

Precision(Ki, Cj) =
nij

|Cj| (5.2)

where nij is the number of members of class Ki in cluster Cj.

F (Ki, Cj) =
2 ∗Recall(Ki, Cj) ∗ Precision(Ki, Cj)

Recall(Ki, Cj) + Precision(Ki, Cj)
(5.3)

F (Ki, Cj) represents the quality of cluster Cj in describing class Ki. While com-

puting F (Ki, Cj) in a hierarchical structure, all the documents in the subtree of Cj

are considered as the documents in Cj. The overall F-measure, F (C), is the weighted

sum of the maximum F-measure of all the classes as defined below:

F (C) =
∑

Ki ∈K

|Ki|
|D| maxCj ∈ C{ F (Ki, Cj) } (5.4)

where K denotes the set of natural classes; C denotes all clusters at all levels; |Ki|
denotes the number of documents in class Ki; and |D| denotes the total number of

documents in the data set.

CHAPTER 5. EXPERIMENTAL EVALUATION 44

Taking the maximum of F (Ki, Cj) can be viewed as selecting the cluster that can

best describe a given class, and F (C) is the weighted sum of the F-measure of these

best clusters. The range of F (C) is [0,1]. A larger F (C) value indicates a higher

accuracy of clustering.

5.3 Experimental Results

We evaluated our algorithm, FIHC, and its competitors in terms of accuracy, sen-

sitivity to parameters, efficiency and scalability. Recent research in [42] shows that

UPGMA and bisecting k-means are the most accurate clustering algorithms in their

categories. We also compared FIHC with another frequent itemset-based algorithm,

HFTC [9].

5.3.1 Accuracy

Table 5.2 shows the F-measure values for all four algorithms with different user-

specified numbers of clusters. Since HFTC does not take the number of clusters as an

input parameter, we use the same minimum support, from 3% to 6%, for both HFTC

and our algorithm in each data set to ensure fair comparison.

Our algorithm, FIHC, apparently outperforms all other algorithms in terms of ac-

curacy. Although UPGMA and bisecting k-means perform slightly better than FIHC

in several cases, we argue that the exact number of clusters in a document set is usu-

ally unknown in real world clustering problem, and FIHC is robust enough to produce

consistently high quality clusters for a wide range number of clusters. This fact is

reflected by taking the average of the F-measure values over the different numbers

of clusters. Due to the pairwise similarity comparison in agglomerative algorithms,

UPGMA is not scalable for large data sets. It fails to provide a clustering solution

even after it has consumed all of the main memory. Hence, some experiment results

could not be generated for UPGMA.

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Data Set # of Overall F-measure
(# of natural classes) Clusters FIHC UPGMA Bi. k-means HFTC

Classic4 3 0.62* × 0.59 n/a
(4) 15 0.52* × 0.46 n/a

30 0.52* × 0.43 n/a
60 0.51* × 0.27 n/a

Average 0.54 × 0.44 0.61*
Hitech 3 0.45 0.33 0.54* n/a

(6) 15 0.42 0.33 0.44* n/a
30 0.41 0.47* 0.29 n/a
60 0.41* 0.40 0.21 n/a

Average 0.42* 0.38 0.37 0.37
Re0 3 0.53* 0.36 0.34 n/a
(13) 15 0.45 0.47* 0.38 n/a

30 0.43* 0.42 0.38 n/a
60 0.38* 0.34 0.28 n/a

Average 0.45* 0.40 0.34 0.43
Reuters 3 0.58* × 0.48 n/a

(65) 15 0.61* × 0.42 n/a
30 0.61* × 0.35 n/a
60 0.60* × 0.30 n/a

Average 0.60* × 0.39 0.49
Wap 3 0.40* 0.39 0.40* n/a
(20) 15 0.56 0.49 0.57* n/a

30 0.57 0.58* 0.44 n/a
60 0.55 0.59* 0.37 n/a

Average 0.52* 0.51 0.45 0.35

Table 5.2: F-measure comparison
× = not scalable to run * = best competitor

CHAPTER 5. EXPERIMENTAL EVALUATION 46

Frequent items in CRANFIELD [13]
Natural class FIHC cluster

aerodynamic, aircraft, angle, approximate, body,
angle, boundary, boundary, calculate, condition,
effect, flow, ft, distribution, effect, equation,
height, layer, maximum, experiment, flow, investigation,
measurement, number, layer, machine, method,
present, pressure, number, present, pressure,
shape, speed, system, speed, surface, theory,
stream, theory, value velocity

Table 5.3: Comparison on class/cluster frequent items

To demonstrate that the cluster labels determined by FIHC are indeed meaning-

ful, we further extend the F-measure evaluation method by using the idea of cluster

frequent items. A set of cluster frequent items is similar to a set of keywords within a

topic. We first compute a set of frequent items from a natural class, and then compute

a set of cluster frequent items from the corresponding cluster that has the highest F-

measure value. Then we compare these two sets of frequent items and calculate the

percentage of overlapped items.

We use the CRANFIELD class from the Classic [13] document set to illustrate

the idea. CRANFIELD documents are abstracts from aeronautical system papers.

Table 5.3 shows two sets of frequent items. The items in the left column are extracted

from the labeled natural class. The items in the right column are extracted from the

corresponding cluster. We observe that many items (in bold font) overlap which im-

plies the cluster can truly reflect the natural class. Another interesting observation is

that the cluster frequent items also capture some keywords that are not shown in the

natural class but are definitely reasonable to appear under this topic. For example,

the items “body”, “machine”, “surface”, and “velocity” are related to aeronautical

system. However, the algorithm also misses some important items, such as, “aerody-

namic” and “aircraft”. To qualify this, 50% of the frequent items in the CRANFIELD

CHAPTER 5. EXPERIMENTAL EVALUATION 47

Figure 5.1: Sensitivity to MinSup without pre-specifying # of clusters

class are captured by the corresponding cluster. We obtain similar capturing rates for

other three classes in Classic, as well as in other document sets.

5.3.2 Sensitivity to Parameters

Our algorithm, FIHC, allows for two input parameters: MinSup is the minimum sup-

port for global frequent itemset generation and is a mandatory input; KClusters is the

number of clusters at level 1 of the tree and is an optional input. Table 5.2 does not

only demonstrate the accuracy of the produced solutions, but also shows the sensitiv-

ity of the accuracy to KClusters. Both UPGMA and our algorithm are insensitive to

KClusters, but bisecting k-means is not. For example, in the Reuters document set,

the range of F-measure values of our algorithm is 0.58 to 0.61 for different number of

KClusters while the range of F-measure values of bisecting k-means is 0.30 to 0.48. In

other words, the accuracy of bisecting k-means highly depends on the input parame-

ter, KClusters. This is a very common weakness for traditional clustering methods.

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Figure 5.1 depicts the F-measure values of FIHC with respect to MinSup without

pre-specifying a value for KClusters. We observe that high clustering accuracy is fairly

consistent while MinSup is set between 3% and 9%. As KClusters is unspecified in

this case, the sibling merging algorithm has to decide the most appropriate number of

output clusters, but this number may vary for different MinSup. This explains why

the accuracy fluctuates within a small range of F-measure values for different MinSup.

A general guidance drawn from numerous experiments is: If a data set contains

less than 5000 documents, then MinSup should be set between 5% and 9%; otherwise,

MinSup should be set between 3% and 5%. However, we would like to emphasize that

MinSup should not be treated as a parameter for finding optimal accuracy. Instead,

it allows user to adjust the shape of the cluster tree. If the value of MinSup is small,

then the tree is broad and deep, and vice versa.

Another threshold is the minimum cluster support, which distinguishes whether

an item is cluster frequent. Experiments show that setting it to around 25% always

yields good result in different document sets, provided that there are at least several

hundreds of documents.

5.3.3 Efficiency and Scalability

The largest data set, Reuters, is chosen to exam the efficiency and scalability of our

algorithm on a Pentium III 667 MHz PC. Figure 5.2 compares the runtime of our al-

gorithm only with bisecting k-means and HFTC. UPGMA is excluded again because

it is not scalable. The MinSup of HFTC and our algorithm is set to 10% to ensure

that the accuracy of all produced clustering solutions is approximately the same. The

efficiency of HFTC is comparable with other algorithms in the first 5000 documents,

but its runtime grows rapidly while there are 6000 or more documents. Our algorithm

FIHC runs twice faster than the best competitor, bisecting k-means. We conclude

that FIHC is significantly more efficient than other algorithms.

CHAPTER 5. EXPERIMENTAL EVALUATION 49

Figure 5.2: Comparison on efficiency

Many experiments were conducted to analyze the scalability of our algorithm. To

create a larger data set for examining the scalability, we duplicated the files in Reuters

until we get 100000 documents. Figure 5.3 once again illustrates that our algorithm

runs approximately twice faster than bisecting k-means in this scaled up document set.

Figure 5.4 depicts the runtimes with respect to the number of documents for different

stages of our algorithm. The whole process was completed within two minutes while

UPGMA and HFTC could not even produce a clustering solution. It demonstrates

that FIHC is a very scalable method. The figure also shows that the Apriori and

the clustering are the most time-consuming stages in FIHC, while the runtimes of

tree building and pruning are comparatively short. The efficiency of the Apriori is

very sensitive to the input parameter MinSup. Consequently, the runtime of FIHC is

inversely related to MinSup. In other words, runtime increases as MinSup decreases.

Nevertheless, many scalable and efficient frequent itemset generation algorithms have

been proposed [24, 25]. For example, the FP-growth algorithm that we have discussed

CHAPTER 5. EXPERIMENTAL EVALUATION 50

Figure 5.3: Comparison on efficiency with scale-up document set

in Chapter 2 may be employed to further improve the efficiency of our method. In

the clustering stage, most of the time is spent on constructing initial clusters and its

runtime is linear with respect to the number of documents.

CHAPTER 5. EXPERIMENTAL EVALUATION 51

Figure 5.4: Scalability of FIHC

Chapter 6

Discussions and Conclusions

6.1 Browsing

To illustrate that our method provides meaningful cluster labels for browsing, fig-

ure 6.1 depicts part of the cluster tree. The parent topic discusses about “finance”

and its cluster label is “dollar”. It is further broken down into forty subtopics where

most of them are either directly or indirectly related to the topic of finance. For

example, the documents under the subtopics of “bank, growth” and “rate, yen” dis-

cuss about the future growth of banking sector and the interest rate of Japanese yen

respectively.

Most of the existing agglomerative and divisive hierarchical clustering methods,

e.g., bisecting k-means, generate relatively deep hierarchies. However, deep hierarchy

may not be suitable for browsing. Suppose a user makes an incorrect selection while

navigating the hierarchy. She may not notice her mistake until she browses into the

deeper portion of the hierarchy. Due to fact that the depth of the tree is controlled

by the number of clusters, this problem is unavoidable in many hierarchical methods.

Our hierarchy is relatively flat as shown in figure 6.1. Flat hierarchies reduce the

number of navigation steps which in turn decreases the chance of making mistakes.

Nevertheless, if the hierarchy is too flat, then a parent topic may contain too many

52

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 53

subtopics and it would increase the time and difficulty for the user to locate her tar-

get. Thus, a balance between the depth and the width of the tree is essential for

browsing. Given a reasonable MinSup from 3% to 9%, our cluster tree usually has

two to four levels in our experimental results. This number of levels is very close to

those of human generated subject hierarchies, e.g., Yahoo!.

Another frequent itemset-based method, HFTC, also provides a relatively flat

hierarchy and its lattice structure is suitable for browsing. Nevertheless, the resulting

hierarchy usually contains many clusters at the first level. As a result, documents

in the same natural class are likely to be distributed into different branches of the

hierarchy which decreases the overall clustering accuracy. Our sibling merging method

resolves this problem by joining similar clusters at the first level of the tree.

6.2 Complexity Analysis

Our method involves four phases: finding global frequent itemsets, initial cluster-

ing, tree construction, and pruning. The problem of finding frequent itemsets has

been studied intensively in the data mining literature. In the initial clustering phase,

the document feature vectors are scanned twice, once for constructing initial clus-

ters and once for making clusters disjoint. Since an initial cluster labeled by a

global frequent itemset f contains global support(f) documents, this step makes
∑

f∈F global support(f) document-to-cluster assignments and score calculations. This

amount of work is no more than the support counting in mining global frequent item-

sets. In the tree construction, all empty clusters with a maximal cluster label are

first removed. The remaining number of clusters is no more than, often much smaller

than, the number of documents. The tree construction is essentially linear in the

number of remaining clusters because finding a parent for a k-cluster only requires to

examine k of k − 1-clusters where k is usually small. Child pruning makes only one

scan of clusters, and sibling merging is performed only at the first level of the tree.

To summarize, the steps involved in initial clustering, tree construction and pruning

are no more expensive than mining global frequent itemsets.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 54

6.3 Contributions

Most traditional clustering methods do not satisfy the special requirements for docu-

ment clustering, such as high dimensionality, high volume, and ease of browsing with

meaningful cluster labels. This thesis has provided an innovative approach by using

frequent itemsets as the basis for different stages. Our main contributions include:

• Reduced dimensionality. We use the low-dimensional feature vector, which is

composed of global frequent items, in place of the original high-dimensional

document vector. This replacement drastically reduces the dimension of the

document vector space. Consequently, it greatly enhances the efficiency and

scalability of our method.

• Efficient and scalable. Our method requires only two scans of the document

set to cluster all the documents: one scan for constructing initial clusters and

one scan for making clusters disjoint. Our experiments on different types of

data sets suggest that our method is an extremely efficient and scalable. Its

processing time is also predictable.

• Accurate. Our method consistently outperforms the well-known clustering algo-

rithms in terms of accuracy on various types of document sets, even when the

number of clusters is unknown. This result suggests that our score function for-

mulates a sound clustering criterion and our pruning methods further improve

its accuracy.

• Robust to outliers. Outliers in document clustering usually refers to the docu-

ments that are very different from the rest of the documents in the data set.

Due to the fact that our algorithm only uses frequent items for clustering, out-

liers are basically ignored in the clustering process. Still, our score function is

capable of assigning these documents to their most suitable clusters. In case

none of the clusters is suitable for these outliers, they are assigned to the “null”

cluster and remain intact for the rest of the algorithm. Thus, the presence of

outliers does not degrade the overall accuracy of our clustering solution.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 55

• Easy for browsing. The resulting clustering solution is a cluster (topic) tree

where the nodes can be treated as topics and subtopics. User may easily navigate

different topics in the document set through the tree. Each topic has a label

which concisely summarizes the members in the cluster. Our method does

not require additional processing to generate these cluster labels. Unlike other

hierarchical methods where the parent cluster contains all the documents of

its descendants, the parent cluster in our method contains only the general

documents on the topic. Thus, our hierarchy is definitely more suitable for

browsing.

• Easy for data exchange. Given that the resulting hierarchy is a tree structure,

our output is an XML file which is the standard method of exchanging data

in nowadays software development. Other text mining tools, e.g. document

classification program, may easily utilize the tree for further processing.

• Minimal requirements for domain knowledge. Our method treats the number of

desired clusters as an optional input parameter. Although we require another

input parameter MinSup, we provide a clear guideline for on to choose a suitable

value for this parameter depending on the size of the document set. Close to

optimal accuracy can usually be obtained by following such guideline.

• Arbitrary cluster shape. Our clustering method can represent clusters in any

shape because our clustering criterion is based on our innovative score function,

instead of the traditional Euclidean or Manhattan distance measures. In other

words, the shape of the natural clusters do not affect the accuracy of our method.

• Independent on the order of input data. The order of the data does not affect

the clustering result at all. Our method always produces the same result given

the same document set.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 56

6.4 Future Work

Future study on document clustering using frequent itemsets has the following possible

avenues:

• In the current implementation of FIHC, all feature vectors are stored in the

main memory. Although the dimension of feature vectors is comparatively low,

scalability may become a problem in cases where the data set is extremely large.

A possible direction for future research is the development of a disk resident

version of FIHC, and its application to very large data sets, for example, the

Yahoo! subject hierarchy with millions of documents.

• We may want to incrementally update [12] the cluster tree when some new docu-

ments arrive, for example, a new research paper is submitted to the database or

a new web page is found by a web crawler. In the current implementation, this

task can be accomplished by assigning the new document to the most similar

cluster, but the clustering accuracy may degrade over time because the global

frequent itemsets may not necessary reflect the current state of the document

set. Thus, an incremental updating version of FIHC is necessary for this situ-

ation. Incremental clustering is related to some of the recent research in data

mining on stream data [20, 15, 26].

• Most of the current document clustering algorithms, including FIHC, consider a

document as a bag of words. While the semantic relationships among the words

may be crucial for clustering, they are not utilized. FIHC may incorporate the

Universal Networking Language [44], a recently proposed semantic representa-

tion for sentences, for feature vector generation and score computation.

• Another possible research direction is to apply FIHC in a cross-language en-

vironment using the EuroWordNet multilingual database (Gonzalo et al., In

press) [46] with wordnets for several European languages such as Dutch, Italian,

Spanish, German, French, Czech and Estonian. The wordnets are structured in

the same way as the American wordnet for English [36] in terms of synsets (sets

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 57

of synonymous words) with basic semantic relations between them.1 Suppose

we need to cluster documents that are written in different European languages.

The basic approach is to first map the words in the document set into the Amer-

ican wordnet via the EuroWordNet InterLingual Index. A vector model is then

constructed from this mapped monolingual document set.

In conclusion, the importance of document clustering will continue to grow along

with the massive volumes of unstructured data generated. We believe exploiting an

effective and efficient method in document clustering would be an essential direction

for research in text mining.

1http://www.illc.uva.nl/EuroWordNet/

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 58

Figure 6.1: Cluster labels

Bibliography

[1] C. Aggarwal, S. Gates, and P. Yu. On the merits of building categorization
systems by supervised clustering. In Proceedings of (KDD) 99, 5th (ACM) Inter-
national Conference on Knowledge Discovery and Data Mining, pages 352–356,
San Diego, US, 1999. ACM Press, New York, US.

[2] R. Agrawal, C. Aggarwal, and V. V. V. Prasad. Depth-first generation of large
itemsets for association rules. Technical Report RC21538, IBM Technical Report,
October 1999.

[3] R. Agrawal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed Computing,
61(3):350–371, 2001.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proceedings of
ACM SIGMOD International Conference on Management of Data (SIGMOD98),
pages 94–105, 1998.

[5] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD93), pages 207–216, Washington,
D.C., May 1993.

[6] R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In J. B.
Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data
Bases, VLDB, pages 487–499. Morgan Kaufmann, 12-15 1994.

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf.
Data Engineering, pages 3–14, Taipei, Taiwan, March 1995.

[8] M. Ankerst, M. Breunig, H. Kriegel, and J. Sander. Optics: Ordering points to
identify the clustering structure. In 1999 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’99), pages 49–60, Philadelphia, PA, June 1999.

59

BIBLIOGRAPHY 60

[9] F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In Proc. 8th
Int. Conf. on Knowledge Discovery and Data Mining (KDD)’2002, Edmonton,
Alberta, Canada, 2002. http://www.cs.sfu.ca/˜ ester/publications.html.

[10] H. Borko and M. Bernick. Automatic document classication. Journal of the
ACM, 10:151–162, 1963.

[11] S. Chakrabarti. Data mining for hypertext: A tutorial survey. SIGKDD Explo-
rations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery
& Data Mining, ACM, 1:1–11, 2000.

[12] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. In Proceedings of the 29th Symposium on Theory
Of Computing STOC 1997, pages 626–635, 1997.

[13] Classic. ftp://ftp.cs.cornell.edu/pub/smart/.

[14] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather:
A cluster-based approach to browsing large document collections. In Proceedings
of the Fifteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 318–329, 1992.

[15] P. Domingos and G. Hulten. Mining high-speed data streams. In Knowledge
Discovery and Data Mining, pages 71–80, 2000.

[16] R. C. Dubes and A. K. Jain. Algorithms for Clustering Data. Prentice Hall
College Div, Englewood Cliffs, NJ, March 1998.

[17] A. El-Hamdouchi and P. Willet. Comparison of hierarchic agglomerative cluster-
ing methods for document retrieval. The Computer Journal, 32(3), 1989.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
2nd int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages 226–
231, Portland, Oregon, August 1996. AAAI Press.

[19] A. Griffiths, L. A. Robinson, and P. Willett. Hierarchical agglomerative cluster-
ing methods for automatic document classification. Journal of Documentation,
40(3):175–205, September 1984.

[20] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

BIBLIOGRAPHY 61

[21] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for
categorical attributes. In Proceedings of the 15th International Conference on
Data Engineering, 1999.

[22] E. H. Han, B. Boley, M. Gini, R. Gross, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher, and J. Moore. Webace: a web agent for document categoriza-
tion and exploration. In Proceedings of the second international conference on
Autonomous agents, pages 408–415. ACM Press, 1998.

[23] J. Han and M. Kimber. Data Mining: Concepts and Techniques. Morgan-
Kaufmann, August 2000.

[24] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD’00), Dallas, Texas, USA, May 2000.

[25] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for association rule
mining - a general survey and comparison. SIGKDD Explorations, 2(1):58–64,
July 2000.

[26] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 97–106, San Francisco, CA, 2001. ACM
Press.

[27] G. Karypis. Cluto 2.0 clustering toolkit, April 2002. http://www-
users.cs.umn.edu/˜ karypis/cluto/.

[28] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, March 1990.

[29] D. Koller and M. Sahami. Hierarchically classifying documents using very few
words. In D. Fisher, editor, Proceedings of (ICML) 97, 14th International Con-
ference on Machine Learning, pages 170–178, Nashville, US, 1997. Morgan Kauf-
mann Publishers, San Francisco, US.

[30] Kosala and Blockeel. Web mining research: A survey. SIGKDD Explorations:
Newsletter of the Special Interest Group SIG on Knowledge Discovery & Data
Mining, 2, 2000.

[31] G. Kowalski and M. Maybury. Information Storage and Retrieval Systems: The-
ory and Implementation. Kluwer Academic Publishers, 2 edition, July 2000.

BIBLIOGRAPHY 62

[32] J. Lam. Multi-dimensional constrained gradient mining. Master’s thesis, Simon
Fraser University, August 2001.

[33] B. Larsen and C. Aone. Fast and effective text mining using linear-time document
clustering. KDD’99, 1999.

[34] D. D. Lewis. Reuters. http://www.research.att.com/˜ lewis/.

[35] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Knowledge Discovery and Data Mining (KDD) 98, pages 80–86, 1998.

[36] Miller. Princeton wordnet, 1990.

[37] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, July
1980.

[38] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[39] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In M. Jarke,
M. Carey, K. Dittrich, F. Lochovsky, P. Loucopoulos, and M. Jeusfeld, edi-
tors, Proceedings of 23rd International Conference on Very Large Data Bases
(VLDB97), pages 116–125, Athens, Greece, August 1997. Morgan Kaufmann.

[40] H. Schutze and H. Silverstein. Projections for efficient document clustering. In
Proceedings of SIGIR’97, pages 74–81, Philadelphia, PA, July 1997.

[41] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, 27:379–423 and 623–656, July and October 1948.

[42] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. KDD Workshop on Text Mining’00, 2000.

[43] Text REtrival Conference TIPSTER, 1999. http://trec.nist.gov/.

[44] H. Uchida, M. Zhu, and T. Della Senta. Unl: A gift for a millennium. The United
Nations University, 2000.

[45] C. J. van Rijsbergen. Information Retrieval. Dept. of Computer Science, Uni-
versity of Glasgow, Butterworth, London, 2 edition, 1979.

[46] P. Vossen. Eurowordnet, Summer 1999.

[47] K. Wang, C. Xu, and B. Liu. Clustering transactions using large items. In
CIKM’99, pages 483–490, 1999.

BIBLIOGRAPHY 63

[48] K. Wang, S. Zhou, and Y He. Hierarchical classification of real life documents.
In Proceedings of the 1st (SIAM) International Conference on Data Mining,
Chicago, US, 2001.

[49] W. Wang, J. Yang, and R. R. Muntz. Sting: A statistical information grid
approach to spatial data mining. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H.
Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB’97, Proceedings of
23rd International Conference on Very Large Data Bases, pages 186–195, Athens,
Greece, August 25-29 1997. Morgan Kaufmann.

[50] Yahoo! http://www.yahoo.com/.

[51] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp. Fast and intuitive clustering
of web documents. In KDD’97, pages 287–290, 1997.

