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Abstract—Classification is a fundamental problem in data analysis. Training a classifier requires accessing a large collection of data.

Releasing person-specific data, such as customer data or patient records, may pose a threat to an individual’s privacy. Even after

removing explicit identifying information such as Name and SSN, it is still possible to link released records back to their identities by

matching some combination of nonidentifying attributes such as fSex; Zip;Birthdateg. A useful approach to combat such linking

attacks, called k-anonymization [1], is anonymizing the linking attributes so that at least k released records match each value

combination of the linking attributes. Previous work attempted to find an optimal k-anonymization that minimizes some data distortion

metric. We argue that minimizing the distortion to the training data is not relevant to the classification goal that requires extracting the

structure of predication on the “future” data. In this paper, we propose a k-anonymization solution for classification. Our goal is to find a

k-anonymization, not necessarily optimal in the sense of minimizing data distortion, which preserves the classification structure. We

conducted intensive experiments to evaluate the impact of anonymization on the classification on future data. Experiments on real-life

data show that the quality of classification can be preserved even for highly restrictive anonymity requirements.

Index Terms—Privacy protection, anonymity, security, integrity, data mining, classification, data sharing.
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1 INTRODUCTION

DATA sharing in today’s globally networked systems
poses a threat to individual privacy and organizational

confidentiality. An example by Samarati [2] shows that
linking medication records with a voter list can uniquely
identify a person’s name and medical information. New
privacy acts and legislations are recently enforced in many
countries. In 2001, Canada launched the Personal Information
Protection and Electronic Document Act [3] to protect a wide
spectrum of information, such as age, race, income,
evaluations, and even intentions to acquire goods or
services. This information spans a considerable portion of
many databases. Government agencies and companies have
to revise their systems and practices to fully comply with
this act in three years.

Consider a table T about a patient’s information on
Birthplace, Birthyear, Sex, and Diagnosis. If a description
on fBirthplace; Birthyear; Sexg is so specific that not many
people match it, releasing the table may lead to linking a
unique record to an external record with explicit identity,
thus identifying the medical condition and compromising
the privacy rights of the individual [2]. Suppose that the
attributes Birthplace, Birthyear, Sex, and Diagnosis must
be released (say, to some health research institute for
research purposes). One way to prevent such linking is
masking the detailed information of these attributes as
follows:

1. If there is a taxonomical description for a categorical
attribute (for example, Birthplace), we can generalize
a specific value description into a less specific but
semantically consistent description. For example, we
can generalize the cities San Francisco, San Diego,
and Berkeley into the corresponding state California.

2. If there is no taxonomical description for a catego-
rical attribute, we can suppress a value description to
a “null value” denoted ?. For example, we can
suppress San Francisco and San Diego to the null
value ? while keeping Berkeley.

3. If the attribute is a continuous attribute (for example,
Birthyear), we can discretize the range of the attribute
into a small number of intervals. For example, we
can replace specific Birthyear values from 1961 to
1965 with an interval [1961-1966).

By applying such masking operations, the information on
fBirthplace; Birthyear; Sexg is made less specific, and a
person tends to match more records. For example, a male
born in San Francisco in 1962 will match all records that have
the values hCA; ½1961� 1966Þ; Mi; clearly, not all matched
records correspond to the person. Thus, the masking
operation makes it more difficult to tell whether an
individual actually has the diagnosis in the matched records.

Protecting privacy is one goal. Making the released data
useful to data analysis is another goal. In this paper, we
consider classification analysis [4]. The next example shows
that if masking is performed “carefully,” privacy can be
protected while preserving the usefulness for classification.

Example 1 (The running example). Consider the data in
Table 1 and the taxonomy trees in Fig. 1. The table has
34 records in total. Each row represents one or more
records with the Class column containing the class
frequency of the records represented, Y for “income >
50 thousand” and N for “income � 50 thousand.” For
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example, the third row represents five records having
Education ¼ 11th, Sex ¼Male, and Work Hrs ¼ 35. The
value 2Y3N in the Class column conveys that two
records have the class Y and three records have the class
N. Semantically, this (compressed) table is equivalent to
the table containing 34 rows with each row representing
one record. There is only one record for “female doctor”
(the last row), which makes the person represented
uniquely distinguishable from others by Sex and
Education. To make “female doctor” less unique, we
can generalize Masters and Doctorate to GradSchool. As
a result, “she” becomes less distinguishable by being one
of the four females with a graduate school degree. As far
as classification is concerned, no information is lost in
this generalization because Class does not depend on the
distinction of Masters and Doctorate.
In the classification problem, a classifier is built from the

training data and is used to classify the future data. It is
important that the classifier makes use of the structure that
will repeat in the future data, not the noises that occur only
in the training data. In Table 1, 19 out of 22 persons having
Work Hrs � 37 are in the class Y, and only three persons
having Work Hrs � 37 are in the class N. It is not likely that
this difference is entirely due to sampling noises. In
contrast, M and F of Sex seem to be arbitrarily associated
with both classes, suggesting that sex cannot be used to
predict his/her class.

In this paper, we consider the following k-anonymization
for classification. The data provider wants to release a
person-specific table for modeling classification of a
specified class attribute in the table. Two types of informa-
tion in the table are released. The first type is sensitive
information, such as Diagnosis. The second type is the quasi-
identifier (QID) [5], [1], which is a combination of attributes
such as fBirthplace;Birthyear; Sexg. The QID does not
identify individuals but can be used to link to a person if the
combination is unique. The data provider wants to prevent
linking the released records to an individual through the
QID. This privacy requirement is specified by the
k-anonymity [1]: If one record in the table has some value
on the QID, then at least k� 1 other records have that value.
The k-anonymization for classification is to produce a
masked table that satisfies the k-anonymity requirement
and retains useful information for classification. A formal
statement will be given in Section 2.

If classification is the goal, why does not the data
provider build and publish a classifier (instead of publish-
ing the data)? There are real-life scenarios where it is

necessary to release the data. First of all, knowing that the
data is used for classification does not imply that the data
provider knows exactly how the recipient may analyze the
data. The recipient often has application-specific bias
towards building the classifier. For example, some recipient
prefers accuracy, whereas the others prefer interpretability;
or some prefers recall, whereas the others prefer precision,
and so on. In other cases, the recipient may not know
exactly what to do before seeing the data, such as visual
data mining, where the human makes decisions based on
certain distributions of data records at each step. Publishing
the data provides the recipient a greater flexibility of data
analysis.

Our insight is as follows: Typically, the data contains
overly specific “noises” that are harmful to classification. To
construct a classifier, noises need to be generalized into
patterns that are shared by more records in the same class.
The data also contains “redundant structures.” For exam-
ple, if any of Education and Work Hrs is sufficient for
determining the class and if one of them is distorted, the
class can still be determined from the other attribute. Our
approach exploits such rooms provided by noises and
redundant structures to mask the data without compromis-
ing the quality of classification. To this end, we propose an
information metric to focus masking operations on the
noises and redundant structures. We conducted intensive
experiments to evaluate the impact of anonymization on the
classification of future data. Below are several useful
features of our approach.

. Information and privacy guided top-down refinement
(TDR). Instead of masking the most specific table
bottom-up, we refine masked values top-down
starting from the most masked table.

. Handling different types of attributes. We handle
categorical attributes with taxonomy, categorical
attributes without taxonomy, and continuous
attributes.

. Handling multiple QIDs. Compared to the single
QID that contains all the attributes, we enforce
k-anonymity on only attribute sets that can be
potentially used as a QID. This approach avoids
unnecessary distortion to the data.

. Scalable and anytime solution. Our method has a linear
time complexity in the table size. Moreover, the user
can stop the TDR any time and have a table satisfying
the anonymity requirement.
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The notion of k-anonymity was first proposed in [1]. In
general, a cost metric is used to measure the data distortion
of anonymization. Two types of cost metric have been
considered. The first type, based on the notion of minimal
generalization [2], [6], is independent of the purpose of the
data release. The second type factors in the purpose of the
data release such as classification [7]. The goal is to find the
optimal k-anonymization that minimizes this cost metric. In
general, achieving optimal k-anonymization is NP -hard [8],
[9]. Greedy methods were proposed in [10], [11], [12], [13],
[14], and [15]. Scalable algorithms (with the exponential
complexity, the worst case) for finding the optimal
k-anonymization were studied in [2], [6], [7], and [16].

Our insight is that the optimal k-anonymization is not
suitable to classification where masking structures and
masking noises have different effects: the former deems to
damage classification, whereas the latter helps classifica-
tion. It is well known in data mining and machine learning
that the unmodified data, which has the lowest possible
cost according to any cost metric, often has a worse
classification than some generalized (that is, masked) data.
In a similar spirit, less masked data could have a worse
classification than some more masked data. This observa-
tion was confirmed by our experiments. The optimal
k-anonymization seeks to minimize the error on the
training data, thus overfits the data, subject to the privacy
constraint. Neither the overfitting nor the privacy con-
straint is relevant to the classification goal that seeks to
minimize the error on future data.

Besides the standard setting, extensions of k-anonymity
were also studied. LeFevre et al. [17] proposed the notion of
multidimensional k-anonymity, where data generalization is
over multidimension-at-a-time, and LeFevre et al. [18]
extended multidimensional generalization to anonymize
data for a specific task such as classification. Xu et al. [19]
proposed some greedy methods to achieve k-anonymity
with cell generalization and showed that the cell general-
ization generally causes less information loss than the
multidimensional generalization. These masking operations
allow the coexistence of a specific value and a general value,
such as Bachelor and University in Table 1. Such masked
data will suffer from “interpretation difficulty” in the data
analysis phase. For example, the exact number of bachelors
cannot be determined when only some, say, only three out of
the 10 Bachelors are generalized to Universities. If a
classifier is built from such data, it is unclear which
classification rule, Bachelor! Y or University! N , should
be used to classify bachelor.

Machanavajjhala [20] measured anonymity by the
l-diversity that corresponds to some notion of uncertainty
of linking a QID to a particular sensitive value. Wang et al.
[21], [22] proposed to bound the confidence of inferring a
particular sensitive value using one or more privacy
templates specified by the data provider. Wong et al. [15]
proposed some generalization methods to simultaneously
achieve k-anonymity and bound the confidence. Xiao and
Tao [23] limited the breach probability, which is similar to
the notion of confidence, and allowed a flexible threshold
for each individual. k-anonymization for data owned by

multiple parties was considered in [24]. k-anonymization
for sequential releases was studied in [25].

2 PROBLEM DEFINITION

A data provider wants to release a person-specific table
T ðD1; . . . ; Dm;ClassÞ to the public for modeling the class
label Class. Each Di is either a categorical or a continuous
attribute. A record has the form hv1; . . . ; vm; clsi, where vi is
a domain value for Di and cls is a class for Class. attðvÞ
denotes the attribute of a value v. The data provider also
wants to protect against linking an individual to sensitive
information either within or outside T through some
identifying attributes, called QID. A sensitive linking occurs
if some value of the QID identifies a “small” number of
records in T . This requirement is formally defined below.

Definition 1 (Anonymity requirement). Consider p QIDs
QID1; . . . ; QIDp on T . aðqidiÞ denotes the number of data
records in T that share the value qidi on QIDi. The
anonymity of QIDi, denoted AðQIDiÞ, is the smallest
aðqidiÞ for any value qidi on QIDi. A table T satisfies the
anonymity requirement fhQID1; k1i; . . . ; hQIDp; kpig if
AðQIDiÞ � ki for 1 � i � p, where ki is the anonymity
threshold on QIDi specified by the data provider.

It is not hard to see that if QIDj is a subset of QIDi,
AðQIDiÞ � AðQIDjÞ. Therefore, if kj � ki, AðQIDiÞ � ki
implies AðQIDjÞ � kj, and hQIDj; kji can be removed in
the presence of hQIDi; kii. Following a similar argument,
to prevent a linking through any QID, that is, any
subset of attributes in QID1 [ � � � [QIDp, the single
QID requirement hQID; ki, where QID ¼ QID1 [ � � � [
QIDp and k ¼ maxfkjg, can be specified. However, a
table satisfying fhQID1; k1i; . . . ; hQIDp; kpig does not have
to satisfy hQID; ki.
Example 2. Suppose that a data provider wants to release

Table 1. To protect linking fEducation; Sexg to
sensitive information, the data provider specifies
hQID1 ¼ fEducation; Sexg; 4i. This requirement is vio-
lated by h9th;Mi, hMasters; F i, and hDoctorate; F i. To
protect linking through fSex;Work Hrsg as well, the
data provider can specify the two QIDs in Fig. 1. To
prevent linking through any combination of the
identifying attributes, the data provider can specify
QID ¼ fEducation; Sex;Work Hrsg.

Definition 1 generalizes the classic notion of k-anonymity
by allowing multiple QIDs (with possibly different thresh-
olds). Suppose that the data provider wants to release a
table T ðA;B;C;D; SÞ, where S is the sensitive attribute and
knows that the recipient has access to previously released
tables T1ðA;B;XÞ and T2ðC;D; Y Þ, where X and Y are
attributes not in T . To prevent linking the records in T to X
or Y , the data provider only has to specify the k-anonymity
on QID1 ¼ fA;Bg and QID2 ¼ fC;Dg. In this case,
enforcing the k-anonymity on QID ¼ fA;B;C;Dg will
distort the data more than what is necessary. All previous
works suffer from this problem because they handled
multiple QIDs through the single QID made up of all
attributes in the multiple QIDs.
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To transform T to satisfy the anonymity requirement, we

consider three types of masking operations on the attributes

Dj in [QIDi.

Masking Operations:

1. Generalize Dj if Dj is a categorical attribute with a

taxonomy tree. A leaf node represents a domain

value and a parent node represents a less specific

value. Fig. 2 shows a taxonomy tree for Education. A
generalized Dj can be viewed as a “cut” through its

taxonomy tree. A cut of a tree is a subset of values in

the tree, denoted Cutj, which contains exactly one

value on each root-to-leaf path. This type of general-

ization does not suffer from the interpretation

difficulty discussed in Section 1, and it was pre-

viously employed in [7], [12], [13], [14], [24], and [25].
2. Suppress Dj if Dj is a categorical attribute with no

taxonomy tree. The suppression of a value on Dj

means replacing all occurrences of the value with the
special value ?j. All suppressed values on Dj are

represented by the same ?j, which is treated as a

new value in Dj by a classification algorithm. We use

Supj to denote the set of values suppressed by ?j.
This type of suppression is at the value level in that

Supj is, in general, a subset of the values in the

attribute Dj.
3. Discretize Dj if Dj is a continuous attribute. The

discretization of a value v on Dj means replacing all
occurrences of v with an interval containing the
value. Our algorithm dynamically grows a taxon-
omy tree for intervals at runtime, where each node
represents an interval, and each nonleaf node has
two child nodes representing some “optimal” binary
split of the parent interval. More details will be
discussed in Section 3. A discretized Dj can be
represented by the set of intervals, denoted Intj,
corresponding to the leaf nodes in the dynamically
grown taxonomy tree of Dj.

Definition 2 (Anonymity for Classification). Given a table

T , an anonymity requirement fhQID1; k1i; . . . ; hQIDp; kpig
and an optional taxonomy tree for each categorical attribute

contained in [QIDi mask T on the attributes [QIDi to

satisfy the anonymity requirement while preserving the

classification structure in the data (that is, the masked table

remains useful for classifying the Class column).

The cost metric for our anonymization should be

measured by the classification error on the future data. It

does not work to replace this cost metric by the classifica-

tion error on the masked table because a perfect classifier

for the masked table (say, a classifier based on a system-

assigned record ID) can be inaccurate for the future data.

For this reason, our problem does not have a closed-form

cost metric, and an “optimal” solution to our problem is not

necessarily an optimal k-anonymization based on a closed-

form cost metric, and vice versa. Therefore, the previous

optimal k-anonymization approaches [7], [16] based on a

closed-form cost metric are not suitable. A more reasonable

approach is minimally, not always optimally, masking the

data, with focus on classification. We will present such an

approach in Section 3.
It is impractical to enumerate all masked tables

because the number of masked tables can be very large.

For a categorical attribute with a taxonomy tree Y , the

number of possible cuts, denoted CðY Þ, is equal to

CðY1Þ � . . .� CðYuÞ þ 1, where Y1; . . . ; Yu are the subtrees

rooted at the children of the root of Y , and 1 is for the

trivial cut at the root of Y . CðY Þ increases very quickly as

we unfold the definition for each subtree Yi recursively.

For a categorical attribute without a taxonomy tree and

with q distinct values, there are 2q possible suppressions

because each distinct value can be either suppressed or

not. For a continuous attribute, each existing value can be

a potential split in the dynamically grown taxonomy tree.

The number of possible masked tables is equal to the

product of such numbers for all the attributes in [QIDi.
A masked table T can be represented by

h[Cutj;[Supj;[Intji;

where Cutj, Supj, and Intj are defined as above. If

the masked T satisfies the anonymity requirement,

h[Cutj;[Supj;[Intji is called a solution set.

3 SEARCH CRITERIA

A table T can be masked by a sequence of refinements

starting from the most masked state in which each attribute

is either generalized to the topmost value, suppressed to the

special value ?, or represented by a single interval. Our

method iteratively refines a masked value selected from the

current set of cuts, suppressed values, and intervals, until

violating the anonymity requirement. Each refinement

increases the information and decreases the anonymity

since records with specific values are more distinguishable.

The key is selecting the “best” refinement at each step with

both impacts considered.

3.1 Refinement

Below, we formally describe the notion of refinement on

different types of attributes Dj 2 [QIDi and define a

selection criterion for a single refinement.

3.1.1 Refinement for Generalization

Consider a categorical attribute Dj with a user-specified

taxonomy tree. Let childðvÞ be the set of child values of v in

a user-specified taxonomy tree. A refinement, written

v! childðvÞ, replaces the parent value v with the child

value in childðvÞ that generalizes the domain value in each

(generalized) record that contains v.
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3.1.2 Refinement for Suppression

For a categorical attribute Dj without taxonomy tree, a

refinement ?j ! fv;?jg refers to disclosing one value v

from the set of suppressed values Supj. Let R?j denote the

set of suppressed records that currently contain ?j.
Disclosing v means replacing ?j with v in all records in

R?j that originally contain v.

3.1.3 Refinement for Discretization

For a continuous attribute, refinement is similar to that for

generalization except that no prior taxonomy tree is given

and the taxonomy tree has to be grown dynamically in the

process of refinement. Initially, the interval that covers the

full range of the attribute forms the root. The refinement on

an interval v, which is written as v! childðvÞ, refers to the

optimal split of v into two child intervals childðvÞ that

maximizes the information gain. The anonymity is not used

for finding a split good for classification. This is similar to

defining a taxonomy tree where the main consideration is

how the taxonomy best describes the application. Due to

this extra step of identifying the optimal split of the parent

interval, we treat continuous attributes separately from

categorical attributes with taxonomy trees.

A refinement is valid (with respect to T ) if T satisfies the

anonymity requirement after the refinement. A refinement

is beneficial (with respect to T ) if more than one class is

involved in the refined records. A refinement is performed

only if it is both valid and beneficial. Therefore, a

refinement guarantees that every newly generated qid has

aðqidÞ � k.

Example 3. Continue with Example 2. Fig. 2 shows a cut,

indicated by the dashed curve. This cut is the lowest

(maximal) in the sense that any refinement on

Junior Sec: or Grad School would violate the anonymity

requirement, that is, invalid. Also, refinement on

Junior Sec: or Grad School is nonbeneficial since none

of them refines data records in different classes.

3.2 Selection Criterion

We propose a selection criterion for guiding our TDR

process to heuristically maximize the classification goal.

Consider a refinement v! childðvÞ, where v 2 Dj, and Dj is

a categorical attribute with a user-specified taxonomy tree

or Dj is a continuous attribute with a dynamically grown

taxonomy tree. The refinement has two effects: it increases

the information of the refined records with respect to

classification, and it decreases the anonymity of the refined

records with respect to privacy. These effects are measured

by “information gain,” denoted InfoGainðvÞ, and “anon-

ymity loss,” denoted AnonyLossðvÞ. v is a good candidate

for refinement if InfoGainðvÞ is large and AnonyLossðvÞ is

small. Our selection criterion is choosing the candidate v,

for the next refinement, that has the maximum information-

gain/anonymity-loss trade-off, which is defined as

ScoreðvÞ ¼ InfoGainðvÞ
AnonyLossðvÞ þ 1

: ð1Þ

To avoid division by zero, 1 is added to AnonyLossðvÞ. Each

choice of InfoGainðvÞ and AnonyLossðvÞ gives a trade-off

between classification and anonymization. It should be

noted that Score is not a goodness metric of k-anonymiza-

tion. In fact, it is difficult to have a closed-form metric to

capture the classification goal (on future data). We achieve

this goal through this heuristic selection criterion.
For concreteness, we borrow Shannon’s information

theory to measure information gain [26]. Let Rv denote

the set of records masked to the value v, and let Rc denote

the set of records masked to a child value c in childðvÞ after

refining v. Let jxj be the number of elements in a set x.

jRvj ¼
P

c jRcj, where c 2 childðvÞ.
InfoGain(v): Defined as

InfoGainðvÞ ¼ IðRvÞ �
X
c

jRcj
jRvj

IðRcÞ; ð2Þ

where IðRxÞ is the entropy of Rx [26]:

IðRxÞ ¼ �
X
cls

freqðRx; clsÞ
jRxj

� log2
freqðRx; clsÞ
jRxj

: ð3Þ

freqðRx; clsÞ is the number of data records in Rx having the

class cls. Intuitively, IðRxÞ measures the entropy (or

“impurity”) of classes in Rx. The more dominating the

majority class in Rx is, the smaller the IðRxÞ becomes (that

is, less entropy in Rx). Therefore, IðRxÞ measures the error

because nonmajority classes are considered as errors.

InfoGainðvÞ then measures the reduction of entropy after

refining v. InfoGainðvÞ is nonnegative. For more details on

information gain and classification, see [27].
AnonyLoss(v): Defined as

AnonyLossðvÞ ¼ avgfAðQIDjÞ �AvðQIDjÞg; ð4Þ

where AðQIDjÞ and AvðQIDjÞ represent the anonymity

before and after refining v. avgfAðQIDjÞ �AvðQIDjÞg is the

average loss of anonymity for all QIDj that contain the

attribute of v.

If Dj is a categorical attribute without taxonomy tree, the

refinement ?j ! fv;?jg means refining R?j into Rv and

R0?j , where R?j denotes the set of records containing ?j
before the refinement. Rv and R0?j denote the set of records

containing v and ?j after the refinement, respectively. We

employ the same ScoreðvÞ function to measure the goodness

of the refinement ?j ! fv;?jg, except that InfoGainðvÞ is

now defined as:

InfoGainðvÞ ¼ IðR?jÞ �
jRvj
jR?j j

IðRvÞ �
jR0?j j
jR?j j

IðR0?jÞ: ð5Þ

Example 4. The refinement on ANY Edu refines the

34 records into 16 records for Secondary and 18 records

for University. The calculation of ScoreðANY EduÞ is
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IðRANY EduÞ ¼ �
21

34
� log2

21

34
� 13

34
� log2

13

34
¼ 0:9597;

IðRSecondaryÞ ¼ �
5

16
� log2

5

16
� 11

16
� log2

11

16
¼ 0:8960;

IðRUniversityÞ ¼ �
16

18
� log2

16

18
� 2

18
� log2

2

18
¼ 0:5033;

InfoGainðANY EduÞ ¼ IðRANY EduÞ

� 16

34
� IðRSecondaryÞ þ

18

34
� IðRUniversityÞ

� �
¼ 0:2716;

AnonyLossðANY EduÞ ¼ ð34� 16Þ=1 ¼ 18;

ScoreðANY EduÞ ¼ 0:2716

18þ 1
¼ 0:0143:

3.3 InfoGain versus Score

An alternative to Score is using InfoGain alone, that is,

maximizing the information gain produced by a refine-

ment without considering the loss of anonymity. This

alternative may pick a candidate that has a large reduction

in anonymity, which may lead to a quick violation of the

anonymity requirement, thereby, prohibiting refining the

data to a lower granularity. The next example illustrates

this point.

Example 5. Consider Table 2a, the anonymity requirement

hQID ¼ fEducation; Sex;Work Hrsg; 4i;

the most masked table containing one row

hANY Edu;ANY Sex; ½1� 99Þi

with the class frequency 20Y20N and three candidate
refinements:

ANY Edu! f8th; 9th; 10thg; ANY Sex! fM;Fg;
and ½1� 99Þ ! f½1� 40Þ; ½40� 99Þg:

Table 2b shows the calculated InfoGain, AnonyLoss,
and Score of the three candidate refinements. Accord-
ing to the InfoGain criterion, ANY Edu will be first
refined because it has the highest InfoGain. The result
is shown in Table 2c with AðQIDÞ ¼ 4. After that, there
is no further valid refinement because refining either
ANY Sex or [1-99) will result in a violation of
4-anonymity. Note that the first 24 records in the table
fail to separate the 4N from the other 20Y.

In contrast, according to the Score criterion,
ANY Sex will be first refined. The result is shown
in Table 2d, and AðQIDÞ ¼ 14. Subsequently, further
refinement on ANY Edu is invalid because it will
result in aðh9th;M; ½1� 99ÞiÞ ¼ 2 < k, but the refine-
ment on [1-99) is valid because it will result in
AðQIDÞ ¼ 6 � k. The final masked table is shown in
Table 2e where the information for separating the two
classes is preserved. Thus, by considering the infor-
mation/anonymity trade-off, the Score criterion pro-
duces a more desirable sequence of refinements for
classification.

4 TDR

4.1 The Algorithm

We present our algorithm TDR. In a preprocessing step, we
compress the given table T by removing all attributes not in
[QIDi and collapsing duplicates into a single row with the
Class column storing the class frequency as in Table 1. The
compressed table is typically much smaller than the original
table. Below, the term “data records” refers to data records
in this compressed form. There exists a masked table
satisfying the anonymity requirement if and only if the most
masked table does, that is, jT j � k. This condition is checked
in the preprocessing step as well. To focus on main ideas,
we assume that jT j � k and the compressed table fits in the
memory. In Section 4.5, we will discuss the modification
needed if the compressed table does not fit in the memory.

Algorithm 1. Top-Down Refinement (TDR)

1. Initialize every value of Dj to the topmost value,

suppress every value of Dj to ?j, or include every

continuous value of Dj into the full-range interval,
where Dj 2 [QIDi.

2. Initialize Cutj of Dj to include the topmost value, Supj
of Dj to include all domain values of Dj, and Intj of Dj

to include the full-range interval, where Dj 2 [QIDi.

3: while some x 2 h[Cutj;[Supj;[Intji is valid and

beneficial

4. Find the Best refinement from h[Cutj;[Supj;[Intji.
5. Perform Best on T and update

h[Cutj;[Supj;[Intji.
6. Update ScoreðxÞ and validity for

x 2 h[Cutj;[Supj;[Intji.
7. end while

8. return Masked T and h[Cutj;[Supj;[Intji.
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Comparing InfoGain and Score for Example 5

(a) (Compressed) table. (b) Statistics for the most masked table.
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High-level description of our algorithm. Algorithm 1
summarizes the conceptual algorithm. Initially, Cutj
contains only the topmost value for a categorical attribute
Dj with a taxonomy tree, Supj contains all domain
values of a categorical attribute Dj without a taxonomy
tree, and Intj contains the full-range interval for a
continuous attribute Dj. The valid beneficial refinements
in h[Cutj;[Supj;[Intji form the set of candidates. At
each iteration, we find the candidate of the highest Score,
denoted Best (Line 4), apply Best to T , update
h[Cutj;[Supj;[Intji (Line 5), and update Score and
the validity of the candidates in h[Cutj;[Supj;[Intji
(Line 6). The algorithm terminates when there is no more
candidate in h[Cutj;[Supj;[Intji, in which case it
returns the masked table together with the solution set
h[Cutj;[Supj;[Intji.
Example 6. Consider the anonymity requirement:

fhQID1 ¼ fEducation; Sexg; 4i;
hQID2 ¼ fSex;Work Hrsg; 11ig:

Assume that the taxonomy trees in Fig. 1 are specified
for Education and Sex. Initially, all data records in
Table 1 are masked and collapsed into a single row
hANY Edu;ANY Sex; ½1� 99Þi, with the class fre-
quency 21Y13N and [Cutj ¼ fANY Edu;ANY Sexg,
[Intj ¼ f½1� 99Þg. All refinements in h[Cutj;[Intji are
candidates. To find the best refinement, we need
to compute ScoreðANY EduÞ, ScoreðANY SexÞ, and
Scoreð½1� 99ÞÞ.
Our algorithm obtains the masked T by iteratively

refining the table from the most masked state. An important
property of TDR is that the anonymity requirement is
antimonotone with respect to the TDR: If it is violated before
a refinement, it remains violated after the refinement. This
is because a refinement never equates distinct values;
therefore, it never increases the count of duplicates aðqidÞ.
Hence, the hierarchically organized search space with the
most masked state at the top is separated by a border above
which lie all satisfying states and below which lie all
violating states. The TDR finds a state on the border, and
this state is maximally refined in that any further refinement
of it would cross the border and violate the anonymity
requirement. Note that there may be more than one
maximally refined state on the border. Our algorithm finds
the one based on the heuristic selection criterion of
maximizing Score at each step. Samarati [2] presents some
results related to antimonotonicity, but the results are based
on a different masking model that generalizes all values in
an attribute to the same level and suppresses data at the
record level.

Theorem 1. Algorithm 1 finds a maximally refined table that
satisfies the given anonymity requirement.

Algorithm 1 makes no claim on efficiency. In fact, in a
straightforward implementation, Lines 4, 5, and 6 require
scanning all data records and recomputing Score for all
candidates in h[Cutj;[Supj;[Intji. Obviously, this is not
scalable. The key to the efficiency of our algorithm is directly
accessing the data records to be refined and updating Score

based on some statistics maintained for candidates in
h[Cutj;[Supj;[Intji. In the rest of this section, we explain
a scalable implementation of Lines 4, 5, and 6.

4.2 Find the Best Refinement (Line 4)

This step makes use of computed InfoGainðxÞ and
AxðQIDiÞ for all candidates x in h[Cutj;[Supj;[Intji and
computed AðQIDiÞ for each QIDi. Before the first iteration,
such information is computed in an initialization step for
every topmost value, every suppressed value, and every
full-range interval. For each subsequent iteration, such
information comes from the update in the previous iteration
(Line 6). Finding the best refinement Best involves at most

j [ Cutjj þ j [ Supjj þ j [ Intjj computations of Score with-
out accessing data records. Updating InfoGainðxÞ and
AxðQIDiÞ will be considered in Section 4.4.

4.3 Perform the Best Refinement (Line 5)

We consider two cases of performing the Best refinement,
corresponding to whether a taxonomy tree is available for

the attribute Dj for Best.
Case 1: Dj has a taxonomy tree. Consider the refinement

Best! childðBestÞ, where Best 2 Dj and Dj is either a
categorical attribute with a specified taxonomy tree or a
continuous attribute with a dynamically grown taxonomy
tree. First, we replaceBestwith childðBestÞ in h[Cutj;[Intji.
Then, we need to retrieve RBest, the set of data records
masked to Best, to tell the child value in childðBestÞ for each

individual data record. We present a data structure
Taxonomy Indexed PartitionS (TIPS) to facilitate this operation.
This data structure is also crucial for updating InfoGainðxÞ
and AxðQIDiÞ for candidates x. The general idea is to group
data records according to their masked records on [QIDi.

Definition 3 (TIPS). TIPS is a tree structure with each node

representing a masked record over [QIDi and each child node

representing a refinement of the parent node on exactly one

attribute. Stored with each leaf node is the set of (compressed)

data records having the same masked record, called a leaf
partition. For each candidate refinement x, Px denotes a leaf

partition whose masked record contains x, and Linkx denotes

the link of all such Px. The head of Linkx is stored with x.

The masked table is represented by the leaf partitions of
TIPS. Linkx provides a direct access to Rx, the set of
(original) data records masked by the value x. Initially, TIPS
has only one leaf partition containing all data records,
masked by the topmost value or interval on every attribute
in [QIDi. In each iteration, we perform the best refinement

Best by refining the leaf partitions on LinkBest.
Refine Best in TIPS. We refine each leaf partition PBest

found on LinkBest as follows: For each value c in
childðBestÞ, a child partition Pc is created under PBest, and
data records in PBest are split among the child partitions: Pc
contains a data record in PBest if a categorical value c

generalizes the corresponding domain value in the record
or if an interval c contains the corresponding domain value

in the record, an empty Pc is removed. Linkc is created to
link up all Pcs for the same c. Also, link Pc to every Linkx to
which PBest was previously linked, except for LinkBest.

FUNG ET AL.: ANONYMIZING CLASSIFICATION DATA FOR PRIVACY PRESERVATION 717



Finally, mark c as “beneficial” if Rc has more than one class,
where Rc denotes the set of data records masked to c.

This is the only operation that actually accesses data
records in the whole algorithm. The overhead is maintaining
Linkx. For each attribute in [QIDi and each leaf partition on
LinkBest, there are at most jchildðBestÞj “relinkings.” There-
fore, there are at most j [QIDij � jLinkBestj � jchildðBestÞj
“relinkings” for applying Best.

Example 7. Continue with Example 6. Initially, TIPS has
only one leaf partition containing all data records and
representing the masked record

hANY Edu;ANY Sex; ½1� 99Þi:

Let the best refinement be ½1� 99Þ ! f½1� 37Þ; ½37� 99Þg
on Work Hrs. We create two child partitions under the
root partition as in Fig. 3 and split data records between
them. Both child partitions are on LinkANY Edu and
LinkANY Sex. [Intj is updated into f½1� 37Þ; ½37� 99Þg
and [Cutj remains unchanged. Suppose that the next
best refinement is ANY Edu! fSecondary; Universityg,
which refines the two leaf partitions on LinkANY Edu,
resulting in the TIPS in Fig. 3.

Count statistics in TIPS. A scalable feature of our
algorithm is maintaining some statistical information for
each candidate x in h[Cutj, [Intji for updating ScoreðxÞ
without accessing data records. For each value c in
childðBestÞ added to h[Cutj;[Intji in the current iteration,
we collect the following count statistics of c while scanning
data records in PBest for updating TIPS: 1) jRcj, jRdj,
freqðRc; clsÞ, and freqðRd; clsÞ for computing InfoGainðcÞ,
where d 2 childðcÞ and cls is a class label. Refer to Section 3
for these notations. 2) jPdj, where Pd is a child partition
under Pc as if c is refined, kept together with the leaf node
for Pc. This information will be used in Section 4.4.

TIPS has several useful properties: 1) All data records in
the same leaf partition have the same masked record,
although they may have different refined values. 2) Every
data record appears in exactly one leaf partition. 3) Each
leaf partition Px has exactly one masked qidj on QIDj and
contributes the count jPxj towards aðqidjÞ. Later, we use the
last property to extract aðqidjÞ from TIPS.

Case 2: Dj has no taxonomy tree. Consider a refinement
?j ! fBest;?jg, where ?j 2 Dj, and Dj is a categorical
attribute without a taxonomy tree. First, we remove Best
from Supj. Then, we replace ?j with the disclosed value
Best in all suppressed records that currently contain ?j and
originally contain Best. The TIPS data structure in Defini-
tion 3 can also support the refinement operation in this case.

The only difference is to add an extra Link?j to link up all
leaf partitions P?j containing value ?j. The candidate set
now includes [Supj, that is, h[Cutj;[Supj;[Intji.

Disclose Best in TIPS. We refine each leaf partition P?j
found on Link?j as follows: Two child partitions PBest and

P 0?j are created under P?j . Data records in P?j are split

among the child partitions: PBest contains a data record r in

P?j if Best is the original domain value in r; otherwise, P 0?j
contains r. Then, link PBest to every Linkx to which P?j was
previously linked, except for Link?j . Also, link P 0?j to every

Linkx to which P?j was previously linked, except for

LinkBest.
Count statistics in TIPS. Similar to Case 1, we collect the

following count statistics of x 2 [Supj while scanning data

records in P?j for updating TIPS: 1) jR0?j j, jRxj, freqðR0?j ; clsÞ,
and freqðRx; clsÞ for computing InfoGainðxÞ, where x 2
[Supj and cls is a class label. 2) jPyj, where Py is a child
partition under Px as if x is disclosed, kept together with the

leaf node for Px. This information will be used in Section 4.4.

4.4 Update Score and Validity (Line 6)

This step updates ScoreðxÞ and validity for candidates x

in h[Cutj;[Supj;[Intji to reflect the impact of the Best

refinement. The key is computing ScoreðxÞ from the

count statistics maintained in Section 4.3 without acces-

sing data records. We update InfoGainðxÞ and AxðQIDiÞ
separately. Note that the updated AðQIDiÞ is obtained

from ABestðQIDiÞ.

4.4.1 Update InfoGainðxÞ
An observation is that InfoGainðxÞ is not affected by

Best! childðBestÞ, except that we need to compute

InfoGainðcÞ for each newly added value c in childðBestÞ.
InfoGainðcÞ can be computed while collecting the count

statistics for c in Case 1 of Section 4.3. In case the refined

attribute has no taxonomy tree, InfoGainðxÞ can be

computed from the count statistics for x in Case 2 of

Section 4.3.

4.4.2 Update AnonyLossðxÞ
Again, we consider the two cases:

Case 1: Dj has a taxonomy tree. Unlike information gain,

it is not enough to compute AcðQIDiÞ only for the new
values c in childðBestÞ. Recall that AxðQIDiÞ is equal to the

minimum aðqidiÞ after refining x. If both attðxÞ and

attðBestÞ are contained in QIDi, the refinement on Best

may affect this minimum, hence, AxðQIDiÞ. Below, we
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present the data structure Quasi-Identifier TreeS ðQITSÞ to
extract aðqidiÞ efficiently from TIPS for updating AxðQIDiÞ.
Definition 4 (QITS). QITi for QIDi ¼ fD1; . . . ; Dwg is a tree

of w levels. The level p > 0 represents the masked values for
Dp. Each root-to-leaf path represents an existing qidi on QIDi

in the masked data, with aðqidiÞ stored at the leaf node. A
branch is trimmed if its aðqidiÞ ¼ 0.

AðQIDiÞ is equal to the minimum aðqidiÞ in QITi. In
other words, QITi provides an index of aðqidiÞ by qidi.
Unlike TIPS, QITS does not maintain data records. On
applying Best! childðBestÞ, we update every QITi such
that QIDi contains the attribute attðBestÞ.

Update QITi. For each occurrence of Best in QITi, create
a separate branch for each c in childðBestÞ. The procedure in
Algorithm 2 computes aðqidiÞ for the newly created qidis on
such branches. The general idea is to loop through each Pc
on Linkc in TIPS, increment aðqidiÞ by jPcj. This step does
not access data records because jPcj was part of the count
statistics of Best. Let r be the number of QIDi containing
attðBestÞ. The number of aðqidiÞ to be computed is at most
r� jLinkBestj � jchildðBestÞj.

Algorithm 2. Computing aðqidiÞ for new qidi
1. for each Pc 2 Linkc do

2. for each QIDi containing attðBestÞ do

3. aðqidiÞ ¼ aðqidiÞ þ jPcj, where qidi is the masked

value on QIDi for Pc
4. end for

5. end for

Example 8. In Fig. 4, the initial QIT1 and QIT2 (that is, left
most) have a single path. After applying

½1� 99Þ ! f½1� 37Þ; ½37� 99Þg;

the qid hANY Sex; ½1� 99Þi in QIT2 is replaced with two
new qids hANY Sex; ½1� 37Þi and hANY Sex; ½37� 99Þi
and AðQID2Þ ¼ 12. Since QID1 does not include
Work Hrs, QIT1 remains unchanged and AðQID1Þ ¼ 34.

After applying the second refinement

ANY Edu! fSecondary; Universityg;

QIT2 remains unchanged, and AðQID2Þ ¼ 12. The qid
hANY Edu;ANY Sexi in QIT1 is replaced with two new
qids hSecondary;ANY Sexi and hUniversity; ANY Sexi.
To compute aðqidÞ for these new qids, we add jPSecondaryj

to LinkSecondary and jPUniversityj to LinkUniversity (see Fig. 3):
aðhSecondary;ANY SexiÞ ¼ 0þ 12þ 4 ¼ 16, and

aðhUniversity; ANY SexiÞ ¼ 0þ 18 ¼ 18:

So, AANY EduðQID1Þ ¼ 16.

We now update AxðQIDiÞ for candidates x in

h[Cutj;[Intji

(in the impact of Best! childðBestÞ). Doing this by refining
x requires accessing data records, hence, it is not scalable.
We compute AxðQIDiÞ using the count statistics maintained
for x without accessing data records.

Update AxðQIDiÞ. For a candidate x in h[Cutj;[Intji,
computing AxðQIDiÞ is necessary in two cases: First, x is in
childðBestÞ because AxðQIDiÞ has not been computed for
newly added candidates x. Second, AxðQIDiÞ might be
affected by the refinement on Best, in which case, attðxÞ
and attðBestÞ must be contained in QIDi. In both cases, we
first compute aðqidxi Þ for the new qidxi s created as if x is
refined. The procedure is the same as in Algorithm 2 for
refining Best, except that Best is replaced with x and no
actual update is performed on QITi and TIPS. Note that the
count jPcj, where c is in childðxÞ, used in the procedure is
part of the count statistics maintained for x.

Next, we compare aðqidxi Þwith AðQIDiÞ to determine the
minimum, that is, AxðQIDiÞ. There are two subcases:

1. If no contributing qid of AðQIDiÞ (that is,
aðqidÞ ¼ AðQIDiÞ) contains the value x, the con-
tributing qids of AðQIDiÞ will remain existing if x is
refined. Hence, AxðQIDiÞ is the minimum of
AðQIDiÞ and aðqidxi Þ.

2. If some contributing qid of AðQIDiÞ contains the
value x, such qids become new qidxi if x is refined, so
AxðQIDiÞ is the minimum of aðqidxi Þ.

Finally, if the new AxðQIDiÞ � ki, we keep it with x and
mark x as “valid” in the cut.

Case 2: Dj has no taxonomy tree. Even the refined
attribute has no taxonomy tree, the general operation of
computing AnonyLossðxÞ is the same as Case 1. The
difference is that the refined values of ?j becomes
fBest;?jg, where Best is the disclosed value and the
updated ?j represents the remaining suppressed values
Supj. Also, the candidate set includes [Supj, that is,
h[Cutj;[Supj;[Intji. On disclosing Best, we update all
QITi such that attðBestÞ is in QITi to reflect the move of
records from Link?j to LinkBest.

Update QITi. For each occurrence of ?j in QITi, create a
separate branch for Best and a separate branch for updated
?j. Follow the procedure in Algorithm 2 to compute aðqidiÞ
for the newly created qidis on such branches, except that Pcs
become PBest and P 0?j . Refer to Case 2 in Section 4.3 for these
notations.

4.5 Efficiency Analysis

Each iteration involves two types of work. The first type
accesses data records in RBest or R?j for updating TIPS and
count statistics in Section 4.3. If Best is an interval, an extra
step is required for determining the optimal split for each
child interval c in childðBestÞ. This requires making a scan
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on records in Rc, which is a subset of RBest. To determine a
split, Rc has to be sorted, which can be an expensive
operation. Fortunately, resorting Rc is unnecessary for each
iteration because its superset RBest are already sorted. Thus,
this type of work involves one scan of the records being
refined in each iteration. The second type of work computes
ScoreðxÞ for the candidates x in h[Cutj;[Supj;[Intji
without accessing data records in Section 4.4. For a table
with m attributes and each taxonomy tree with at most
p nodes, the number of such x is at most m� p. This
computation makes use of the maintained count statistics
and does not access data records. Let h be the maximum
number of times that a value in a record will be refined. For
an attribute with a taxonomy tree, h is bounded by the
height of the taxonomy tree, and for an attribute without
taxonomy tree, h is bounded by 1 (that is, a suppressed
value is refined at most once). In the whole computation,
each record will be refined at most m� h times, therefore
accessed at most m� h times because only refined records
are accessed. Since m� h is a small constant independent of
the table size, our algorithm is linear in the table size.

In the special case that there is only a single QID, each
root-to-leaf path in TIPS has represented a qid, and we can
store aðqidÞ directly at the leaf partitions in TIPS without
QITS. A single QID was considered in [7], [10], [12], and [16]
where the QID contains all potentially identifying attributes
to be used for linking the table to an external source. Our
algorithm is more efficient in this special case.

To focus on main ideas, our current implementation
assumes that the compressed table fits in memory. Often,
this assumption is valid because the compressed table can
be much smaller than the original table. If the compressed
table does not fit in the memory, we can store leaf partitions
of TIPS on disk if necessary. Favorably, the memory is used
to keep only leaf partitions that are smaller than the page
size to avoid fragmentation of disk pages. A nice property
of TDR is that leaf partitions that cannot be further refined
(that is, on which there is no candidate refinement) can be
discarded, and only some statistics for them needs to be
kept. This likely applies to small partitions in memory,
therefore, the memory demand is unlikely to build up.

Compared to iteratively masking the data bottom-up
starting from domain values, the TDR is more natural and
efficient for handling continuous attributes. To produce a
small number of intervals for a continuous attribute, the
top-down approach needs only a small number of interval
splitting, whereas the bottom-up approach needs many
interval merging starting from many domain values. In
addition, the top-down approach can discard data records
that cannot be further refined, whereas the bottom-up
approach has to keep all data records until the end of
computation.

5 EXPERIMENTAL EVALUATION

Our goal in this section is to evaluate the proposed
method, that is, TDR, in terms of preserving the
usefulness for classification and the scalability on large
data sets. For the usefulness evaluation, we compare the
classifier built from the masked data with the classifier
built from the unmodified data. This comparison makes

sense because the anonymization is due to the privacy
consideration and the data will be released without
modification in the absence of such consideration. In
addition, the unmodified data has the lowest possible cost,
therefore, it serves the best possible candidate according
to previous cost metrics [7], [12], [16]. Though some recent
works such as that in [7] model the classification metric
on the masked table, the optimality of such metrics does
not translate into the optimality of classifiers, as pointed
out in Section 1. To our knowledge, [12] is the only work
that has evaluated the impact of anonymity on classifica-
tion with single dimensional generalization. For these
reasons, our evaluation uses the baseline of the unmodi-
fied data and the reported results in [12]. All experiments
on TDR were conducted on an Intel Pentium IV 2.6-GHz
PC with 1-Gbyte RAM.

5.1 Data Quality

Our first objective is to evaluate if the proposed TDR
preserves the quality for classification while masking the
data to satisfy various anonymity requirements. We used
the C4.5 classifier [27] and Naive Bayesian classifier (from
http://magix.fri.uni-lj.si/orange/) as classification models.
We adopted three widely used benchmarks: Adult, Japanese
Credit Screening (CRX), and German Credit Data (German)
were obtained from the University of California, Irvine
(UCI) repository [28]. Unless stated otherwise, all attributes
were used for building classifiers.

In a typical real-life situation, the data provider releases
all data records in a single file, leaving the split of training
and testing sets to the data miner. Following this practice,
we combined the training set and testing set into one set for
masking and built a classifier using the masked training set
and collected the error using the masked testing set. This
error, called the anonymity error, denoted AE, was com-
pared with the baseline error, denoted BE, for the unmodi-
fied training and testing sets. Note that AE depends on the
anonymity requirement. AE �BE measures the quality
loss due to data masking.

5.1.1 Data Set: Adult

The Adult data set has six continuous attributes, eight
categorical attributes, and a binary Class column represent-
ing two income levels, � 50K or > 50K. Table 3a describes
each attribute (cont. for continuous and cat. for categorical).
After removing records with missing values from the
presplit training and testing sets, we have 30,162 and
15,060 records for training and testing, respectively. This is
exactly the same data set as used in [12].

For the same anonymity threshold k, a single QID is
always more restrictive than breaking it into multiple QIDs.
For this reason, we first consider the case of single QID. To
ensure that masking is working on attributes that have
an impact on classification, the QID contains the top
N attributes ranked by the C4.5 classifier. The top rank
attribute is the attribute at the top of the C4.5 decision tree.
Then, we remove this attribute and repeat this process to
determine the rank of other attributes. The top nine
attributes are Cg, Ag, M, En, Re, H, S, E, and O in that
order. We specified three anonymity requirements denoted
Top5, Top7, and Top9, where the QID contains the top five,
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seven, and nine attributes, respectively. The upper error,

denoted UE, refers to the error on the data with all the

attributes in the QID removed (equivalent to generalizing

them to the topmost ANY or suppressing them to ? or

including them into a full-range interval). UE �BE mea-

sures the impact of the QID on classification.
Fig. 5 displays AE for the C4.5 classifier with the

anonymity threshold 20 � k � 1; 000 by applying discreti-

zation on the six continuous attributes and suppression on

the eight categorical attributes without taxonomy trees.

Note that k is not spaced linearly. We summarize the

analysis for Top7 as follows: First, AE �BE, where BE ¼
14:7 percent, is less than 2.5 percent over the entire range of

tested anonymity threshold, and AE is much lower than

UE ¼ 21:5 percent. This supports that accurate classifica-

tion and privacy protection can coexist. Second, AE

generally increases as the anonymity threshold k increases,

but not monotonically. For example, the error slightly drops

when k increases from 180 to 200. This is due to the
variation between the training and testing sets, and the fact
that a better structure may appear in a more masked state.

We further evaluate the effectiveness of generalization
on categorical attributes with taxonomy trees. Although
Iyengar [12] has specified taxonomy trees for categorical
attributes, we do not agree with the author’s groupings.
For example, the author grouped Native-country accord-
ing to continents, except Americas. We followed the
grouping according to the World Factbook published by
the Central Intelligence Agency (CIA) (http://www.cia.
gov/cia/publications/factbook/).

Fig. 6a displays AE for the C4.5 classifier with the
anonymity threshold 20 � k � 1; 000 by applying discreti-
zation on the six continuous attributes and generalization
on the eight categorical attributes according to our
specified taxonomy trees. We summarize the analysis
for Top7 as follows: AE �BE, where BE ¼ 14:7 percent,
is less than 2 percent over the range of anonymity
threshold 20 � k � 600, and AE is much lower than
UE ¼ 21:5 percent. These results are similar to the results
in Fig. 5 although the finally masked versions of data are
very different. This suggests that there exist redundant
“good” classification structures in the data.

A closer look at the masked data for Top7 with k ¼ 500
reveals that among the seven top ranked attributes, three
are masked to a different degree of granularity, and four,
namely, Cg (ranked first), Ag (ranked second), Re (ranked
fifth), and S (ranked seventh), are masked to the topmost
value ANY . Even for this drastic masking, AE has only
increased by 2 percent from BE ¼ 14:7 percent, whereas the
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Fig. 6. Generalize and discretize topN in Adult. (a) C4.5. (b) Naive

Bayesian.



worst case can be UE ¼ 21:5 percent. With the masking,
classification now is performed by the remaining three
attributes in the QID and the unmodified but lower ranked
attributes. Clearly, this is a different classification structure
from what would be found from the unmodified data. As a
result, though masking may eliminate some structures, new
structures emerge to help.

Fig. 6b displays AE for the Naive Bayesian classifier.
Compared to the C4.5 classifier, though BE and UE are
higher (which has to do with the classification method,
not the masking), the quality loss due to masking, AE �
BE (note BE ¼ 18:07 percent), is smaller, which is no
more than 1.5 percent for the range of anonymity
threshold 20 � k � 1; 000. This suggests that the informa-
tion-based masking is also useful to other classification
methods such as the Naive Bayesian that do not use the
information gain. Another observation is that AE is even
lower than BE for the anonymity threshold k � 180 for
Top5 and Top7. This confirms again that the optimal
k-anonymization is not relevant to the classification goal
due to possibility of “overfitting.” The unmodified data
certainly has the least distortion by any cost metric.
However, this experiment shows that the least distortion
does not translate into the accuracy of classifier. AE < BE
also occurs in the experiment on the CRX data set in
Fig. 9a. Our approach is bias toward masking the noises
in order to help classification.

Fig. 7 shows the generated taxonomy trees for contin-
uous attributes Hours-per-week and Education-num with
Top7 and k ¼ 60. The splits are very reasonable. For
example, in the taxonomy tree of Education-num, the split
point at 13 distinguishes whether the person has post
secondary education. If the user does not like these trees,
she may modify them or specify her own and, subse-
quently, treat continuous attributes as categorical attributes
with specified taxonomy trees.

Our method took at most 10 seconds for all previous
experiments. Out of the 10 seconds, approximately 8
seconds were spent on reading data records from disk
and writing the masked data to disk. The actual processing
time for generalizing the data is relatively short.

In an effort to study the effectiveness of multiple QIDs,
we comparedAE between a multiple QIDs requirement and
the corresponding single united QID requirement. We
randomly generated 30 multiple QID requirements as
follows: For each requirement, we first determined the
number of QIDs using the uniform distribution U ½3; 7� (that
is, randomly drawn a number between 3 and 7) and the
length of QIDs using U ½2; 9�. For simplicity, all QIDs in the
same requirement have the same length and same threshold
k ¼ 100. For each QID, we randomly selected some
attributes according to the QID length from the 14 attributes.

A repeating QID was discarded. For example, a requirement
of three QIDs and length two is fhfAg;Eng; ki, hfAg;Rag; ki,
hfS;Hg; kig, and the corresponding single QID requirement
is fhfAg;En;Ra; S;Hg; kig.

In Fig. 8, each data point represents the AE of a multiple
QID requirement, denoted MultiQID, and the AE of the
corresponding single QID requirement, denoted SingleQID.
The C4.5 classifier was used. Most data points appear at the
upper left corner of the diagonal, suggesting that MultiQID
generally yields lower AE than its corresponding Single-
QID. This verifies the effectiveness of multiple QIDs to
avoid unnecessary masking and improve data quality.

5.1.2 Data Set: CRX

The CRX data set is based on a credit card application.
There are six continuous attributes, nine categorical
attributes, and a binary class attribute representing the
application status succeeded or failed. After removing records
with missing values, there are 465 and 188 records for the
presplit training and testing, respectively. In the UCI
repository, all values and attribute names in CRX have
been changed to meaningless symbols such as A1 . . .A15. No
taxonomy tree is given in advance. The Top9 attributes in
CRX are A9, A11, A10, A8, A15, A7, A14, A6, and A5 in that
order.

Fig. 9a displays AE for the C4.5 classifier with the
anonymity threshold 20 � k � 600 by applying discretiza-
tion on the six continuous attributes and suppression on the
eight categorical attributes without taxonomy trees. Differ-
ent anonymity requirements Top5, Top7, and Top9 yield
similarAE’s and similar patterns, indicating more restrictive
requirement may not have much impact on classification
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Fig. 7. Generated taxonomy trees of Hours-per-week and

Education-num.

Fig. 8. SingleQID versus MultiQID ðk ¼ 100Þ.

Fig. 9. Suppress and discretize TopN in CRX and German. (a) CRX.

(b) German.



quality. This largely depends on the availability of alter-
native “good” classification structures in the data set.

We summarize the analysis for Top7 as follows: First,
AE �BE, where BE ¼ 15:4 percent, is less than 4 percent
over the range of anonymity threshold 20 � k � 300, and
AE is much lower than UE ¼ 42 percent. This supports that
accurate classification and privacy protection can coexist.
AE drastically increases when k > 300 since CRX only has
653 records.

5.1.3 Data Set: German

German has seven continuous attributes, 13 categorical
attributes, and a binary class attribute representing the
good or bad credit risks. There are 666 and 334 records,
without missing values, for the presplit training and
testing, respectively. Table 3b describes each attribute. The
Top9 attributes in German are Cd, As, Du, Ch, Sa, I, Lp,
D, and Pr in that order.

Fig. 9b displays AE for the C4.5 classifier with the
anonymity threshold 20 � k � 1; 000 by applying discreti-
zation on the seven continuous attributes and suppression
on the 13 categorical attributes without taxonomy trees.
AE �BE, where BE ¼ 28:8 percent, is less than 4 percent
over the range of anonymity threshold 20 � k � 100 for the
anonymity requirement Top7. Although AE is mildly lower
than UE ¼ 36 percent, the benefit of masking UE �AE is
not as significant as in other data sets. If the data provider
requires higher degree of anonymity, then she may consider
simply removing the TopN attributes from the data set
rather than masking them.

5.2 Comparing with Other Algorithms

Iyengar [12] presented a genetic algorithm solution. This
experiment was customized to conduct a fair comparison
with the results in [12]. We used the same Adult data set,
same attributes, and same anonymity requirement as
specified in [12]:

GA ¼ hfAg;W;E;M;O;Ra; S;Ng; ki:

We obtained the taxonomy trees from the author for
generalization, except for the continuous attribute Ag,
which we used discretization. Following the procedure in
[12], all attributes not in GA were removed and were not
used to produce BE, AE, and UE in this experiment, and
all errors were based on the 10-fold cross validation and the
C4.5 classifier. For each fold, we first masked the training
data and then applied the masking to the testing data.

Fig. 10 compares AE of TDR with the errors reported for
two methods in [12], Loss Metric (LM) and Classification

Metric (CM), for 10 � k � 500. TDR outperformed LM,
especially for k � 100 but performed only slightly better
than CM. TDR continued to perform well from k ¼ 500 to
k ¼ 1; 000, for which no result was reported for LM and CM
in [12]. This analysis shows that our method is at least
comparable to genetic algorithm [12] in terms of accuracy.
However, our method took only 7 seconds to mask the data,
including reading data records from disk and writing the
masked data to disk. Iyengar [12] reported that his method
requires 18 hours to transform this data, which has about
only 30K data records. Clearly, the genetic algorithm is not
scalable.

Recently, [18] made a comparison with our previous
version of TDR in [14] in terms of data quality on some
other data sets. Their experiments suggested that the
classification quality on the masked data can be further
improved by using a more flexible masking operation,
multidimensional generalization; however, this type of
generalization suffers from the interpretation difficulty as
discussed in Section 1. Xu et al. [19] reported that the
multidimensional generalization algorithm took about
10 seconds to mask the Adult data set. We compared TDR
with some recently developed greedy anonymization
algorithms that also conducted experiments on the Adult
data set. The efficiency of the bottom-up cell generalization
algorithm in [15] is comparable to TDR when k ¼ 2, 10, but
they did not report the efficiency for larger k. A cell
generalization algorithm in [19] took about 60 seconds to
mask the data. In general, multidimensional and cell
generalization algorithms are less efficient than our method
due to the larger number of possible masked tables.

5.3 Efficiency and Scalability

This experiment evaluates the scalability of TDR by blowing
up the size of the Adult data set. First, we combined the
training and testing sets, giving 45,222 records. For each
original record r in the combined set, we created �� 1
“variations” of r, where � > 1 is the blowup scale. For each
variation of r, we randomly selected q attributes from
[QIDj, where q has the uniform distribution U½1; j [QIDjj�,
that is, randomly drawn between 1 and the number of
attributes in QIDs and replaced the values on the selected
attributes with values randomly drawn from the domain of
the attributes. Together with all original records, the
enlarged data set has �� 45; 222 records. To provide a
precise evaluation, the runtime reported excludes the time
for loading data records from disk and the time for writing
the masked data to disk.

Fig. 11 depicts the runtime of TDR using generalization
and discretization for 200,000 to 1,000,000 data records and

FUNG ET AL.: ANONYMIZING CLASSIFICATION DATA FOR PRIVACY PRESERVATION 723

Fig. 10. Comparing with genetic algorithm. Fig. 11. Scalability versus number of records ðk ¼ 50Þ.



the anonymity threshold k ¼ 50 based on two types of
anonymity requirements. AllAttQID refers to the single QID
having all 14 attributes. This is one of the most time-
consuming settings because of the largest number of
candidate refinements to consider at each iteration. For
TDR, the small anonymity threshold of k ¼ 50 requires
more iterations to reach a solution, hence, more runtime,
than a larger threshold. TDR takes approximately 80 sec-
onds to transform 1,000,000 records.

In Fig. 11, MultiQID refers to the average runtime over

the 30 random multiple QID requirements in Section 5.1

with k ¼ 50. Compared to AllAttQID, TDR becomes less

efficient for handling multiple QIDs for two reasons. First,

an anonymity requirement on multiple QIDs is a less

restrictive constraint than the single QID anonymity

requirement containing all attributes; therefore, TDR has

to perform more refinements before violating the anonym-

ity requirement. Moreover, TDR needs to create one QIT

for each QID and maintains aðqidÞ in QITS. The increase is

roughly by a factor proportional to the number of QIDs in

an anonymity requirement. The runtime of suppression

and discretization on this expanded data set is roughly the

same as shown in Fig. 11.

5.4 Summary

Our experiments verified several claims about the proposed

TDR method. First, TDR masks a given table to satisfy a

broad range of anonymity requirements without sacrificing

significantly the usefulness to classification. Second, while

producing a comparable accuracy, TDR is much more

efficient than previously reported approaches, particularly,

the genetic algorithm in [12]. Third, the previous optimal

k-anonymization [7], [16] does not necessarily translate into

the optimality of classification. The proposed TDR finds a

better anonymization solution for classification. Fourth, the

proposed TDR scales well with large data sets and complex

anonymity requirements. These performances together with

the features discussed in Section 1 make TDR a practical

technique for privacy protection while sharing information.

6 CONCLUSIONS

We considered the problem of ensuring an individual’s

anonymity while releasing person-specific data for classifi-

cation analysis. We pointed out that the previous optimal

k-anonymization based on a closed-form cost metric does

not address the classification requirement. Our approach is

based on two observations specific to classification: In-

formation specific to individuals tends to be overfitting,

thus of little utility, to classification; even if a masking

operation eliminates some useful classification structures,

alternative structures in the data emerge to help. Therefore,

not all data items are equally useful for classification and

less useful data items provide the room for anonymizing

the data without compromising the utility. With these

observations, we presented a top-down approach to

iteratively refine the data from a general state into a special

state, guided by maximizing the trade-off between informa-

tion and anonymity. This top-down approach serves a

natural and efficient structure for handling categorical and

continuous attributes and multiple anonymity require-

ments. Experiments showed that our approach effectively

preserves both information utility and individual’s privacy

and scales well for large data sets.

ACKNOWLEDGMENTS

Research was supported in part by a research grant and a

PGS scholarship from the Natural Sciences and Engineering

Research Council of Canada.

REFERENCES

[1] P. Samarati and L. Sweeney, “Generalizing Data to Provide
Anonymity When Disclosing Information,” Proc. 17th ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems
(PODS ’98), p. 188, June 1998.

[2] P. Samarati, “Protecting Respondents’ Identities in Microdata
Release,” IEEE Trans. Knowledge Eng., vol. 13, no. 6, pp. 1010-1027,
Nov./Dec. 2001.

[3] The House of Commons in Canada, “The Personal Information
Protection and Electronic Documents Act,” 1991, http://
www.privcom.gc.ca/.

[4] S.M. Weiss and C.A. Kulikowski, Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Machine Learn-
ing, and Expert Systems. Morgan Kaufmann, 1991.

[5] T. Dalenius, “Finding a Needle in a Haystack—or Identifying
Anonymous Census Record,” J. Official Statistics, vol. 2, no. 3,
pp. 329-336, 1986.

[6] L. Sweeney, “Achieving k-Anonymity Privacy Protection Using
Generalization and Suppression,” Int’l J. Uncertainty, Fuzziness,
and Knowledge-Based Systems, vol. 10, no. 5, pp. 571-588, 2002.

[7] R.J. Bayardo and R. Agrawal, “Data Privacy through Optimal
k-Anonymization,” Proc. 21st Int’l Conf. Data Eng. (ICDE ’05),
pp. 217-228, Apr. 2005.

[8] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigra-
phy, D. Thomas, and A. Zhu, “Approximation Algorithms for
k-Anonymity,” J. Privacy Technology, no. 20051120001, Nov. 2005.

[9] A. Meyerson and R. Williams, “On the Complexity of Optimal
k-Anonymity,” Proc. 23rd ACM Symp. Principles of Database Systems
(PODS ’04), pp. 223-228, 2004.

[10] L. Sweeney, “Datafly: A System for Providing Anonymity in
Medical Data,” Proc. Int’l Conf. Database Security, pp. 356-381, 1998.

[11] A. Hundepool and L. Willenborg, “�- and �-Argus: Software for
Statistical Disclosure Control,” Proc. Third Int’l Seminar on
Statistical Confidentiality, 1996.

[12] V.S. Iyengar, “Transforming Data to Satisfy Privacy Constraints,”
Proc. Eighth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 279-288, July 2002.

[13] K. Wang, P. Yu, and S. Chakraborty, “Bottom-Up Generalization:
A Data Mining Solution to Privacy Protection,” Proc. Fourth IEEE
Int’l Conf. Data Mining (ICDM ’04), Nov. 2004.

[14] B.C.M. Fung, K. Wang, and P.S. Yu, “Top-Down Specialization for
Information and Privacy Preservation,” Proc. 21st Int’l Conf. Data
Eng. (ICDE ’05), pp. 205-216, Apr. 2005.

[15] R.C.W. Wong, J. Li, A.W.C. Fu, and K. Wang, “ð�; kÞ-Anonymity:
An Enhanced k-Anonymity Model for Privacy Preserving Data
Publishing,” Proc. 12th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’06), Aug. 2006.

[16] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Incognito:
Efficient Full-Domain k-Anonymity,” Proc. 2005 ACM SIGMOD
Int’l Conf. Management of Data, pp. 49-60, 2005.

[17] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Mondrian
Multidimensional k-Anonymity,” Proc. 22nd IEEE Int’l Conf. Data
Eng. (ICDE ’06), 2006.

[18] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Workload-Aware
Anonymization,” Proc. 12th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’06), Aug. 2006.

[19] J. Xu, W. Wang, X. Pei, B. Wang, B. Xie, and A.W.C. Fu, “Utility-
Based Anonymization Using Local Recoding,” Proc. 12th ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
’06), Aug. 2006.

724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007



[20] A. Machanavajjhala, J. Gehrke, and D. Kifer, “l-Diversity: Privacy
beyond k-Anonymity,” Proc. 22nd Int’l Conf. Data Eng. (ICDE ’06),
2006.

[21] K. Wang, B.C.M. Fung, and P.S. Yu, “Template-Based Privacy
Preservation in Classification Problems,” Proc. Fifth IEEE Int’l
Conf. Data Mining (ICDM ’05), pp. 466-473, Nov. 2005.

[22] K. Wang, B.C.M. Fung, and P.S. Yu, “Handicapping Attacker’s
Confidence: An Alternative to k-Anonymization,” Knowledge and
Information Systems: An Int’l J. (KAIS), 2006.

[23] X. Xiao and Y. Tao, “Personalized Privacy Preservation,” Proc.
2006 ACM SIGMOD Int’l Conf. Management of Data, June 2006.

[24] K. Wang, B.C.M. Fung, and G. Dong, “Integrating Private
Databases for Data Analysis,” Proc. 2005 IEEE Int’l Conf.
Intelligence and Security Informatics (ISI ’05), pp. 171-182, May 2005.

[25] K. Wang and B.C.M. Fung, “Anonymizing Sequential Releases,”
Proc. 12th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’06), pp. 414-423, Aug. 2006.

[26] C.E. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical J., vol. 27, pp. 379-623, 1948.

[27] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[28] D.J. Newman, “UCI Repository of Machine Learning Databases,”
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

Benjamin C.M. Fung received the BSc and
MSc degrees in computing science from Simon
Fraser University. He is currently a PhD candi-
date at Simon Fraser with the postgraduate
scholarship doctoral award from the Natural
Sciences and Engineering Research Council of
Canada (NSERC). His recent research interests
include privacy-preserving data mining/publish-
ing, secure distributed computing, and text
mining. Before pursuing his PhD, he worked in

the R&D Department at Business Objects and designed reporting
systems for various enterprise resource planning (ERP) and customer
relationship management (CRM) systems. He has published in data
mining and security conferences, journals, and books. He has served on
program committees for international conferences.

Ke Wang received the PhD degree from the
Georgia Institute of Technology. He is currently
a professor at the School of Computing Science,
Simon Fraser University. Before joining Simon
Fraser, he was an associate professor at the
National University of Singapore. He has taught
in the areas of database and data mining. His
research interests include database technology,
data mining and knowledge discovery, machine
learning, and emerging applications, with recent

interests focusing on the end use of data mining. This includes explicitly
modeling the business goal (such as profit mining, biomining, and Web
mining) and exploiting user prior knowledge (such as extracting
unexpected patterns and actionable knowledge). He is interested in
combining the strengths of various fields such as database, statistics,
and machine learning and optimization to provide actionable solutions to
real-life problems. He is an associate editor of the IEEE Transactions on
Knowledge and Data Engineering and has served on program
committees for international conferences.

Philip S. Yu received the BS degree in electrical
engineering from the National Taiwan Univer-
sity, the MS and PhD degrees in electrical
engineering from Stanford University, and the
MBA degree from New York University. He is
with the IBM T.J. Watson Research Center and
is currently the manager of the Software Tools
and Techniques Group. He has published more
than 450 papers in refereed journals and
conferences. He holds or has applied for more

than 250 US patents. He is a fellow of the ACM and the IEEE. He has
received several IBM honors including two IBM Outstanding Innovation
Awards, an Outstanding Technical Achievement Award, two Research
Division Awards, and the 85th plateau of Invention Achievement
Awards. He received a Research Contributions Award from IEEE
International Conference on Data Mining in 2003 and also an IEEE
Region 1 Award for “promoting and perpetuating numerous new
electrical engineering concepts” in 1999. He is an IBM Master Inventor.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FUNG ET AL.: ANONYMIZING CLASSIFICATION DATA FOR PRIVACY PRESERVATION 725



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


