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Abstract

Releasing person-specific data in its most specific state
poses a threat to individual privacy. This paper presents a
practical and efficient algorithm for determining a gener-
alized version of data that masks sensitive information and
remains useful for modelling classification. The generaliza-
tion of data is implemented by specializing or detailing the
level of information in a top-down manner until a minimum
privacy requirement is violated. This top-down specializa-
tion is natural and efficient for handling both categorical
and continuous attributes. Our approach exploits the fact
that data usually contains redundant structures for classi-
fication. While generalization may eliminate some struc-
tures, other structures emerge to help. Our results show that
quality of classification can be preserved even for highly re-
strictive privacy requirements. This work has great appli-
cability to both public and private sectors that share infor-
mation for mutual benefits and productivity.

1. Introduction

Data sharing in today globally networked systems poses
a threat to individual privacy and organizational confiden-
tiality. An example in Samarati [9] shows that linking med-
ication records with a voter list can uniquely identify a per-
son’s name and her medical information. In response, new
privacy acts and legislations are recently enforced in many
countries. In 2001, Canada launched the Personal Informa-
tion Protection and Electronic Document Act [11] to pro-
tect a wide spectrum of information, e.g., age, race, in-
come, evaluations, and even intentions to acquire goods or
services. This information spans a considerable portion of
many databases. Government agencies and companies have
to revise their systems and practices to fully comply with
this act in three years.

Consider a table T about patient’s information on Diag-
nosis, Zip code, Birthdate, and Sex. If a description on (Zip

code, Birthdate, Sex) is so specific that not many people
match it, releasing the table will lead to linking a unique or
a small number of individuals with the information on Di-
agnosis. Even if sensitive attributes like Diagnosis are not
contained in the table to be released, but contained in an
external source, they can be linked to identifying attributes
(Zip code, Birthdate, Sex) [9].

Suppose that Zip code, Birthdate, Sex, and Diagnosis
must be released, say, to some health research institute for
research purpose. We can still protect privacy by replacing
specific descriptions with less specific but semantically con-
sistent descriptions. This operation is called generalization.
For example, by replacing Birthdate with Birthyear (or re-
placing a specific age value with an interval), more records
will match a description on (Zip code, Birthyear, and Sex),
making the description less identifying. The premise is that
a table T contains only a subset of all individuals. If a de-
scription is less specific, more individuals, both within and
outside T , will match it, making it difficult to tell whether
a matched individual actually has the diagnosis as recorded
in T .

Protecting privacy is one side of the story. Another side
of the story is making the released data useful to data analy-
sis. Can the two goals be achieved at the same time? In this
paper, we like to answer this question for using the data for
classification. Our insight is that these two goals are really
dealing with two types of information: The privacy goal
requires to mask sensitive information, usually specific de-
scriptions that identify individuals, whereas the classifica-
tion goal requires to extract general structures that capture
trends and patterns. If generalization is performed “care-
fully”, identifying information can be masked while still
preserving the trends and patterns for classification. Our
experimental results support this insight.

Example 1 [The running example] Consider the data in Ta-
ble 1 and taxonomy trees in Figure 1. Originally, the table
has 34 records. We have removed irrelevant attributes and
now each row represents one or more original records. The
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Figure 1. Taxonomy trees and VIDs

Class column contains the class frequency of the records
represented, Y for income >50K and N for otherwise. To
make “female doctor” less unique, we can generalize Mas-
ters and Doctorate to Grad School. As a result, “she” be-
comes less distinguishable by being one of the four inside
and many more outside the table who are female and have
graduate school degrees. As far as classification is con-
cerned, no information is lost in this generalization because
Class does not depend on the distinction of Masters and
Doctorate.

In this paper, the privacy goal is specified by the
anonymity on a combination of attributes called a virtual
identifier, where each description on a virtual identifier is
required to be shared by some minimum number of records
in the table. A generalization taxonomy tree is specified for
each categorical attribute in a virtual identifier. We present
a Top-Down Specialization (TDS) approach to generalize a
table to satisfy the anonymity requirement while preserving
its usefulness to classification. TDS generalizes the table
by specializing it iteratively starting from the most general
state. At each step, a general (i.e. parent) value is spe-
cialized into a specific (i.e. child) value for a categorical
attribute, or an interval is split into two sub-intervals for a
continuous attribute. This process is repeated until further
specialization leads to a violation of the anonymity require-
ment.

A number of features make TDS practical:

• Information and privacy-guided specialization. Both
information and privacy are considered in selecting
the specialization at each step. Experiments show that
classification based on the generalized data yields an
accuracy comparable to classification based on the un-
modified data, even for a very restrictive anonymity
requirement.

• Handling both categorical and continuous attributes.

Education Sex Work Hrs Class # of Recs.
9th M 30 0Y3N 3

10th M 32 0Y4N 4
11th M 35 2Y3N 5
12th F 37 3Y1N 4

Bachelors F 42 4Y2N 6
Bachelors F 44 4Y0N 4
Masters M 44 4Y0N 4
Masters F 44 3Y0N 3

Doctorate F 44 1Y0N 1
Total: 34

Table 1. (Compressed) table

This method does not require a priori discretized tax-
onomy tree for a continuous attribute, but dynamically
obtains one in the top-down specialization process.
TDS is especially efficient for handling continuous at-
tributes in that a small number of intervals is obtained
via a small number of specializations.

• Handling multiple virtual identifiers. Often, there are
more than one virtual identifier to identify individuals.
Treating all virtual identifiers as a single united virtual
identifier leads to unnecessary generalization and loss
of data quality. Our method allows specialization on
multiple virtual identifiers to avoid unnecessary gener-
alization.

• Scalable computation. At each iteration, a key op-
eration is updating some goodness metric of affected
candidate specializations. In general, this requires ac-
cessing data records. Our method incrementally main-
tains some “count statistics” to eliminate the expen-
sive data access. Simple but effective data structures
are proposed for this purpose. Our method deals with
the compressed table, which is usually smaller than the
original table, and is amendable to disk-resident data.

• Anytime solution. The top-down approach provides
a natural tree-growing procedure that allows the user
to step through each specialization to determine a de-
sired trade-off between privacy and accuracy. The user
may stop at any time and have a table satisfying the
anonymity requirement. This property is not shared by
the bottom-up generalization that starts with the most
precise state.

We review related work in Section 2, define the problem
in Section 3, define the goodness criterion of specialization
in Section 4, present the top-down specialization approach
in Section 5, evaluate this approach in Section 6. Finally,
we conclude the paper.
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2. Related Work

Many techniques have been proposed previously to pre-
serve privacy, but most are not intended for classification.
For example, Kim et al. [7] and Fuller [3] show that some
simple statistical information, like means and correlations,
can be preserved by adding noise and swapping values. Re-
cently, this technique was studied in data mining for classi-
fication [1]. In these works, privacy was measured by how
closely the original values of a masked attribute can be esti-
mated, which is very different from the notion of anonymity
that quantifies how uniquely an individual can be linked
with sensitive information.

The concept of anonymity was proposed in [2]. Bottom-
up generalization was used to achieve anonymity in Datafly
system [10] and µ-Argus system [5]. These works assumed
a single virtual identifier that includes all attributes that
could potentially be used to link the data to an external
source. In our work, the linking can be either to an external
source or among the attributes in the table itself. In the lat-
ter case all virtual identifiers may be known at the time of
problem specification. They did not consider classification
or a specific use of data, and simple heuristics were used,
such as selecting the attribute having most number of dis-
tinct values [10] or values not having k occurrences [5] to
generalize. Such heuristics did not address the quality for
classification.

Iyengar [6] presented the anonymity problem for classifi-
cation, and proposed a genetic algorithm solution. The idea
is encoding each state of generalization as a “chromosome”
and encoding data distortion into the fitness function, and
employing the genetic evolution to converge to the fittest
chromosome. Wang et al. [12] recently presented an effec-
tive bottom up approach, but it can only generalize categor-
ical attributes. Unlike the random genetic evolution and the
bottom-up generalization, our approach produces a progres-
sive generalization process which the user can step through
to determine a desired trade-off of privacy and accuracy. We
handle both categorical and continuous attributes, and mul-
tiple virtual identifiers. We focus on scalability, in addition
to data quality. Iyengar reported 18 hours to transform 30K
records. Our algorithm took only 7 seconds to produce a
comparable accuracy on the same data. For large databases,
Iyengar suggested running his algorithm on a sample. How-
ever, a small sampling error could mean failed protection on
the entire data.

3. Problem Definition

A data provider wants to release a person-specific ta-
ble T (D1, . . . , Dm, Class) to the public for modelling the
class label Class. Each Di is either a categorical or a con-
tinuous attribute. A record has the form <v1, . . . , vm, cls>,

where vi is a domain value for Di and cls is a class for
Class. att(v) denotes the attribute of a value v. The
data provider also wants to protect against linking an in-
dividual to sensitive information either within or outside T
through some identifying attributes, called a virtual identi-
fier or simply VID. A sensitive linking occurs if some value
of the virtual identifier is shared by only a “small” number
of records in T . This requirement is formally defined below.

Definition 1 (Anonymity requirement) Consider p vir-
tual identifiers V ID1, . . . , V IDp on T . a(vidi) de-
notes the number of data records in T that share the
value vidi on V IDi. The anonymity of V IDi, denoted
A(V IDi), is the smallest a(vidi) for any value vidi on
V IDi. A table T satisfies the anonymity requirement
{<V ID1, k1>,. . . ,<V IDp, kp>} if A(V IDi) ≥ ki for 1
≤ i ≤ p, where ki is the anonymity threshold on V IDi

specified by the data provider.

We assume that V IDj is not a subset of V IDi, j �= i,
otherwise, V IDj can be removed from the requirement.

Example 2 Consider Table 1. To protect against sensitive
linking through {Education,Sex}, we specify <V ID1 =
{Education, Sex}, 4>, that is, every existing vid in T must
be shared by at least 4 records in T . The following
vids violate this requirement: <9th, M>, <Masters, F>,
<Doctorate, F>. To protect against linking through {Sex,
Work Hrs} as well, the anonymity requirement could in-
clude the two VIDs such as in Figure 1.

To generalize T to satisfy the anonymity requirement, a
taxonomy tree is specified for each categorical attribute in
∪V IDi, by either the data provider or the data recipient.
A leaf node represents a domain value and a parent node
represents a less specific value. For a continuous attribute
in ∪V IDi, our algorithm dynamically grows a taxonomy
tree at runtime, where each node represents an interval, and
each non-leaf node has two child nodes representing some
“optimal” binary split of the parent interval. More details
on this will be discussed in Section 4. Figure 1 shows a
dynamically grown taxonomy tree for Work Hrs.

Let child(v) be the set of child values of v in the tax-
onomy tree. A table T can be generalized by a sequence
of generalizations starting from data records. A general-
ization, written child(v) → v, replaces child values in
child(v) with their parent value v. To ensure that the result
is easy to understand, prior to the generalization, all values
below the values in child(v) should be generalized to those
in child(v) first, so that a descendant value and an ancestor
value do not coexist in the generalized data.

Alternatively, T can be generalized by a sequence of spe-
cializations starting from the most general state in which
each attribute has the top most value of its taxonomy tree.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 
1084-4627/05 $20.00 © 2005 IEEE 



Secondary University

Junior Sec.

11th

Bachelors

Masters

ANY_Edu

Senior Sec.

Doctorate

Grad School

12th10th9th

ANY_Sex

Male Female

Figure 2. Example 3: A solution cut for V ID1 = {Education, Sex}

A specialization, written v → child(v), replaces the parent
value v with a child value in child(v) that generalizes the
domain value in a record. A specialization is valid (with
respect to T ) if T satisfies the anonymity requirement after
the specialization. A specialization is beneficial (with re-
spect to T ) if more than one class is involved in the records
containing v. A specialization is performed only if it is both
valid and beneficial.

Definition 2 (Anonymity for Classification) Given
a table T , an anonymity requirement {<V ID1, k1>
, . . . , <V IDp, kp>}, and a taxonomy tree for each cat-
egorical attribute contained in ∪V IDi, generalize T on
the attributes ∪V IDi to satisfy the anonymity requirement
while preserving as much information as possible for
classification.

A generalized T can be viewed as a “cut” through the
taxonomy tree of each attribute in ∪V IDi. A cut of a tree
is a subset of values in the tree that contains exactly one
value on each root-to-leaf path. A solution cut is ∪Cutj ,
where Cutj is a cut of the taxonomy tree of an attribute in
∪V IDi, such that the generalized T represented by ∪Cutj
satisfies the anonymity requirement. We are interested in
a solution cut that maximally preserves the information for
classification.

Example 3 Continue with Example 2. Figure 2 shows a so-
lution cut, indicated by the dashed curve. This solution cut
is the lowest in the sense that any specialization on Junior
Sec. or Grad School would violate the anonymity require-
ment, i.e., is invalid. Also, specialization on Junior Sec. or
Grad School is non-beneficial since none of them special-
izes data records in different classes.

4. Search Criteria

Our top-down specialization starts from the top most so-
lution cut and pushes down the solution cut iteratively by
specializing some value in the current solution cut until
violating the anonymity requirement. Each specialization

tends to increase information and decrease anonymity be-
cause records are more distinguishable by specific values.
The key is selecting a specialization at each step with both
impacts considered. In this section, we consider a goodness
metric for a single specialization.

Consider a specialization v → child(v). Let Rv de-
note the set of records generalized to the value v, and let
Rc denote the set of records generalized to a child value c
in child(v) after specializing v. Let |x| be the number el-
ements in a set x. |Rv| =

∑
c |Rc|, where c ∈ child(v).

The effect of specializing v is summarized by the “infor-
mation gain”, denoted InfoGain(v), and the “anonymity
loss”, denoted AnonyLoss(v). To heuristically maximize
the information of the generalized data for achieving a given
anonymity, we favor the specialization on v that has the
maximum information gain for each unit of anonymity loss:

Score(v) =

{
InfoGain(v)

AnonyLoss(v) if AnonyLoss(v) �= 0

InfoGain(v) otherwise

InfoGain(v): defined as
InfoGain(v) = I(Rv) − ∑

c
|Rc|
|Rv|I(Rc)

where I(Rx) is the entropy of Rx [8]:
I(Rx) = −∑

cls
freq(Rx,cls)

|Rx| × log2
freq(Rx,cls)

|Rx|
freq(Rx, cls) is the number of data records in Rx hav-
ing the class cls. Intuitively, I(Rx) measures the “mix”
of classes for the data records in Rx. The two terms in
InfoGain(v) are the mix of classes before and after spe-
cializing v. A good specialization will reduce the mix
of classes, i.e., have a large InfoGain(v). Note that
InfoGain(v) is non-negative [8].

AnonyLoss(v): defined as
AnonyLoss(v) = avg{A(V IDj) − Av(V IDj)},

where A(V IDj) and Av(V IDj) represents the anonymity
before and after specializing v. A(V IDj) − Av(V IDj)
is the loss of anonymity of V IDj , and avg{A(V IDj) −
Av(V IDj)} is the average loss of all V IDj that contain
the attribute of v.

Example 4 The specialization on ANY Edu refines the 34
records into 16 records for Secondary and 18 records for
University. The calculation of Score(ANY Edu) is shown
below.
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I(RANY Edu) = − 21
34 × log2

21
34 − 13

34 × log2
13
34 = 0.9597

I(RSecondary) = − 5
16 × log2

5
16 − 11

16 × log2
11
16 = 0.8960

I(RUniversity) = − 16
18 × log2

16
18 − 2

18 × log2
2
18 = 0.5033

InfoGain(ANY Edu) = I(RANY Edu) − ( 16
34 × I(RSecondary)

+ 18
34 × I(RUniversity)) = 0.2716

AnonyLoss(ANY Edu) = avg{A(V ID1) − AANY Edu(V ID1)}
= (34 − 16)/1 = 18

Score(ANY Edu) = 0.2716
18 = 0.0151.

For a continuous attribute, the specialization of an inter-
val refers to the optimal binary split of the interval that max-
imizes the information gain. We use information gain, in-
stead of Score, to determine the split of an interval because
anonymity is irrelevant to finding a split good for classifica-
tion. This is similar to the situation that the taxonomy tree
of a categorical attribute is specified independently of the
anonymity issue.

Example 5 For the continuous attribute Work Hrs, the top
most value is the full range interval of domain values, [1-
99). To determine the split point of [1-99), we evaluate the
information gain for the five possible split points for the
values 30, 32, 35, 37, 42, and 44. The following is the
calculation for the split point at 37:
InfoGain(37) = I(R[1−99))− ( 12

34 × I(R[1−37)) + 22
34 × I(R[37−99)))

= 0.9597 − ( 12
34 × 0.6500 + 22

34 × 0.5746) = 0.3584.

As InfoGain(37) is highest, we grow the taxonomy tree
for Work Hrs by adding two child intervals, [1-37) and [37-
99), under the interval [1-99).

The next example shows that InfoGain alone may lead
to a quick violation of the anonymity requirement, thereby,
prohibiting specializing data to a lower granularity.

Example 6 Consider Table 2, an anonymity requirement
<V ID = {Education, Sex, Work Hrs}, 4>, and specializa-
tions:

ANY Edu → {8th, 9th, 10th},
ANY Sex → {M, F}, and
[1-99) → {[1-40), [40-99)}.

The class frequency for the specialized values is:
Education: 0Y4N (8th), 0Y12N (9th), 20Y4N (10th)
Sex: 20Y6N (M), 0Y14N (F)
Work Hrs: 0Y12N ([1-40)), 20Y8N ([40-99))

Specializing Education best separates the classes, so is cho-
sen by InfoGain. After that, the other specializations be-
come invalid. Now, the two classes of the top 24 records
become indistinguishable because they are all generalized
into <10th, ANY Sex, [1-99)>.

In contrast, the Score criterion will first specialize Sex
because of the highest Score due to a small AnonyLoss.
Subsequently, specializing Education becomes invalid, and
the next specialization is on Work Hrs. The final general-
ized table is shown in Table 3 where the information for
distinguishing the two classes is preserved.

Education Sex Work Hrs Class # of Recs.
10th M 40 20Y0N 20
10th M 30 0Y4N 4
9th M 30 0Y2N 2
9th F 30 0Y4N 4
9th F 40 0Y6N 6
8th F 30 0Y2N 2
8th F 40 0Y2N 2

Total: 40

Table 2. (Compressed) table for Example 6

Education Sex Work Hrs Class # of Recs.
ANY Edu M [40-99) 20Y0N 20
ANY Edu M [1-40) 0Y6N 6
ANY Edu F [40-99) 0Y8N 8
ANY Edu F [1-40) 0Y6N 6

Table 3. Generalized table by Score for Exam-
ple 6

5. Top-Down Specialization

5.1. The Algorithm

We present our algorithm, Top-Down Specialization
(TDS). In a preprocessing step, we compress the given ta-
ble by removing all attributes not in ∪V IDj and collapsing
duplicates into a single row with the Class column storing
the class frequency as in Table 1. The compressed table
is typically much smaller than the original table. Below,
the term “data records” refers to data records in this com-
pressed form. To focus on main ideas, we assume that the
compressed table fits in the memory. In Section 5.5, we
will discuss the modification needed if the compressed ta-
ble does not fit in the memory.

Table 4 summarizes the conceptual algorithm. Initially,
Cuti contains only the top most value for its attribute. The
valid, beneficial specializations in ∪Cuti form the set of
candidates to be performed next. At each iteration, we find
the candidate of the highest Score, denoted Best (Line 5),
apply Best to T and update ∪Cuti (Line 6), and update
Score and validity of the candidates in ∪Cuti (Line 7).
The algorithm terminates when there is no more candidate
in ∪Cuti, in which case it returns the generalized table to-
gether with ∪Cuti.

Example 7 Consider the anonymity requirement:
{<V ID1 = {Education, Sex}, 4>,
<V ID2 = {Sex, Work Hrs}, 11>}.

Initially, all data records in Table 1 are generalized to
<ANY Edu, ANY Sex, [1-99)>,

and
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∪Cuti = {ANY Edu, ANY Sex, [1-99)}.
All specializations in ∪Cuti are candidates. To find the best
specialization, we need to compute Score(ANY Edu),
Score(ANY Sex), and Score([1-99)).

1 Algorithm TDS
2 Initialize every value in T to the top most value.
3 Initialize Cuti to include the top most value.
4 while some x ∈ ∪Cuti is valid and beneficial do
5 Find the Best specialization from ∪Cuti.
6 Perform Best on T and update ∪Cuti.
7 Update Score(x) and validity for x ∈ ∪Cuti.
8 end while
9 return Generalized T and ∪Cuti.

Table 4. Top-Down Specialization (TDS)

The algorithm in Table 4 makes no claim on efficiency.
In a straightforward method, Line 6 and 7 require scanning
all data records and recomputing Score for all candidates in
∪Cuti. Obviously, this is not scalable. The key to the effi-
ciency of our algorithm is directly accessing the data records
to be specialized, and updating Score based on some statis-
tics maintained for candidates in ∪Cuti, instead of access-
ing data records. In the rest of this section, we explain our
scalable implementation and data structures in details.

5.2. Find the Best Specialization

This step makes use of computed InfoGain(x) and
Ax(V IDj) for all candidates x in ∪Cuti and computed
A(V IDj) for each V IDj . Before the first iteration, such
information is computed in an initialization step for every
top most value. For each subsequent iteration, such in-
formation comes from the update in the previous iteration
(Line 7). Finding the best specialization Best involves at
most | ∪ Cuti| computations of Score without accessing
data records. Updating InfoGain(x) and Ax(V IDj) will
be considered in Section 5.4.

5.3. Perform the Best Specialization

First, we replace Best with child(Best) in ∪Cuti.
Then, we need to retrieve RBest, the set of data records
generalized to Best, to tell the child value in child(Best)
for individual data records. We first present a data struc-
ture, Taxonomy Indexed PartitionS (TIPS), to facilitate this
operation. This data structure is also crucial for updating
InfoGain(x) and Ax(V IDj) for candidates x. The gen-
eral idea is to group data records according to their general-
ized records on ∪V IDj .

Definition 3 (TIPS) TIPS is a tree structure with each node
representing a generalized record over ∪V IDj , and each

child node representing a specialization of the parent node
on exactly one attribute. Stored with each leaf node is the
set of (compressed) data records having the same general-
ized record, called a leaf partition. For each x in ∪Cuti, Px

denotes a leaf partition whose generalized record contains
x, and Linkx denotes the link of all Px, with the head of
Linkx stored with x.

At any time, the generalized data is represented by the
leaf partitions of TIPS, but the original data records remain
unchanged. Linkx provides a direct access to Rx, the set of
data records generalized to the value x. Initially, TIPS has
only one leaf partition containing all data records, general-
ized to the top most value on every attribute in ∪V IDj . In
each iteration, we perform the best specialization Best by
refining the leaf partitions on LinkBest.

Update TIPS. We refine each leaf partition PBest found
on LinkBest as follows. For each value c in child(Best), a
child partition Pc is created under PBest, and data records
in PBest are split among the child partitions: Pc contains a
data record in PBest if c generalizes the corresponding do-
main value in the record. An empty Pc is removed. Linkc

is created to link up all Pc’s for the same c. Also, link Pc

to every Linkx to which PBest was previously linked, ex-
cept for LinkBest. Finally, mark c as “beneficial” if Rc has
more than one class. Recall that Rc is the set of data records
generalized to c.

We emphasize that this is the only operation in the whole
algorithm that requires accessing data records. The over-
head of maintaining Linkx is small. For each attribute in
∪V IDj and each leaf partition on LinkBest, there are at
most |child(Best)| “relinkings”, or at most | ∪ V IDj | ×
|LinkBest| × |child(Best)| “relinkings” in total for apply-
ing Best.

Example 8 Continue with Example 7. Initially, TIPS has
only one leaf partition containing all data records and
representing the generalized record <ANY Edu, ANY Sex,
[1-99)>. Let the best specialization be [1-99) →
{[1-37), [37-99)} on Work Hrs. We create two child
partitions under the root partition as in Figure 3, and
split data records between them. Both child partitions
are on LinkANY Edu and LinkANY Sex. ∪Cuti is up-
dated into {ANY Edu, ANY Sex, [1-37), [37-99)}. Sup-
pose that the next best specialization is ANY Edu →
{Secondary,University}, which specializes the two leaf par-
titions on LinkANY Edu, resulting in the TIPS in Figure 3.

A scalable feature of our algorithm is maintaining some
statistical information for each candidate x in ∪Cuti for up-
dating Score(x) without accessing data records. For each
new value c in child(Best) added to ∪Cuti in the cur-
rent iteration, we collect the following count statistics of
c while scanning data records in PBest for updating TIPS:
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Link
Secondary

Head of Link Secondary

ANY_Edu ANY_Sex [37-99)ANY_Edu ANY_Sex [1-37)

Education Sex Work_Hrs
ANY_Edu ANY_Sex [1-99)

Secondary ANY_Sex [1-37) Secondary ANY_Sex [37-99) University ANY_Sex [37-99)

Head of LinkUniversity

[1-99)       {[1-37), [37-99)}

ANY_Edu       {Secondary, University}

34
# of Recs.

12 22

12 184

Figure 3. The TIPS data structure

(1) |Rc|, |Rd|, freq(Rc, cls), and freq(Rd, cls) for com-
puting InfoGain(c), where d ∈ child(c) and cls is a class
label. Refer to Section 4 for these notations. (2) |Pd|, where
Pd is a child partition under Pc as if c is specialized, kept
together with the leaf node for Pc. These information will
be used in Section 5.4.

TIPS has several useful properties. (1) All data records
in the same leaf partition have the same generalized record
although they may have different lower level values. (2)
Every data record appears in exactly one leaf partition. (3)
Each leaf partition Px has exactly one generalized vidj

on V IDj and contributes the count |Px| towards a(vidj).
Later, we use the last property to extract a(vidj) from TIPS.

5.4. Update the Score

This step updates Score(x) for candidates x in ∪Cuti
to reflect the impact of Best → child(Best). The key
to the efficiency of our algorithm is computing Score(x)
from the count statistics maintained in Section 5.3 with-
out accessing data records. We update InfoGain(x) and
Ax(V IDj) separately. Note that the updated A(V IDj) is
obtained from ABest(V IDj).

5.4.1 Update InfoGain(x)

A quick observation is that InfoGain(x) is not affected
by applying Best → child(Best) except that we need to
compute InfoGain(c) for each value c in child(Best).
InfoGain(c) can be computed while collecting the count
statistics for c in Section 5.3.

5.4.2 Update AnonyLoss(x)

Unlike information gain, it is not enough to compute
Ac(V IDj) only for each c in child(Best). Recall that
Ax(V IDj) is the minimum a(vidj) after specializing

x. If att(x) and att(Best) are contained in V IDj , the
specialization on Best may affect this minimum, hence,
Ax(V IDj). Below, we present a data structure, Virtual
Identifier TreeS (V ITS), to extract a(vidj) efficiently from
TIPS for updating Ax(V IDj).

Definition 4 (VITS) V ITj for V IDj = {D1, . . . , Dw} is
a tree of w levels. The level i > 0 represents the generalized
values for Di. Each root-to-leaf path represents an existing
vidj on V IDj in the generalized data, with a(vidj) stored
at the leaf node. A branch is trimmed if its a(vidj) = 0.
A(V IDj) is the minimum a(vidj) in V ITj .

In other words, V ITj provides an index of a(vidj) by
vidj . Unlike TIPS, VITS does not maintain data records.
On applying Best → child(Best), we update every V ITj

such that V IDj contains att(Best).
Update V ITj . For each occurrence of Best in V ITj ,

create a separate branch for each c in child(Best). The
procedure in Table 5 computes a(vidj) for the newly cre-
ated vidj’s on such branches. The general idea is to loop
through each Pc on Linkc in TIPS, increment a(vidj) by
|Pc|. This step does not access data records because |Pc|
was part of the count statistics of Best. Let r be the num-
ber of V IDj containing att(Best). The number of a(vidj)
to be computed is at most r × |LinkBest| × |child(Best)|.

1 Procedure UpdateCounts
2 for each Pc ∈ Linkc do
3 for each V IDj containing att(Best) do
4 a(vidj) = a(vidj) + |Pc|, where

vidj is the generalized value on V IDj for Pc

5 end for
6 end for

Table 5. Computing a(vidj) for new vidj
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Example 9 In Figure 4, the initial V IT1 and V IT2 (i.e.,
left most) have a single path. After applying [1-99) →
{[1-37), [37-99)}, the vid <ANY Sex, [1-99)> in V IT2

is replaced with two new vids <ANY Sex, [1-37)> and
<ANY Sex, [37-99)>, and A(V ID2) = 12. Since V ID1

does not include Work Hrs, V IT1 remains unchanged and
A(V ID1) = 34.

After applying the second specialization ANY Edu →
{Secondary, University}, V IT2 remains unchanged, and
A(V ID2) = 12. The vid <ANY Edu,ANY Sex> in V IT1

is replaced with two new vids <Secondary,ANY Sex> and
<University, ANY Sex>. To compute a(vid) for these new
vids, we add |PSecondary| on LinkSecondary and |PUniversity| on
LinkUniversity (see Figure 3): a(<Secondary, ANY Sex>) =
0 + 12 + 4 = 16, and a(<University, ANY Sex>) = 0 + 18 =
18. So AANY Edu(V ID1) = 16.

Education

Sex

Initial

a(vid) count

After Specialization
on [1-99)

ANY_Sex
34

ANY_Edu

After Specialization
on ANY_Edu

RootVIT1

VIT
2

Sex

Work_Hrs
a(vid) count

ANY_Sex
34

ANY_Edu

Root

ANY_Sex
16

Secondary

Root

ANY_Sex
18

University

[1-99)
34

ANY_Sex

Root

[1-37)
12

ANY_Sex

Root

[37-99)
22

[1-37)
12

ANY_Sex

Root

[37-99)
22

Figure 4. The VITS data structure

Now, we update Ax(V IDj) for candidates x in ∪Cuti
in the impact of Best → child(Best). Doing this by spe-
cializing x requires accessing data records, hence, is not
scalable. We like to compute Ax(V IDj) using the count
statistics maintained for x in ∪Cuti without accessing data
records.

Update Ax(V IDj). For a candidate x in ∪Cuti, com-
puting Ax(V IDj) is necessary in two cases. First, x is in
child(Best) because Ax(V IDj) has not been computed
for newly added candidates x. Second, Ax(V IDj) might
be affected by the specialization on Best, in which case
att(x) and att(Best) must be contained in V IDj . In both
cases, we first compute a(vidx

j ) for the new vidx
j ’s created

as if x is specialized. The procedure is the same as in Table
5 for specializing Best, except that Best is replaced with x
and no actual update is performed on V ITj and TIPS. Note
that the count |Pc|, where c is in child(x), in the procedure
is part of the count statistics maintained for x.

Next, we compare a(vidx
j ) with A(V IDj) to determine

the minimum, i.e., Ax(V IDj). There are two cases:

Case 1: If no contributing vid of A(V IDj) (i.e., those
vids such that a(vid) = A(V IDj)) contains the value
x, then such vids remain existing if x is specialized, so
Ax(V IDj) is the minimum of A(V IDj) and a(vidx

j ).
Case 2: If some contributing vid of A(V IDj) contains

the value x, such vid’s become new vidx
j if x is specialized,

so Ax(V IDj) is the minimum of a(vidx
j ).

Finally, if the new Ax(V IDj) ≥ kj , we keep it with x
and mark x as “valid” in the cut.

5.5. Discussion

Each iteration involves two types of work. The first
type accesses data records in RBest for updating TIPS and
count statistics in Section 5.3. The second type computes
Score(x) (i.e., InfoGain(x) and Ax(V IDj)) for the can-
didates x in ∪Cuti without accessing data records in Sec-
tion 5.4. For a table with m attributes and each taxonomy
tree with at most p nodes, the number of such x is at most
m×p. This computation makes use of the maintained count
statistics, rather than accessing data records. In other words,
each iteration accesses only the records being specialized.

In the special case that there is only a single VID, each
root-to-leaf path in TIPS has represented a vid, and we can
store a(vid) directly at the leaf partitions in TIPS without
VITS. A single VID was considered in [10, 6] where the
VID contains all potentially identifying attributes to be used
for linking the table to an external source. Our algorithm is
more efficient in this special case.

To focus on main ideas, our current implementation as-
sumes that the compressed table fits in memory. Often, this
assumption is valid because the compressed table can be
much smaller than the original table. If the compressed
table does not fit in the memory, we can store leaf parti-
tions of TIPS on disk if necessary. Favorably, the memory
is used to keep only leaf partitions that are smaller than the
page size to avoid fragmentation of disk pages. A nice prop-
erty of TDS is that leaf partitions that cannot be further spe-
cialized (i.e., on which there is no candidate specialization)
can be discarded, and only some statistics for them needs to
be kept. This likely applies to small partitions in memory,
therefore, the memory demand is unlikely to build up.

Compared to iteratively generalizing the data bottom-
up starting from domain values, the top-down specializa-
tion is more natural and efficient for handling continuous
attributes. To produce a small number of intervals for a
continuous attribute, the top-down approach needs only a
small number of interval splitting, whereas the bottom-up
approach needs many interval merging starting from many
domain values. In addition, the top-down approach can dis-
card data records that cannot be further specialized, whereas
the bottom-up approach has to keep all data records until the
end of computation.
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Attribute Type Numerical Range

# of Leaves # of Levels

Age (A) continuous 17 - 90
Capital-gain (Cg) continuous 0 - 99999
Capital-loss (Cl) continuous 0 - 4356
Education-num (En) continuous 1 - 16
Final-weight (Fw) continuous 13492 - 1490400
Hours-per-week (H) continuous 1 - 99
Education (E) categorical 16 5
Martial-status (M) categorical 7 4
Native-country (N) categorical 40 5
Occupation (O) categorical 14 3
Race (Ra) categorical 5 3
Relationship (Re) categorical 6 3
Sex (S) categorical 2 2
Work-class (W) categorical 8 5

Table 6. Attributes for the Adult data set

6. Experimental Evaluation

We have three objectives in this section. (1) Verify if
the proposed method, TDS, can generalize a given data set
to satisfy a broad range of anonymity requirements with-
out sacrificing significantly the usefulness to classification.
(2) Compare TDS with the genetic algorithm presented in
Iyengar [6] in terms of both accuracy and efficiency. (3)
Evaluate the scalability of TDS on larger data sets. The
result of Iyengar [6] was quoted from that paper. All exper-
iments based on TDS were conducted on an Intel Pentium
IV 2.6GHz PC with 1GB RAM.

We adopted the publicly available benchmark Adult data
set from [4]. It has 6 continuous attributes, 8 categor-
ical attributes, and a binary Class column representing
two income levels, ≤50K or >50K. Table 6 describes
each attribute. After removing records with missing values
from the pre-split training and testing sets, we have 30,162
records and 15,060 records for training and testing respec-
tively. This is exactly the same data set as used in [6].

Although the author of [6] has specified taxonomy trees
for categorical attributes, we do not agree with the author’s
groupings. For example, the author grouped Native-country
according to continents, except Americas. We followed the
grouping according to the World Factbook published by
CIA1. Our taxonomy trees and an executable program of
TDS can be obtained from our website2. Nevertheless, we
did use Iyengar’s taxonomy trees in Section 6.2 for compar-
ison purpose.

1http://www.cia.gov/cia/publications/factbook/
2http://www.cs.sfu.ca/˜ddm/

6.1. Data Quality

Our first objective is to evaluate if the proposed TDS pre-
serves the quality for classification while generalizing the
data to satisfy various anonymity requirements. We used the
C4.5 classifier [8] and Naive Bayesian classifier3 as classi-
fication models. Unless stated otherwise, all 14 attributes
were used for building classifiers.

In a typical real life situation, the data provider releases
all data records in a single file, leaving the split of training
and testing sets to the data miner. Following this practice,
we combined the training set and testing set into one set for
generalization, and built a classifier using the generalized
training set and collected the error using the generalized
testing set. This error, called the anonymity error and de-
noted AE, was compared with the baseline error, denoted
BE, for the unmodified training and testing sets. Note that
AE depends on the anonymity requirement. BE is 14.7%
for the C4.5 classifier and 18.07% for the Naive Bayesian
classifier. AE − BE measures the quality loss due to data
generalization.

For the same anonymity threshold k, a single VID is al-
ways more restrictive than breaking it into multiple VIDs.
For this reason, we first consider the case of single VID.
To ensure that generalization is working on attributes that
have impacts on classification, the VID contains the top N
attributes ranked by the C4.5 classifier. The top rank at-
tribute is the attribute at the top of the C4.5 decision tree.
Then we remove this attribute and repeat this process to de-
termine the rank of other attributes. The top 9 attributes
are Cg,A,M,En,Re,H, S,E,O in that order. We spec-
ified three anonymity requirements denoted Top5, Top7,
and Top9, where the VID contains the top 5, 7, and 9 at-
tributes respectively. The upper error, denoted UE, refers
to the error on the data with all the attributes in the VID
removed (equivalent to generalizing them to the top most
ANY ). UE−BE measures the impact of the VID on clas-
sification.

Figure 5a displays AE for the C4.5 classifier with the
anonymity threshold 20 ≤ k ≤ 1000. Note that k is not
spaced linearly. We summarize the analysis for Top7 as fol-
lows. First, AE−BE, where BE = 14.7%, is less than 2%
over the range of anonymity threshold 20 ≤ k ≤ 600, and
AE is much lower than UE = 21.5%. This supports that
accurate classification and privacy protection can coexist.
Second, AE generally increases as the anonymity thresh-
old k increases, but not monotonically. For example, the
error slightly drops when k increases from 60 to 100. This
is due to the variation between the training set and testing
set and the fact that a better structure may appear in a more
general state.

A closer look at the generalized data for Top7 with

3http://magix.fri.uni-lj.si/orange/
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Figure 5. Anonymity error of TDS on TopN

k = 500 reveals that among the seven top ranked attributes,
three are generalized to a different degree of granularity, and
four, namely A (ranked 2nd), Re (ranked 5th), S (ranked
7th), and Cg (ranked 1st), are generalized to the top most
value ANY. Even for this drastic generalization, AE has
only increased by 2% from BE = 14.7%, while the worst
case can be UE = 21.5%. With the generalization, classi-
fication now is performed by the remaining three attributes
in the V ID and the unmodified but lower ranked attributes.
Clearly, this is a different classification structure from what
would be found from the unmodified data. As a result,
though generalization may eliminate some structures, new
structures emerge to help.

Figure 5b displays AE for the Naive Bayesian classifier.
Compared to the C4.5 classifier, though BE and UE are
higher (which has to do with the classification method, not
the generalization), the quality loss due to generalization,
AE − BE (note BE = 18.07%), is smaller, no more than
1.5% for the range of anonymity threshold 20 ≤ k ≤ 1000.
This suggests that the information based generalization is
also useful to other classification methods such as the Naive
Bayesian that do to use the information bias. Another obser-
vation is that AE is even lower than BE for the anonymity
threshold k ≤ 180 for Top5 and Top7. This confirms again
that the best structure may not appear in the most special-
ized data. Our approach uses this room to mask sensitive
information while preserving classification structures.

Figure 6 shows the generated taxonomy trees for con-
tinuous attributes Hours-per-week and Education-num with
Top7 and k = 60. The splits are very reasonable. For exam-
ple, in the taxonomy tree of Education-num, the split point
at 13 distinguishes whether the person has post-secondary
education. If the user does not like these trees, she may
modify them or specify her own and subsequently treat

ANY
[1-99)

[1-42) [42-99)

Work Hrs per Week

[1-9)

ANY
[1-20)

[1-13) [13-20)

[9-13)

Years of Education

[13-15) [15-20)

Figure 6. Generated taxonomy trees of Hours-
per-week and Education-num

continuous attributes as categorical attributes with specified
taxonomy trees.

Our method took at most 10 seconds for all previous ex-
periments. Out of the 10 seconds, approximately 8 seconds
were spent on reading data records from disk and writing
the generalized data to disk. The actual processing time for
generalizing the data is relatively short.

In an effort to study the effectiveness of multiple VIDs,
we compared AE between a multiple VIDs requirement
and the corresponding single united VID requirement. We
randomly generated 30 multiple VID requirements as fol-
lows. For each requirement, we first determined the num-
ber of VIDs using the uniform distribution U [3, 7] (i.e., ran-
domly drawn a number between 3 and 7) and the length
of VIDs using U [2, 9]. For simplicity, all VIDs in the
same requirement have the same length and same threshold
k = 100. For each VID, we randomly selected some at-
tributes according to the VID length from the 14 attributes.
A repeating VID was discarded. For example, a require-
ment of 3 VIDs and length 2 is

{< {A, En}, k >, < {A, R}, k >, < {S, H}, k >},
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and the corresponding single VID requirement is
{< {A, En, R, S, H}, k >}.
In Figure 7, each data point represents the AE of a mul-

tiple VID requirement, denoted MultiVID, and the AE of
the corresponding single VID requirement, denoted Single-
VID. The C4.5 classifier was used. Most data points ap-
pear at the upper left corner of the diagonal, suggesting that
MultiVID generally yields lower AE than its corresponding
SingleVID. This verifies the effectiveness of multiple VIDs
to avoid unnecessary generalization and improve data qual-
ity.

6.2. Comparing with Genetic Algorithm

Iyengar [6] presented a genetic algorithm solution. See
Section 2 for a brief description or [6] for the details. Ex-
periments in this section were customized to conduct a fair
comparison with his results. We used the same Adult data
set, same attributes, and the same anonymity requirement as
specified in [6]:

GA = < {A, W, E, M, O, Ra, S, N}, k >.
We obtained the taxonomy trees from the author, except for
the continuous attribute A. Following Iyengar’s procedure,
all attributes not in GA were removed and were not used
to produce BE, AE, and UE in this experiment, and all
errors were based on the 10-fold cross validation and the
C4.5 classifier. For each fold, we first generalized the train-
ing data and then applied the generalization to the testing
data.

Figure 8 compares AE of TDS with the errors reported
for two methods in [6], Loss Metric (LM) and Classification
Metric (CM), for 10 ≤ k ≤ 500. TDS outperformed LM,
especially for k ≥ 100, but performed only slightly better
than CM. TDS continued to perform well from k = 500 to
k = 1000, for which no result was reported for LM and CM
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Figure 8. Comparing with genetic algorithm

in [6]. This analysis shows that our method is at least com-
parable to Iyengar’s genetic algorithm in terms of accuracy.
However, our method took only 7 seconds to generalize the
data, including reading data records from disk and writing
the generalized data to disk. Iyengar [6] reported that his
method requires 18 hours to transform this data, which has
about only 30K data records. Clearly, the genetic algorithm
is not scalable.

6.3. Efficiency and Scalability

This experiment evaluates the scalability of TDS by
blowing up the size of the Adult data set. First, we com-
bined the training and testing sets, giving 45,222 records.
For each original record r in the combined set, we cre-
ated α − 1 “variations” of r, where α > 1 is the blowup
scale. For each variation of r, we randomly selected q at-
tributes from ∪V IDj , where q has the uniform distribution
U [1, | ∪ V IDj |], i.e., randomly drawn between 1 and the
number of attributes in VIDs, and replaced the values on
the selected attributes with values randomly drawn from the
domain of the attributes. Together with all original records,
the enlarged data set has α × 45, 222 records. In order to
provide a more precise evaluation, the runtime reported in
this section excludes the time for loading data records from
disk and the time for writing the generalized data to disk.

Figure 9 depicts the runtime of TDS for 200K to 1M data
records and the anonymity threshold k = 50 based on two
types of anonymity requirements. AllAttVID refers to the
single VID having all 14 attributes. This is one of the most
time consuming settings because of the largest number of
candidate specializations to consider at each iteration. For
TDS, the small anonymity threshold of k = 50 requires
more iterations to reach a solution, hence more runtime,
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Figure 9. Scalability vs # of records (k=50)

than a larger threshold. TDS takes approximately 80 sec-
onds to transform 1M records.

In Figure 9, MultiVID refers to the average runtime over
the 30 random multiple VID requirements in Section 6.1
with k = 50. Compared to AllAttVID, TDS becomes less
efficient for handling multiple VIDs for two reasons. First,
an anonymity requirement on multiple VIDs is a less re-
strictive constraint than the single VID anonymity require-
ment containing all attributes; therefore, TDS has to per-
form more specializations before violating the anonymity
requirement. Moreover, TDS needs to create one VIT for
each VID and maintains a(vid) in VITS. The increase is
roughly by a factor proportional to the number of VIDs in
an anonymity requirement.

6.4. Summary

Our experiments verified several claims about the pro-
posed TDS method. First, TDS generalizes a given table
to satisfy a broad range of anonymity requirements with-
out sacrificing significantly the usefulness to classification.
Second, while producing a comparable accuracy, TDS is
much more efficient than previously reported approaches,
particularly, the genetic algorithm in [6]. Third, TDS scales
well with large data sets and complex anonymity require-
ments. These performances together with the features dis-
cussed in Section 1 make TDS a practical technique for pri-
vacy protection while sharing information.

7. Conclusions

We considered the problem of protecting individual pri-
vacy while releasing person-specific data for classification
modelling. Our approach is based on two observations: sen-

sitive information tends to be overly specific, thus of less
utility, to classification; even if masking sensitive informa-
tion eliminates some useful structures, alternative structures
in the data emerge to help. We presented a top-down ap-
proach to iteratively specialize the data from a general state
into a special state, guided by maximizing the information
utility and minimizing the privacy specificity. This top-
down approach serves a natural and efficient structure for
handling categorical and continuous attributes and multiple
anonymity requirements. Experiments showed that our ap-
proach effectively preserves both information utility and in-
dividual privacy and scales well for large data sets.
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