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Abstract—Releasing person-specific data could potentially re-
veal sensitive information of individuals. k-anonymization is
a promising privacy protection mechanism in data publish-
ing. Though substantial research has been conducted on k-
anonymization and its extensions in recent years, few of them
consider releasing data for a specific purpose of data analysis.
This paper presents a practical data publishing framework
for determining a generalized version of data that preserves
both individual privacy and information usefulness for cluster
analysis. Experiments on real-life data suggest that, by focusing
on preserving cluster structure in the generalization process, the
cluster quality is significantly better than the cluster quality on
the generalized data without such focus. The major challenge of
generalizing data for cluster analysis is the lack of class labels
that could be used to guide the generalization process. Our
approach converts the problem into the counterpart problem
for classification analysis where class labels encode the cluster
structure in the data, and presents a framework to evaluate the
cluster quality on the generalized data.

I. INTRODUCTION

After the series of worldwide terrorist attacks, law enforce-
ment agencies have received more pervasive authorities to
counter security challenges [18]. In September 2004, the De-
partment of Homeland Security in the United States awarded
$9 million research grants to foster and evaluate uses of “state-
of-the-market” information technology that will improve infor-
mation sharing and integration among the network of security
agencies [19]. Recent research [4], however, indicates that the
public feels an increased sense of intrusion and loss of privacy
due to the increasing scope of information sharing among
agencies, corporations, and governments. In a broad sense,
there is a demand for simultaneous information sharing and
privacy protection. This paper presents a technical response to
the demand for the task of cluster analysis.

Consider a person-specific data table 7' about patients’
information on Zip code, Birthplace, Sex, and Disease. The
data holder wants to publish 7" to some recipient for cluster
analysis. However, if a description on (Zip code, Birthplace,
Sex) is so specific that few people match it, publishing the table
will lead to linking a unique or a small number of individuals
with the sensitive information on Disease. Even if the currently
published table 7' may not contain sensitive information,
individuals in T can be linked to the sensitive information in
some external source by a join on the common attributes [17].
In this paper, we want to determine a generalized version of
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T that satisfies two requirements: the privacy requirement and
the clustering requirement.

Privacy Requirement: To protect privacy, instead of pub-
lishing the raw table 7', the data holder publishes a generalized
table T(QID, Sensitive_attribute), where QQID contains a
set of generalized identifying attributes, such as, (Zip code,
Birth Region, Sex). By replacing Birthplace with Birth Region,
more records will match the generalized description, and
therefore, individuals who match the description will become
less identifiable. The privacy requirement is specified by k-
anonymity [15][17]: Each record in table T' shares the same
value on QI D with at least k — 1 other records, where k is an
anonymity threshold specified by the data holder.! All records
in the same QID group are made indistinguishable, and
therefore, difficult to determine whether a matched individual
actually has the disease from 7.

Clustering Requirement: We consider publishing a table
T to a recipient for the purpose of cluster analysis where the
goal is to group similar objects into the same cluster and
group dissimilar objects into different clusters. We assume
the Sensitive_attribute is important for the task of cluster
analysis; otherwise, it should be removed. The recipient may
or may not be known at the time of data publication.

We define the anonymity problem for cluster analysis as
follows: For a given anonymity requirement and a raw data
table T', we want to determine an anonymous version of T
that preserves as much as possible the information for cluster
analysis. There are many possible k-anonymous versions of 7.
The major challenge is how to pick the “appropriate” one for
cluster analysis. An inappropriately generalized version could
put originally dissimilar objects into the same cluster, or put
originally similar objects into different clusters because other
generalized objects become more similar to each other. There-
fore, a quality-guided generalization process is crucial. Unlike
the anonymity problem for classification analysis [6][7], the
anonymity problem for cluster analysis does not have class
labels to guide the generalization. It is not even clear what
“information for cluster analysis” means and how to evaluate
the quality of generalized data in terms of cluster analysis.

These challenges bring out the contributions of this paper:

To avoid confusion with the variable k in k-means clustering algorithm,
we use h to denote the anonymity threshold in the rest of this paper.
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(1) We define the anonymity problem for cluster analysis.
(2) We present a framework to convert the problem to the
counterpart problem for classification analysis. The idea is to
extract the cluster structure from the raw data, encode it in
the form of class labels, and preserve such class labels while
generalizing the data. (3) Our proposed framework can address
the unknown choices of the prospective recipient and permit
the data holder to evaluate the cluster quality of the generalized
data. (4) We experimentally study the effectiveness of the
approach on real-life data. The results suggest that, by focusing
on preserving cluster structure in the generalization process,
the cluster quality is significantly better than the cluster quality
on the generalized data without such focus. (5) We show the
extensions to achieve other privacy notions [13][24][25].

Given that the clustering task is known in advance, why not
publish the analysis result instead of the data records? Unlike
classification trees and association rules, publishing the cluster
statistics (e.g., cluster centers, together with their size, and
radius) usually cannot fulfil the requirement of cluster analysis.
Often, data recipients want to browse into the clustered records
to gain more knowledge. For example, a police officer may
browse into some clusters of criminals and examine their
common characteristics. Thus, publishing data records often
is a vital requirement for cluster analysis.

II. RELATED WORKS

Recently, many generalization methods [S][11][15] have
been proposed to achieve k-anonymity [17]. Their work does
not consider cluster analysis or any other specific use of
data, but uses simple quality measures to guide generalization.
Preserving anonymity for classification analysis was studied
in [3][6][7][9]1[12][22][23]. The idea is using the available
class labels to guide the generalization process so that the
class labels can still be identified in generalized QID. In the
case of cluster analysis, no class label is available for this
purpose. Alternative privacy notions, such as ¢-diversity [13]
and confidence bounding [24][25], were proposed to hide the
correlation between Q1D and sensitive attributes.

There is a family of anonymization methods [1][2] that
achieves privacy by clustering similar data records together.
Their objective is very different from our studied problem that
is to publish data for cluster analysis. An anonymization ap-
proach, called condensation [1], proposes to first condense the
records into multiple non-overlapping groups in which each
group has a size of at least h records. For each group, extract
some statistical information, such as sum and covariance, that
suffices to preserve the mean and correlations across different
attributes. Then, based on the statistical information, generate
data records for each group. In a similar spirit, r-gather
clustering [2] partitions records into clusters and releases the
cluster centers, together with their size, radius, and a set of
associated sensitive values.

Some secure protocols [8][20] have been proposed to de-
termine a clustering solution from vertically and horizontally
partitioned data owned by multiple parties. [26] studies the
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TABLE I
THE LABELLED TABLE

Rec ID || Education | Sex | Age | .. Class Count
1-3 9th M 30 0C, 3C:2 3
4-7 10th M 32 0C, 4C> 4
8-12 11th M 35 2C1 3C, 5
13-16 12th F 37 3C1 102 4
17-22 Bachelors F 42 4C7 2Co 6

23-26 Bachelors F 44 4C7 0C9 4

27-30 Masters M 44 4C7 0C9 4

31-33 Masters F 44 3C1 0C9 3

34 Doctorate F 44 1C1 0Co 1

Total: | 21C; 13C5 34

ANYTEdu ANY_Sex

Secolndary Univérsity

e Malg *+esesssnrsans Female «+

+= Junior Sec. Senior Sec. ,+ Bachelors ***- Grad School*****

9th  10th’=11thess12the=" Masters Doctorate

Fig. 1. A solution cut for QI D1 = {Education, Sex}

tradeoff between privacy protection and communication com-
plexity of secure protocols for information sharing. In their
models, accessing data held by other parties is prohibited. In
contrast, our goal is to share generalized data.

ITI. PROBLEM STATEMENTS

A labelled table has the form T(Dy,..., Dy, Class) that
contains a set of records of the form (vq, ..., vy, cls), where
v; is a domain value of attribute D; and cls is a class label
of the Class attribute. Each D; is either a categorical or a
continuous attribute. An unlabelled table has the same form
as a labelled table but without the Class attribute.

Suppose that a data holder wants to publish a person-specific
table 7', but also wants to protect against linking an individual
to sensitive information either inside or outside 7' through
some sets of identifying attributes, called quasi-identifiers. A
sensitive linking occurs if some value on a quasi-identifier
is shared by only a “small” number of records in 7'. This
requirement is formally defined below.

Definition 3.1 (Anonymity requirement): Consider p quasi-
identifiers QID.,...,QID, on T, where QID; C
{D1,...,Dy} for 1 < i < p. a(qid;) denotes the number
of data records in T that share the value qid; on QID;. The
anonymity of QID;, denoted by A(QID;), is the smallest
a(qgid;) for any value gid; on QID;. A table T satisfies
the anonymity requirement {(QID1,h1),...,(QID,, hy)} if
A(QID;) > h; for 1 < i < p. QID; and the anonymity
threshold h;’s are specified by the data holder. If QID; C
QID; where j # 4, then QID; can be removed. m

To achieve an anonymity requirement, we generalize at-
tributes in UQID;, for 1 < ¢ < p, on T according to some
taxonomy trees. We assume that a faxonomy tree is specified
by the data holder for each categorical attribute D; in UQID;.
A leaf node represents a domain value and a parent node
represents a less specific value. For a continuous attribute D;
in UQI D;, the taxonomy tree is grown at runtime, where each

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on October 19, 2008 at 00:45 from IEEE Xplore. Restrictions apply.



node represents an interval, and each non-leaf node has two
child nodes representing some “optimal” binary split of the
parent interval [14].

Example 3.1: Consider the data in Table I and taxonomy
trees in Figure 1. The table has 34 records, with each row
representing one or more raw records that agree on (Education,
Sex, Age). The Class column stores a count for each class label.
The anonymity requirement (QIDy = {Education, Sex},4)
states that every existing gid; in T' must be shared by at least 4
records in T'. Therefore, (9th, M), (Masters, F), (Doctorate, F)
violate this requirement. To make the “female doctor” less
unique, we can generalize Masters and Doctorate to Grad
School. As a result, “she” becomes less identifiable by being
one of the four females who have graduate degree in 7'. m

A generalized T can be viewed as a “cut” through the
taxonomy tree of each attribute in UQID;. A cut of a tree
is a subset of values in the tree that contains exactly one
value on every root-to-leaf path. A solution cut is UCut;,
where C'ut; is a cut of the taxonomy tree of an attribute D,
in UQID;, such that the generalized T" represented by UC'ut
satisfies the anonymity requirement. Figure 1 shows a solution
cut, indicated by the dash line, for the anonymity requirement
in Example 3.1. The solution cut represents a maximally
specialized table. Any further specialization on Junior Sec.
or Grad School would violate the anonymity requirement.

Data
Holder

Raw Table T Generalized Table
T
g o
= g
-3 2. -
g3 5\?'9‘,3\\1\‘@ %;
»2 Ge‘\e 52
3 =
2 g
E 1%
3 32
°© 5]
Raw Labelled Step 3 Generalized
Table T; Comparing Cluster Structures Labelled Table T,

Fig. 2. The framework

IV. OUR APPROACH
A. Overview of Solution Framework

First, we determine the raw cluster structure in the raw table
T and label each record in T by a class label. This labelled
table, denoted by 7;, has a Class attribute that contains a
class label for each record. Essentially, preserving the raw

Definition 3.2 (Anonymity problem for classification analysis)cluster structure is to preserve the power of discriminating

Given a labelled table 7, an anonymity requirement
{QID,h1),...,{QIDy,hyp)}, and a taxonomy tree
for each categorical attribute in UQID;, the anonymity
problem for classification analysis is to generalize T on
the attributes UQID; to satisfy the anonymity requirement
while preserving as much as possible the information for
classification analysis. ®

For classification analysis, the information utility of at-
tributes can be measured by their power of discriminating class
labels [3][6][71[9]1[12][22][23]. For cluster analysis, however,
no class labels are available. What kind of information should
be preserved for cluster analysis? One natural approach is
to preserve the cluster structure in the raw data. Any loss
of structure due to the anonymization is measured relatively
to such “raw cluster structure.” In this paper, we define the
anonymity problem for cluster analysis as follows to reflect
this natural choice of approach.

Definition 3.3 (Anonymity problem for cluster analysis):
Given an unlabelled table 7', an anonymity requirement
{{QID;,h1),...,{QID,,h,)}, and a taxonomy tree for
each categorical attribute in UQID;, the anonymity problem
for cluster analysis is to generalize T on the attributes UQID;
such that the generalized table 7' satisfies the anonymity
requirement and has a cluster structure as similar as possible
to the cluster structure in the raw table 7. m

Intuitively, two cluster structures are similar whenever two
objects belong to the same cluster, or different clusters, in one
cluster structure, so do they in the other cluster structure. A
formal measure for the similarity of two structures will be
discussed in Section IV-C.

48

such class labels during generalization. Generalization that
diminishes the difference among records belonging to different
clusters (classes) is penalized. As the requirement is the same
as the anonymity problem for classification analysis, we can
apply existing anonymization algorithms [3][6][7][9][12] to
the anonymity problem for cluster analysis. Figure 2 summa-
rizes the approach. We explain each step as follows.

Step 1: Convert 7" to a labelled table T7;. Apply a
clustering algorithm to 7' to find the raw cluster structure,
and label each record in 7' by its class label. The resulting
labelled table 77 has a Class attribute containing the labels.

Step 2: Generalize 7;. Employ an anonymization algorithm
for classification analysis to generalize 7; to satisfy the given
anonymity requirement.

Step 3: Evaluate the generalized 7;. Apply a clustering
algorithm to the generalized 7; with the labels removed, where
the number of clusters is the same as in Step 1, and compute
the similarity between the cluster structure found and the
raw cluster structure in Step 1. The similarity measures the
degree of loss in cluster structure due to generalization. If the
evaluation is unsatisfactory, the data holder may repeat Steps
1-3 with different number of clusters and choice of clustering
algorithms. By default, the clustering algorithm in this step is
the same as in Step 1, but can be replaced with the recipient’s
choice if this information is available. See more discussion
below.

Step 4: Release the generalized 7. If the evaluation in Step
3 is satisfactory, the data holder can release the generalized
T, together with some optional supplementary information:
all the taxonomy trees (including those generated at runtime
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for continuous attributes), the final solution cut, the similarity
score computed in Step 3, and the Class attribute in Step 1.

In some data publishing scenarios, such as data release
from census bureau, the data holder does not even know who
the prospective recipient is; therefore, does not know how
the recipient will cluster the published data. How should the
data holder set the cluster number? In this case, we suggest
releasing one version for each reasonable cluster number so
that the recipient can make the choice based on her desired
number of clusters. Our previous work [5] presented an
anonymization method to address the potential privacy breach
caused by releasing different generalized versions of the same
underlying data. Though [5] does not aim at preserving cluster
structure, its quality-guided function can be modified to bias
on preserving cluster structure encoded by the class labels
proposed in this framework.

In the rest of this section, we describe the anonymization
in Step 2 and the evaluation in Step 4, and their extensions.

B. Anonymization for Classification

Our implementation uses the top-down specialization (or
TDS) in [6][7] due to its capability of anonymizing both
categorical attributes and continuous attributes efficiently. In
contrast, most bottom-up generalization methods [11] cannot
generalize continuous attributes without taxonomy trees. TDS
takes a labelled table and an anonymity requirement as inputs.
The main idea of TDS is performing those generalizations that
preserve the information for discriminating the class labels in
a top-down manner. The next example illustrates this point.

Example 4.1: Suppose that the raw cluster structure pro-
duced by Step 1 has the class (cluster) labels given in the
Class attribute in Table 1. In Example 3.1, we generalize
Masters and Doctorate into Grad School to make linking
through (Education,Sex) more difficult. No information is lost
in this generalization because the class label C; does not
depend on the distinction of Masters and Doctorate. However,
further generalizing Bachelors and Grad School to University
makes it harder to separate the two class labels involved. m

Instead of generalizing a labelled table 7} starting from most
specific domain values, TDS specializes it starting from the
most general state where each categorical attribute has the top
most value and each continuous attribute has the single interval
covering all values. A specialization, written v — child(v)
where child(v) is the set of child values of v, refines the parent
value v into a child value in child(v) in all records containing
v. The refinement must be consistent with the domain value in
the raw record. For example, if the domain value is Doctorate,
refining University into Grad School is consistent, but refining
University into Bachelors is not. The top-down specialization
is performed as follows.

First, all attributes not in UQID; are removed from 77,
and duplicates are collapsed into a single row with the Class
column storing the count for each class label. Initially, the
solution cut UC'ut; contains the top most value or interval for
each attribute in UQID;, and all records in 7} are generalized
to such top most values. In each iteration, TDS pushes down
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TABLE II
THE ANONYMOUS TABLE WRT QI D1 AND QI D2

Rec ID Education Sex Age Class Count
1-7 Junior Sec. ANY [1-37) K 7
8-12 11th ANY | [1-37) K1 5
13-16 12th ANY | [37-99) K> 4
17-26 Bachelors ANY | [37-99) Ko 10

27-34 Grad School | ANY | [37-99) Ko 8
TABLE III

THE SIMILARITY OF TWO CLUSTER STRUCTURES

Clusters in | Clusters in Table 3
Table 1 Ko K
Ch 19 2
Co 3 10

the solution cut by specializing some value v in it. The
specialization process stops if any further specialization will
lead to a violation of the anonymity requirement.

Each specialization increases information utility and de-
creases anonymity because records are more distinguishable
by specific values. At each iteration, TDS greedily selects
the specialization that has the highest score, in terms of the
information gain per unit of anonymity loss. We omit the
detailed definitions that can be found in [6][7].

Example 4.2: Consider the labelled table in Table I and the
anonymity requirement:

{{QID; = {Education, Sex},4), (QI Dy = {Sex,Age},11)}.
Initially, all data records are generalized to (ANY_Edu,
ANY_Sex, [1-99)) and UCut; = {ANY_Edu, ANY_Sex, [I-
99)}. To find the next specialization, we compute the score
for each of ANY_Edu, ANY_Sex, and [1-99). Table II shows
the generalized data that satisfies the anonymity requirement
after performing the following specializations in order:

[1-99) — {[1-37), [37-99)}

ANY_Edu — {Secondary, University}

Secondary — {Junior Sec., Senior Sec.}

Senior Sec. — {11th, 12th}

University — {Bachelors, Grad School}. m

C. Evaluation

This step compares the raw cluster structure found in Step 1
in Section IV-A, denoted by C, with the cluster structure found
in the generalized data in Step 3, denoted by C,. Because C
and C, are extracted from the same set of records, we can
evaluate their similarity for the record groupings. We use the
well-known F-measure [21] for measuring the similarity. The
idea is to treat each cluster in C as the relevant set of records
for a query, and treat each cluster in C4 as the result of a query.
The clusters in C are called “natural clusters,” and those in C,
are called “query clusters.”

For a natural cluster C; in C and a query cluster K; in Cg,
let |C;| and | K| denote the number of records in C; and K,
respectively, let n;; denote the number of records contained
in both C; and K, and let |T'| denote the total number of
records in 7. The recall, precision, and F-measure for C;
and K; are calculated as follows: Recall(C;, K) I%JI
is the fraction of relevant records retrieved by the query.

Precision(C;, K;) = (;’f ; is the fraction of relevant records
J
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among the records retrieved by the query. F'(C;, K ;) measures
the quality of query cluster K; in describing the natural cluster
C;, by the harmonic mean of Recall and Precision.

2% Recall(Cy, Kj) x Precision(C;, K

J
"~ Recall(C;, K;) + Precision(C;, K;)
The success of preserving a natural cluster C; is measured by
the “best” query cluster K; for C;. We measure the quality
of C,4 using the weighted sum of such maximum F-measures
for all natural clusters. This measure is called the overall F-
measure of Cg4, denoted by F'(C,):

> |Cil

C;eC

)

F(Ci, Kj) (D

F(Cy) = mazg;ec, A F(Ci, K;)} ()

T

Note that F'(C,) is in the range [0,1]. A larger value indicates a
higher similarity between the two cluster structures generated
from the raw data and the generalized data, respectively.

Example 4.3: The Class column in Table II shows a cluster
structure with cluster number k = 2. The first 12 records are
grouped into K; and the rest are grouped into K. Table III
shows the comparison between the two cluster structures. The
overall F-measure is 0.85 and the loss of cluster quality is 1-
0.85=0.15 which is low, suggesting that the generalized data
in Table II preserves the cluster structure. ®

D. Beyond Anonymity and F-measure

The framework can flexibly adopt existing clustering,
anonymization, and evaluation methods. For example, the
generalization can be performed by other anonymization al-
gorithms for classification analysis in [3][6][7][9][12]. The
framework can achieve other privacy notions, such as ¢-
diversity [13] and confidence bounding [24][25]. This ex-
tension will require modifying the quality function in their
algorithms to bias on generalizations that can discriminate
class labels. The evaluation method could be entropy [16]
or any ad-hoc method defined by the data holder. The data
holder could also examine the cluster structures using some
visualization tools.

V. EXPERIMENTAL STUDY

We study the usefulness of the generalized data
for cluster analysis. The data set is a publicly avail-
able census data set, Adult, which was previously used
in [3][6][71[91[12][13][22][23][24][25]. There are 45,222
records on 8 categorical and 6 continuous attributes. The
continuous attributes are normalized as a standard procedure
for many clustering algorithms. Refer to [6][7] for the property
and taxonomy of the attributes. For clustering algorithms, we
use bisecting and basic k-means [10] due to their popularity.
All experiments were carried by an Intel Pentium IV 2.6GHz
PC with 1GB RAM.

For the same anonymity threshold, a single QID is always
more restrictive than breaking it into multiple QIDs [6][7], so
we show the experiment results for single QID only. To ensure
that the QID contains attributes that have impact on clustering,
we used the C4.5 classifier [14] to rank the attributes. The top
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ranked attribute is the attribute at the top of the C4.5 decision
tree. Then, we remove the top attribute and repeat the process
to determine the rank of the remaining attributes. Note, the
ranking depends on the raw cluster structure, which depends
on the cluster number and clustering algorithm for extracting
it. In our experiments, QID contains the top 9 attributes.

A. Homogenous Clustering

We first present the results for the case where the same
clustering algorithm is applied in both Step 1 and Step 3,
corresponding to the scenario that the recipient applies the
same clustering algorithm as the one used by the data holder.
A naive approach to the proposed privacy problem is to ignore
the cluster structure and simply anonymize the data using some
general purpose anonymization methods [11][15]. We compare
our cluster structure-guided anonymization approach with the
general purpose anonymization approach by their overall F-
measures. To ensure a fair comparison, both approaches em-
ploy the same TDS anonymization method [6][7] and the only
difference is their quality-guided (score) function. The two
overall F-measures are described as follows:

o clusterFM denotes the overall F-measure of the cluster
structures before and after generalization by our cluster
structure-guided anonymization approach. Specifically, each
specialization maximizes information gain wrt the class
labels and minimizes anonymity loss.

distortFM denotes the overall F-measure of the cluster
structures before and after generalization by the general
purpose anonymization approach that aims at minimizing
distortion [15]. Distortion is the number of times a child
value is generalized to its parent value in all records.
Figures 3(a) and 3(b) show the averaged clusterFM and
distortFM over anonymity thresholds 5 < h < 100 for bisect-
ing and basic k-means where k = 2, 6, 10. <terEM—disiorFy
represents the benefit of our quality-guided approach over
the general purpose approach. The benefit, which spans from
24% to 125%, is very significant. F-measure is 1 if two
cluster structures are identical, so 1=t — 1 _ clysterFM
represents the loss of cluster quality in order to achieve a given
anonymity requirement. The loss spans from 2% to 46%. If the
loss is large, e.g., k = 10 in Figure 3(a), the data holder may
release an alternative version with a different k. Figure 3(c)
displays the overall F-measure over 5 < h < 100. Due to
limited space, we show the result for k& = 6 only. clusterFM
is above 0.7 in 39 out of the 40 test cases, suggesting that
there is room for achieving a reasonable level of anonymity
(h <£100) without compromising cluster quality.

B. Heterogenous Clustering

Heterogenous clustering refers to the case that different clus-
tering algorithms are applied in Step 1 and Step 3. It models
the scenario that the recipient applies a different clustering
algorithm to the generalized data than the one used by the
data holder for generalizing the data. We applied bisecting
and basic k-means in Step 1 and Step 3 in two different
orders, labelled (Basic KM—Bisecting KM) and (Bisecting
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Fig. 3. Overall F-measure for the Adult data set
KM —Basic KM), respectively in Figure 3(d). In both cases, [4] CNW  Group,  “Canadians  continue  to  think  per-
compared to the homogenous clustering, there is a drop in sonal - information ~ not  well  protected,” ~ October 2007,

the overall F-measure for clusterFM. To explain this drop, we
measure the overall F-measure of the two cluster structures
generated from the raw data without generalization, denoted
by Raw Data in the figure. Since the overall F-measure of Raw
Data is also low, the result suggests that the drop is caused
by the heterogenous clustering, not by the anonymization.

The above studies suggest that if the recipient applies the
same clustering algorithm as the one used for generalizing the
data, she will obtain a cluster structure that is more similar to
the raw cluster structure because the second clustering could
extract the embedded structure preserved in the generalized
data. In contrast, if different clustering algorithms are used,
the structure preserved by generalization may not be useful to
the second clustering due to different search bias.

VI. CONCLUSIONS

We studied the problem of releasing person-specific data
for cluster analysis while protecting individual privacy. The
approach generalizes the unnecessarily specific identifying
information but preserves essential cluster structure. Our main
contribution is to present a general anonymization framework
for properly preserving cluster structures and evaluating the
resulting cluster solution. The experimental results on real-life
data verify the effectiveness of the approach.
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