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Abstract—Mashup is a web technology that allows different service providers to flexibly integrate their expertise and to deliver highly

customizable services to their customers. Data mashup is a special type of mashup application that aims at integrating data from

multiple data providers depending on the user’s request. However, integrating data from multiple sources brings about three

challenges: 1) Simply joining multiple private data sets together would reveal the sensitive information to the other data providers.

2) The integrated (mashup) data could potentially sharpen the identification of individuals and, therefore, reveal their person-specific

sensitive information that was not available before the mashup. 3) The mashup data from multiple sources often contain many data

attributes. When enforcing a traditional privacy model, such as K-anonymity, the high-dimensional data would suffer from the problem

known as the curse of high dimensionality, resulting in useless data for further data analysis. In this paper, we study and resolve a

privacy problem in a real-life mashup application for the online advertising industry in social networks, and propose a service-oriented

architecture along with a privacy-preserving data mashup algorithm to address the aforementioned challenges. Experiments on real-

life data suggest that our proposed architecture and algorithm is effective for simultaneously preserving both privacy and information

utility on the mashup data. To the best of our knowledge, this is the first work that integrates high-dimensional data for mashup service.

Index Terms—Privacy protection, anonymity, data mashup, data integration, service-oriented architecture, high dimensionality.
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1 INTRODUCTION

MASHUP service is a web technology that combines
information from multiple sources into a single web

application. An example of a successful mashup application
is the integration of real estate information into Google Maps
[1], which allows users to browse on the map for properties
that satisfy their specified requirements. In this paper, we
focus on data mashup, a special type of mashup application
that aims at integrating data from multiple data providers
depending on the service request from a user (a data
recipient). An information service request could be a general
count statistic task or a sophisticated data mining task such
as classification analysis. Upon receiving a service request,

the data mashup web application (mashup coordinator)
dynamically determines the data providers, collects infor-
mation from them through their web service interface, and
then integrates the collected information to fulfill the service
request. Further computation and visualization can be
performed at the user’s site or on the web application server.
This is very different from a traditional web portal that
simply divides a webpage or a website into independent
sections for displaying information from different sources.

A data mashup application can help ordinary users
explore new knowledge; it could also be misused by
adversaries to reveal sensitive information that was not
available before the mashup. In this paper, we study the
privacy threats caused by data mashup and propose a
service-oriented architecture and a privacy-preserving data
mashup algorithm to securely integrate person-specific
sensitive data from different data providers, wherein the
integrated data still retains the essential information for
supporting general data exploration or a specific data
mining task.

1.1 The Challenges

The research problem presented in this paper was discov-

ered in a collaborative project with a social network

company, which focuses on the gay and lesbian community

in North America. The problem can be generalized as

follows: social network companiesA andB observe different

sets of attributes about the same set of individuals (members)

identified by the common User ID, e.g., TAðUID;Gender;
SalaryÞ and TBðUID; Job;AgeÞ. Every time a social network

member visits another member’s webpage, an advertisement

is chosen to be displayed. Companies A and B want to
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implement a data mashup application that integrates their
membership data, with the goal of improving their adver-
tisement selection strategy. The analysis includes gathering
general count statistics and building classification models
[2]. In addition to companies A and B, other partnered
advertising companies need access to the final mashup data.
The solution presented in this paper is not limited only to the
social networks sector but is also applicable to other similar
data mashup scenarios. The challenges of developing the
data mashup application are summarized as follows.

Challenge #1: Privacy concerns. The members are willing
to submit their personal data to a social network company
because they consider the company and its developed
system to be trustworthy. Yet, trust to one party may not
necessarily be transitive to a third party. Many agencies and
companies believe that privacy protection means simply
removing explicit identifying information from the released
data, such as name, social security number, address, and
telephone number. However, many previous works [3], [4]
show that removing explicit identifying information is
insufficient. An individual can be re-identified by matching
other attributes called quasi-identifiers (QID). The following
example illustrates potential privacy threats.

Example 1. Consider the membership data in Table 1. Data
Provider A and Data Provider B own data tables
TAðUID;Class; Sensitive; GenderÞ and TBðUID;Class;
Job;AgeÞ, respectively. Each row (record) represents a
member’s information. The two parties want to develop
a data mashup service to integrate their membership
data in order to perform classification analysis on the
shared Class attribute with two class labels Y and N ,
representing whether or not the member has previously
bought any items after following the advertisements on
the social network websites. Let QID ¼ fJob;Gender;
Ageg. After integrating the two tables (by matching the
shared UID field), there are two types of privacy threats:

Record linkage. If a record in the table is so specific that
not many members match it, releasing the data may lead
to linking the member’s record and his/her sensitive
value. Let s1 be a sensitive value in Table 1. Suppose that
the adversary knows the target member is aMover and his
age is 34. Hence, record #3, together with his sensitive
value (s1 in this case), can be uniquely identified since he
is the only Mover who is 34 years old.

Attribute linkage. If a sensitive value occurs frequently
along with some QID attributes, then the sensitive
information can be inferred from such attributes, even
though the exact record of the member cannot be
identified. Suppose the adversary knows that the member
is a male (M) of age 34. In such case, even though there
are two such records (#1 and #3), the adversary can infer
that the member has sensitive value s1 with 100 percent
confidence since both records contain s1.

Many privacy models, such as K-anonymity [3], [4],
‘-diversity [5], and confidence bounding [6], have been
proposed to thwart privacy threats caused by record and
attribute linkages in the context of relational databases
owned by a single data provider. The traditional approach is
to generalize the records into equivalence groups so that
each group contains at least K records sharing the same qid
value on the QID, and so that each group contains sensitive
values that are diversified enough to disorient confident
inferences. The privacy models can be achieved by general-
izing domain values into higher level concepts and,
therefore, more abstract concepts.

The data mashup problem further complicates the privacy
issue because the data are owned by multiple parties. In
addition to satisfying a given privacy requirement in the final
mashup data, at any time during the process of general-
ization no data provider should learn more detailed
information about any other data provider other than the
data in the final mashup table. In other words, the general-
ization process must not leak more specific information other
than the final mashup data. For example, if the final table
discloses that a member is a Professional, then no other data
providers should learn whether she is a Lawyer or an
Accountant. There are two obvious yet incorrect approaches.
The first one is mashup-then-generalize: first integrate the two
tables and then generalize the mashup table using some
single table anonymization methods [7], [8], [9], [10]. This
approach does not preserve privacy in the studied scenario
because any data provider holding the mashup table will
immediately know all private information of both data
providers. The second approach is generalize-then-mashup:
first generalize each table locally and then integrate the
generalized tables. This approach fails to guarantee the
privacy for a quasi-identifier that spans multiple tables. In
the above example, the K-anonymity on (Gender, Job)
cannot be achieved by the K-anonymity on each of Gender
and Job separately.

Challenge #2: High dimensionality. The mashup data
from multiple data providers usually contain many attri-
butes. Enforcing traditional privacy models on high-dimen-
sional data would result in significant information loss. As
the number of attributes increases, more generalization is
required in order to achieve K-anonymity even if K is
small, thereby resulting in data useless for further analysis.
This challenge, known as the curse of high dimensionality on
K-anonymity, is confirmed by [8], [11], [12]. To overcome this
bottleneck, we exploit one of the limitations of the adversary:
in real-life privacy attacks, it is very difficult for an adversary
to acquire all the information of a target victim because it
requires nontrivial effort to gather each piece. Thus, it is
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reasonable to assume that the adversary’s prior knowledge is
bounded by at most L values of theQID attributes. Based on
this assumption, in this paper we extend the privacy model
calledLKC-privacy [13], originally proposed for a single party
scenario, to apply to a multiparty data mashup scenario.

The general intuition of LKC-privacy is to ensure that
every combination of values inQIDj � QIDwith maximum
length L in the data table T is shared by at least K records,
and the confidence of inferring any sensitive values in S is
not greater thanC, whereL,K,C are thresholds andS is a set
of sensitive values specified by the data provider. LKC-
privacy limits the probability of a successful record linkage
to be �1=K and the probability of a successful attribute
linkage to be �C, provided that the adversary’s prior
knowledge does not exceed L.

Table 2 shows an example of an anonymous table that
satisfies ð2; 2; 50%Þ-privacy by generalizing the values from
Table 1 according to the taxonomies in Fig. 1. (The dashed
curve can be ignored for now.) Every possible value of
QIDj with maximum length 2 in Table 2 (namely, QID1¼
fJob;Genderg, QID2 ¼ fJob;Ageg, and QID3¼ fGender;
Ageg) is shared by at least two records, and the confidence
of inferring the sensitive value s1 is not greater than
50 percent. In contrast, enforcing traditional 2-anonymity
with respect to QID ¼ fGender; Job;Ageg will require
further generalization. For example, in order to make
hProfessional;M; ½30-60Þi satisfy traditional 2-anonymity,
we may further generalize ½1-30Þ and ½30-60Þ to ½1-60Þ,
resulting in much higher information utility loss.

Challenge#3: Information requirements. The data reci-
pients want to obtain general count statistics from the
mashup membership information. Also, they want to use the
mashup data as training data for building a classification
model on the Class attribute, with the goal of predicting the
behavior of future members. One frequently raised question

is: to avoid privacy concerns, why doesn’t the data provider
release the statistical data or a classifier to the data recipients?
In many real-life scenarios, releasing data is preferable to
releasing statistics for several reasons. First, the data
providers may not have in-house experts to perform data
mining. They just want to share the data with their partners.
Second, having access to the data, data recipients are flexible
to perform the required data analysis. It is impractical to
continuously request data providers to produce different
types of statistical information or to fine-tune the data
mining results for research purposes for the data recipients.

1.2 Contributions

This paper is the first work that addresses all the aforemen-
tioned challenges in the context of mashup service. The
contributions are summarized as follows.

Contribution #1. We identify a new privacy problem
through a collaboration with the social networks industry
and generalize the industry’s requirements to formulate the
privacy-preserving high-dimensional data mashup pro-
blem (Section 3). The problem is to dynamically integrate
data from different sources for joint data analysis in the
presence of privacy concerns.

Contribution #2. We present a service-oriented archi-
tecture (Section 4) for privacy-preserving data mashup in
order to securely integrate private data from multiple
parties. The generalized data have to be as useful as
possible to data analysis. Generally speaking, the privacy
goal requires anonymizing identifying information that is
specific enough to pinpoint individuals, whereas the data
analysis goal requires extracting general trends and pat-
terns. If generalization is carefully performed, it is possible
to anonymize identifying information while preserving
useful patterns.

Contribution #3. Data mashup often involves a large
volume of data from multiple data sources. Thus, scalability
plays a key role in a data mashup system. After receiving a
request from a data recipient, the system dynamically
identifies the data providers and performs the data
mashup. Experimental results (Section 5) on real-life data
suggest that our method can effectively achieve a privacy
requirement without compromising the information utility,
and the proposed architecture is scalable to large data sets.

2 RELATED WORK

Information integration has been an active area of database
research [15], [16]. This literature typically assumes that all
information in each database can be freely shared [17]. Secure
multiparty computation (SMC) [18], [19], [20], on the other
hand, allows sharing of the computed result (e.g., a
classifier), but completely prohibits sharing of data. An
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example is the secure multiparty computation of classifiers
[21], [22], [23]. In contrast, the privacy-preserving data
mashup problem studied in this paper allows data providers
to share data, not only the data mining results. In many
applications, data sharing gives greater flexibility than result
sharing because the data recipients can perform their
required analysis and data exploration [8].

Samarati and Sweeney [24] propose the notion of
K-anonymity. Datafly system [4] and �-Argus system [25]
use generalization to achieve K-anonymity. Preserving
classification information in K-anonymous data is studied
in [8] and [10]. Mohammed et al. [13] extend the work to
address the problem of high-dimensional anonymization
for the healthcare sector using LKC-privacy. All these
works consider a single data source; therefore, data mashup
is not an issue. Joining all private databases from multiple
sources and applying a single table anonymization method
fails to guarantee privacy if a QID spans across multiple
private tables. Recently, Mohammed et al. [14] propose an
algorithm to address the horizontal integration problem,
while our paper addresses the vertical integration problem.

Jiang and Clifton [26], [27] propose a cryptographic
approach and Mohammed et al. [28] propose a top-down
specialization algorithm to securely integrate two vertically
partitioned distributed data tables to a K-anonymous table,
and further consider the participation of malicious parties
in [29]. Trojer et al. [30] present a service-oriented
architecture for achieving K-anonymity in the privacy-
preserving data mashup scenario. Our paper is different
from these previous works [26], [27], [28], [29], [30] in two
aspects. First, our LKC-privacy model provides a stronger
privacy guarantee than K-anonymity because K-anonym-
ity does not address the privacy attacks caused by attribute
linkages, as discussed in Section 1. Second, our method can
better preserve information utility in high-dimensional
mashup data. High dimensionality is a critical obstacle for
achieving effective data mashup because the integrated
data from multiple parties usually contain many attributes.
Enforcing traditional K-anonymity on high-dimensional
data will result in significant information loss. Our privacy
model resolves the problem of high dimensionality. This
claim is also supported by our experimental results.

Yang et al. [23] develop a cryptographic approach to
learn classification rules from a large number of data
providers while sensitive attributes are protected. The
problem can be viewed as a horizontally partitioned data
table in which each transaction is owned by a different data
provider. The output of their method is a classifier, but the
output of our method is an anonymous mashup data that
supports general data analysis or classification analysis.
Jurczyk and Xiong [31], [32] present a privacy-preserving
distributed data publishing for horizontally partitioned
databases. The mashup model studied in this paper can be
viewed as a vertically partitioned data table, which is very
different from the model studied in [23], [31], and [32].

Jackson and Wang [33] present a secure communication
mechanism that enables cross-domain network requests
and client-side communication with the goal of protecting
the mashup controller from malicious code through web
services. In contrast, this paper aims to preserve the privacy
and information utility of the mashup data.

3 PROBLEM DEFINITION

We first define the LKC-privacy model [13] and the
information utility measure on a single data table, then
extend it for privacy-preserving high-dimensional data
mashup from multiple parties.

3.1 Privacy Measure

Consider a relational data table T ðUID;D1; . . . ; Dm; S1; . . . ;
Se; ClassÞ (e.g., Table 1). UID is an explicit identifier, such as
User ID or SSN. In practice, it should be replaced by a pseudo
identifier, such as a record ID, before publication. We use
UID to ease the discussion only. EachDi is either a categorical
or numerical attribute. Each Sj is a categorical sensitive
attribute. A record has the form hv1; . . . ; vm; s1; . . . ; se; clsi,
where vi is a domain value in Di, sj is a sensitive value in Sj,
and cls is a class value in Class. The data provider wants to
protect against linking an individual to a record or some
sensitive value in T through some subset of attributes called
a quasi-identifier QID � fD1; . . . ; Dmg.

One data recipient, who is an adversary, seeks to identify
the record or sensitive values of some target victim V in T . As
explained in Section 1, we assume that the adversary knows
at most L values of QID attributes of the victim. We use qid
to denote such prior known values, where jqidj � L. Based
on the prior knowledge qid, the adversary could identify a
group of records, denoted by T ½qid�, that contains qid. jT ½qid�j
denotes the number of records in T ½qid�. The adversary
could launch two types of privacy attacks based on T ½qid�.

. Record linkage. Given prior knowledge qid, T ½qid� is a
set of candidate records that contains the victim V s
record. If the group size of T ½qid�, denoted by jT ½qid�j,
is small, then the adversary may identify V s record
from T ½qid� and, therefore, V s sensitive value. For
example, if qid ¼ hMover; 34i in Table 1, T ½qid� ¼
fUID#3g and jT ½qid�j ¼ 1. Thus, the adversary can
easily infer that V has sensitive value s1.

. Attribute linkage. Given prior knowledge qid, the

adversary can identify T ½qid� and infer that V has

sensitive value s with confidence P ðsjqidÞ ¼ jT ½qid^s�jjT ½qid�j ,

where T ½qid ^ s� denotes the set of records containing

both qid and s. P ðsjqidÞ is the percentage of the

records in T ½qid� containing s. The privacy of V is at

risk if P ðsjqidÞ is high. For example, given qid ¼
hM; 34i in Table 1, T ½qid ^ s1� ¼ fUID#1; 3g and

T ½qid� ¼ fUID#1; 3g, hence P ðs1jqidÞ ¼ 2=2 ¼ 100%.

To thwart the record and attribute linkages on any
individual in the table T , we require every qid with a
maximum length L in the anonymous table to be shared by
at least a certain number of records, and the percentage of
sensitive value(s) in every group cannot be too high. The
privacy model, LKC-privacy [13], reflects this intuition.

Definition 3.1 (LKC-Privacy). Let L be the maximum number
of values of the adversary’s prior knowledge. Let S � [Sj be a
set of sensitive values. A data table T satisfies LKC-privacy if
and only if for any qid with jqidj � L,

1. jT ½qid�j � K, where K > 0 is an integer representing
the anonymity threshold, and

2. P ðsjqidÞ � C for any s 2 S, where 0C � 1 is a real
number representing the confidence threshold.

376 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 3, JULY-SEPTEMBER 2012



The data provider specifies the thresholds L, K, and C.
The maximum length L reflects the assumption of the
adversary’s power. LKC-privacy guarantees the probabil-
ity of a successful record linkage to be �1=K and the
probability of a successful attribute linkage to be �C.
Sometimes, we write C in percentage. LKC-privacy has
several nice properties that make it suitable for anonymiz-
ing high-dimensional data. First, it only requires a subset of
QID attributes to be shared by at least K records. This is a
major relaxation from traditional K-anonymity, based on a
very reasonable assumption that the adversary has limited
power. Second, LKC-privacy generalizes several traditional
privacy models. K-anonymity [3], [4] is a special case of
LKC-privacy with L ¼ jQIDj and C ¼ 100%, where jQIDj
is the number of QID attributes in the data table.
Confidence bounding [6] is also a special case of LKC-
privacy with L ¼ jQIDj and K ¼ 1. ð�; kÞ-anonymity [34] is
a special case of LKC-privacy with L ¼ jQIDj, K ¼ k, and
C ¼ �. One instantiation of ‘-diversity is also a special case
of LKC-privacy with L ¼ jQIDj, K ¼ 1, and C ¼ 1=‘. Thus,
the data provider can still achieve the traditional models.

3.2 Utility Measure

The measure of information utility varies depending on the
user’s specified information service request and the data
analysis task to be performed on the mashup data. Based on
the information requirements specified by the social network
data providers, we define two utility measures. First, we aim
at preserving the maximal information for classification
analysis. Second, we aim at minimizing the overall data
distortion when the data analysis task is unknown.

In this paper, the general idea in anonymizing a table is
to perform a sequence of specializations starting from the
topmost general state in which each attribute has the
topmost value of its taxonomy tree. We assume that a
taxonomy tree is specified for each categorical attribute in
QID. A leaf node represents a domain value and a parent
node represents a less specific value. For numerical
attributes in QID, taxonomy trees can be grown at runtime,
where each node represents an interval, and each nonleaf
node has two child nodes representing some optimal binary
split of the parent interval [2]. Fig. 1 shows a dynamically
grown taxonomy tree for Age.

A specialization, written v! childðvÞ, where childðvÞ
denotes the set of child values of v, replaces the parent
value v with the child value that generalizes the domain
value in a record. A specialization is valid if the resulting
table still satisfies the specified LKC-privacy requirement
after the specialization. A specialization is performed only if
it is valid. The specialization process can be viewed as
pushing the “cut” of each taxonomy tree downward. A cut
of the taxonomy tree for an attribute Di, denoted by Cuti,
contains exactly one value on each root-to-leaf path. Fig. 1
shows a solution cut indicated by the dashed curve
representing the LKC-privacy preserved Table 2. The
specialization procedures start from the topmost cut and
iteratively pushes down the cut by specializing some value
in the current cut until violating the LKC-privacy require-
ment. In other words, the specialization process pushes the
cut downward until no valid specialization is possible. Each
specialization tends to increase information utility and
decrease privacy because records are more distinguishable
by specific values. We define two utility measures (scores)

to evaluate the “goodness” of a specialization depending on
the information service request requirement.

3.2.1 Utility Measure for Classification Analysis

For the requirement of classification analysis, we use
information gain [2] to measure the goodness of a specializa-
tion. Let T ½x� denote the set of records in table T generalized
to the value x. Let jT ½x ^ cls�j denote the number of records
in T ½x� having the class cls. Note that jT ½v�j ¼

P
c jT ½c�j,

where c 2 childðvÞ. Our selection criterion, ScoreðvÞ, is to
favor the specialization v! childðvÞ that has the maximum
information gain

ScoreðvÞ ¼ EðT ½v�Þ �
X
c

jT ½c�j
jT ½v�jEðT ½c�Þ; ð1Þ

where EðT ½x�Þ is the entropy [35] of T ½x� and

EðT ½x�Þ ¼ �
X
cls

jT ½x ^ cls�j
jT ½x�j � log2

jT ½x ^ cls�j
jT ½x�j : ð2Þ

Intuitively, EðT ½x�Þ measures the mix of classes for the
records in T ½x�, and the information gain of v (or ScoreðvÞ in
this case) is the reduction of the mix by specializing v into
c 2 childðvÞ.

For a numerical attribute, the specialization of an interval
refers to the optimal binary split that maximizes informa-
tion gain on the Class attribute. See [2] for details.

3.2.2 Utility Measure for General Data Analysis

Sometimes, the mashup data are shared without a specific
task. In this case of general data analysis, we use
discernibility cost [36] to measure the data distortion in the
anonymous data. The discernibility cost charges a penalty
to each record for being indistinguishable from other
records. For each record in an equivalence group qid, the
penalty is jT ½qid�j. Thus, the penalty on a group is jT ½qid�j2.
To minimize the discernibility cost, we choose the specia-
lization vchildðvÞ that maximizes the value of

ScoreðvÞ ¼
X
qidv

��T ½qidv���2; ð3Þ

over all qid containing v. Example 3 shows the computation
of ScoreðvÞ in more details.

3.3 Privacy-Preserving High-Dimensional Data
Mashup

Consider n data providers fProvider 1; . . . ;Provider ng,
where each Provider y owns a private table TyðUID;
QIDy; Sy; ClassÞ over the same set of records. UID and
Class are shared attributes among all data providers. QIDy

is a set of quasi-identifying attributes and Sy is a set of
sensitive values owned by provider y. QIDy \QIDz ¼ ;
and Sy \ Sz ¼ ; for any 1 � y; z � n. These providers agree
to release “minimal information” to form a mashup table T
(by matching the UID) for conducting general data analysis
or a joint classification analysis. The notion of minimal
information is specified by an LKC-privacy requirement on
the mashup table. A QIDj is local if all attributes in QIDj

are owned by one provider; otherwise, it is global.

Definition 3.2 (Privacy-Preserving High-Dimensional

Data Mashup). Given multiple private tables T1; . . . ; Tn,
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an LKC-privacy requirement, QID ¼ [QIDy, S � [Sy, and
a taxonomy tree for each categorical attribute in QID, the
problem of privacy-preserving high-dimensional data mashup
is to efficiently produce a generalized integrated (mashup)
table T such that 1) T satisfies the LKC-privacy requirement,
2) T contains as much information as possible for general data
analysis or classification analysis, and 3) each data provider
learns nothing about the other providers’ data more specific
than what is in the final mashup table T . We assume that the
data providers are semihonest [18], [19], [20], meaning that
they will follow the algorithm but may attempt to derive
sensitive information from the received data.

We use an example to explain condition 3. If a record in
the final table T has values F and Professional on Gender
and Job, respectively. Condition 3 is violated if Provider A
can learn that Professional in this record comes from
Lawyer. Our privacy model ensures the privacy protection
in the final mashup table as well as in any intermediate
tables. To ease the explanation, we present our solution in a
scenario of two parties (n ¼ 2). A discussion is given in
Section 4.3 to describe the extension to multiple parties.

Given a QID, there are ðjQIDjL Þ combinations of decom-
posed QIDj with maximum size L. For any value of K and
C, each combination of QIDj in LKC-privacy is an instance
of the ð�; kÞ-anonymity problem with � ¼ C and k ¼ K.
Wong et al. [34] have proven that computing the optimal
ð�; kÞ-anonymous solution is NP-hard; therefore, comput-
ing the optimal LKC-privacy solution is also NP-hard.

4 SOA FOR PRIVACY-PRESERVING DATA MASHUP

We first present a service-oriented architecture (SOA) that
describes the communication paths of all participating
parties, followed by a privacy-preserving high-dimen-
sional data mashup algorithm that can efficiently identify
a suboptimal solution for the problem described in
Definition 3.

SOA is an architectural paradigm for developing and
integrating heterogeneous information systems with strict
message-driven communication paradigm. Following the
SOA design principles, the resulting system has several
desirable properties including interoperability and loosely
coupling. Interoperability refers to the capability of allowing
platform-independent design of the system components
based on a common understanding of service component

interfaces. Loosely coupling refers to the capability of
minimizing dependencies among the system components
and, therefore, improving the overall flexibility, scalability,
and fault tolerance of a system [37]. In the mashup system
described in this paper, data sources can be dynamically
composed to serve new mashup requests depending on the
data analysis tasks and privacy requirements. SOA with the
capabilities of interoperability and loosely coupling has
become a natural choice to tackle the heterogeneity of
different potential data providers.

Referring to the architecture shown in Fig. 2, the data
mashup process can be divided into two phases. In Phase I,
the mashup coordinator receives an information service
request from the data recipient and establishes connections
with the data providers who can contribute their data to
fulfill the request. In Phase II, the mashup coordinator
executes the privacy-preserving algorithm to integrate the
private data from multiple data providers and to deliver the
final mashup data to the data recipient. Note that our
proposed solution does not require the mashup coordinator
to be a trusted party. Though the mashup coordinator
manages the entire mashup service, our solution guarantees
that the mashup coordinator does not gain more informa-
tion than the final mashup data, thereby protecting the data
privacy of every participant. The mashup coordinator can
be any one of the data providers or an independent party.
This makes our architecture practical because a trusted
party is not always available in real-life mashup scenarios.

4.1 Phase I: Session Establishment

The objective of Phase I is to establish a common session
context between the data recipient and the contributing
data providers. An operational context is successfully
established by proceeding through the steps of data
recipient authentication, contributing data providers iden-
tification, session context initialization, and common
requirements negotiation.

Authenticate data recipient. The mashup coordinator first
authenticates a data recipient to the requested service,
generates a session token for the current recipient interac-
tion, and then identifies the data providers accessible by the
data recipient. Some data providers are public and are
accessible by any data recipients.

Identify contributing data providers. Next, the mashup
coordinator queries the data schema of the accessible data
providers to identify the data providers that can contribute
data for the requested service. To facilitate more efficient
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queries, the mashup coordinator could prefetch data schema
from the data providers (i.e., the pull model), or the data
providers could update their data schema periodically (i.e.,
the push model).

Initialize session context. Next, the mashup coordinator
notifies all contributing data providers with the session
identifier. All prospective data providers share a common
session context that represents a stateful presentation of
information related to a specific execution of the privacy-
preserving mashup algorithm called PHDMashup. This
algorithm will be discussed in Section 4.2. An established
session context contains several attributes to identify a
PHDMashup process, including the data recipient’s ad-
dress; the data providers’ addresses and certificates; an
authentication token that contains the data recipient’s
certificate; and a unique session identifier that uses an
end-point reference (EPR) composed of the service address, a
PHDMashup process identifier and runtime status infor-
mation about the executed PHDMashup algorithm.

Negotiate privacy and information requirements. The mash-
up coordinator is responsible to communicate the negotia-
tion of privacy and information requirements among the
data providers and the data recipient. Specifically, this step
involves negotiating cost, LKC-privacy requirement, sensi-
tive information, and expected information quality. For
example, in the case of classification analysis, information
quality can be estimated by classification error on some
testing data.

4.2 Phase II: Privacy-Preserving High-Dimensional
Data Mashup

The objective of Phase II is to integrate the high-dimensional
data from multiple data providers such that the final
mashup data satisfies a given LKC-privacy requirement
and preserves as much information as possible for the
specified information requirement. Recall that Definition 3.1
specifies three requirements. Requirements 1 and 2 specify
the properties of the final mashup data. Requirement 3
states that no data provider should learn more detailed
information than the final mashup data during the process of
integration. To satisfy requirement 3, we propose a top-
down specialization approach called Privacy-preserving
High-dimensional Data Mashup (PHDMashup). We first pre-
sent an overview of the algorithm followed by the details
of each step.

To ease the discussion, we present the algorithm in a
scenario of two data providers. An extension to multiple (>2)
data providers will be given in Section 4.3. Consider two
private tables TA and TB with a common key UID, where
ProviderA holds TA and ProviderB holds TB. Initially, every
data provider generalizes all of its own attribute values to the
topmost value according to the taxonomy trees, and main-
tains a cut Cuti that contains the topmost value for each
attribute Di in QID. The union cut [Cuti on all attributes
represents a generalized table T , denoted by Tg. [Cuti also
contains the set of candidates for specialization. A specializa-
tion vchildðvÞ is valid, written as IsV alidðvÞ, if the table Tg still
satisfies theLKC-privacy requirement after the specialization
on v. At each iteration, PHDMashup identifies the winner
specialization, i.e., the valid candidate that has the highest
Score, among all the candidates, performs the winner
specialization, and updates the Score and the IsV alid status

of the new and existing candidates in the cut. PHDMashup
terminates when there are no valid candidates in the cut.

Note, there is no need to further specialize a value once
it becomes invalid because any further specializations also
must be invalid. This antimonotonic [12] property of LKC-
privacy with respect to a specialization significantly
reduces the search space and ensures that the resulting
solution is suboptimal.

Algorithm 1 describes the procedure of Provider A
(same as Provider B). Provider A finds the local winner
specialization using the utility measure discussed in Section
3.2, and communicates with Provider B to identify the
global winner candidate, denoted by w. Suppose that w is
local to Provider A (otherwise, the discussion below applies
to Provider B). Provider A performs wchildðwÞ on its copy
of [Cuti and Tg. This means specializing each record t 2 Tg
containing w into those t01; t

0
z containing child values in

childðwÞ. Similarly, Provider B updates its [Cuti and Tg,
and partitions TB½t� into TB½t01�; TB½t0z�. Since Provider B does
not have the attribute for w, Provider A needs to instruct
Provider B how to partition these records in terms of UIDs.

Algorithm 1. PHDMashup for Provider A (same as
Provider B)

1: initialize Tg to include one record containing

topmost values;

2: initialize [Cuti to include only topmost values

and update IsV alidðvÞ for every v 2 [Cuti;
3: while 9v 2 [Cuti s.t. IsV alidðvÞ do

4: find the local winner � that has the highest Scoreð�Þ;
5: communicate Scoreð�Þ with Provider B to

determine the global winner w;

6: if the winner w is local then

7: specialize w on Tg;

8: instruct Provider B to specialize w;

9: else

10: wait for the instruction from Provider B;

11: specialize w on Tg using the instruction;

12: end if

13: replace w with childðwÞ in the local copy of [Cuti;
14: update ScoreðxÞ and IsV alidðxÞ for every candidate

x 2 [Cuti;
15: end while

16: return Tg and [Cuti
The nature of the top-down approach implies that Tg is

always more general than the final mashup table and,
therefore, does not violate requirement 3 in Definition 3.1.
At each iteration, the data providers cooperate to perform
the same identified specialization by communicating some
count statistics information that satisfies requirement 3 in
Definition 3.1. Below, we describe the key steps: find the
winner candidate (Lines 4-5), perform the winner specia-
lization (Lines 7-11), and update the score and status of
candidates (Line 14). For Provider A, a local attribute refers
to an attribute from TA.

Example 2. Consider Table 1 and the LKC-privacy require-
ment with L ¼ 2, K ¼ 2, C ¼ 50%, QID ¼ fGender;
Job; Ageg, and S ¼ fs1g. Initially,

Tg ¼ hANY Gender; ANY Job; ½1-99Þi
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and

[ Cuti ¼ fANY Gender; ANY Job; ½1-99Þg;

and all specializations in [Cuti are candidates. To find
the winner candidate w, Provider A computes
ScoreðANY GenderÞ and P ro vi d er B c o mp u t es
ScoreðANY JobÞ and Scoreð½1-99ÞÞ.

4.2.1 Find the Winner Specialization

Provider A first finds a valid candidate � that has the
highest Scoreð�Þ among all the local attribute values in
[Cuti. Then, Provider A communicates Scoreð�Þ with
Provider B to determine the global winner specialization,
denoted by w, that has the highest ScoreðwÞ among all
candidates in [Cuti. ScoreðxÞ and IsV alidðxÞ for every x 2
[Cuti are updated from Line 14 in the previous iteration or
the initialization prior to the first iteration. The updating
procedure is discussed in Section 4.2.3. In case all local
candidates are invalid, Provider A sends a default Score ¼
�1 to Provider B to indicate its status. To avoid sharing the
Score between the data providers, PHDMashup employs
the secure multiparty maximum protocol [20] to determine
the highest Score among the participating data providers.

4.2.2 Perform the Winner Specialization

Suppose that the winner specialization w is local at Provider
A (otherwise, replace Provider A with Provider B in the
procedure). For each record t in Tg containing w, Provider A
accesses the raw records in TA½t� to tell how to specialize t.
To facilitate this operation, we represent Tg by the data
structure called Taxonomy Indexed PartitionS (TIPS). The idea
is to group the raw records in TA according to their
generalized records t in Tg.

Definition 4.1 (TIPS). TIPS is a tree structure. Each node
represents a generalized record over [QIDj. Each child node
represents a specialization of the parent node on exactly
one attribute. A leaf node represents a generalized record t in
Tg and the leaf partition containing the raw records generalized
to t, i.e., TA½t�. For a candidate x in [Cuti, Px denotes a leaf
partition whose generalized record contains x, and Linkx links
up all partitions Px.

With TIPS, we can efficiently find all raw records
generalized to x by following Linkx for any candidate x
in [ Cuti. To ensure that every data provider has only
access to its own raw records, a leaf partition at Provider A
contains only raw records from TA and a leaf partition at

Provider B contains only raw records from TB. Each
provider maintains a local copy of TIPS, representing the
current state of the integrated table. Initially, the TIPS has
only the root node representing all data records with the
most general values. In each iteration, the two data
providers cooperate to perform the specialization w by
refining the leaf partitions Pw on Linkw in their own copy of
TIPS. As both providers perform exactly the same specia-
lization, both copies of TIPS are always identical after every
specialization.

Example 3. Continue with Example 2. Initially, TIPS has
only one partition containing all data records and
representing the generalized record hANY Gender;
ANY Job; ½1-99Þi, TA½root� ¼ TA and TB½root� ¼ TB. The
root is on LinkANY Gender, LinkANY Job, and Link½1-99Þ. See
Fig. 3. Suppose the first winner specialization is
ANY JobfWhite-collar; Blue-collarg. We create two
new partitions under the root partition as shown in the
figure, and split data records between them. Both
partitions are on LinkANY Gender and Link½1�99Þ. [ Cuti is
updated into fANY Gender;White-collar; Blue-collar;
½1-99Þg. Suppose that the second winner specialization is
½1-99Þf½1-60Þ; ½60-99Þg, which specializes the two parti-
tions on Link½1-99Þ, resulting in the leaf partitions in Fig. 3.

We summarize the operations at the two data providers,
assuming that the winner w is local at Provider A.

Provider A. Provider A refines each leaf partition Pw on
Linkw into child partitions Pc. Linkc is created to link up
the new Pc’s for the same c. Add Pc to every Linkx other
than Linkw to which Pw was previously linked. While
scanning the records in Pw, Provider A also collects the
following information:

. uids for Provider B. If a record in Pw is specialized to a
child value c, collect the pair (uid, c), where uid is the
UID value of the record. Then, Provider A sends
these (uid, c) pairs to Provider B for specializing the
corresponding leaf partitions there.

. Count statistics for updating Score. 1) For each c in
childðwÞ: jTA½c�j, jTA½d�j, jTA½c ^ cls�j, jTA½d ^ cls�j,
jTA½c ^ s�j, and jTA½d ^ s�j for every sensitive value
s 2 S, where d 2 childðcÞ and cls is a class label.
Refer to Section 3 for these notations. jTA½c�j
(similarly jTA½d�j) is computed by

P
jPcj for Pc on

Linkc. 2) For each Pc on Linkc: jPdj, where Pd is a
child partition under Pc as if c is specialized.
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Provider B. On receiving the instruction from Provider
A, Provider B creates child partitions Pc in its own TIPS. At
Provider Bs site, the child partitions Pc contain raw records
from TB. The child partitions Pc are obtained by splitting Pw
among Pc according to the (uid; c) pairs received.

Example 4. Let us revisit the first specialization in
Example 3. Provider B performs the first specialization
ANY Job ! fWhite-collar; Blue-collarg on its own TIPS
and then sends the following instruction to Provider A:
uid#1; 3; 5; 6; 10; 11 go to the node with Blue-collar.
uid#2; 4; 7; 8; 9 go to the node with White-collar.
On receiving this instruction, Provider A creates the

two child nodes under the root in its copy of TIPS and
partitions TA½root�. In general, the data providers
update their own TIPS data structures either by
specializing the winning candidate on their own local
attributes or by receiving specialization instructions
from the other data provider.

Updating TIPS is the only operation that accesses raw
records in our algorithm. Subsequently, updating ScoreðxÞ
(in Section 4.2.3) makes use of the count statistics without
further accessing raw records. The overhead of maintaining
Linkx is small. For each attribute in [QIDj and each leaf
partition on Linkw, there are at most jchildðwÞj “relinkings.”
Therefore, there are at most j [QIDjj � jLinkwj � jchildðwÞj
“relinkings” for performing w.

4.2.3 Update the Score

The key to the scalability of our algorithm is updating
ScoreðxÞ and IsV alidðxÞ using the count statistics main-
tained in Section 4.2.2 without accessing raw records again.
For any valid candidate x 2 [Cuti, its ScoreðxÞ and
IsV alidðxÞ need to be updated if some qidx containing x
also contains the winner candidate w in the current
specialization. Updating ScoreðxÞ depends on InfoGainðxÞ
or jT ½qidx�j. Updating IsV alidðxÞ depends on jT ½qidx�j and
jT ½qidx ^ s�j for every sensitive value s 2 S. We consider
both updates below.

Updating InfoGainðxÞ. We need to compute InfoGainðcÞ
the newly added c in childðwÞ. The owner provider of w
can compute InfoGainðcÞ while collecting the count
statistics for c in Section 4.2.2.

Example 5. Let us revisit the first specialization in Example 3.
We show the computation of ScoreðANY JobÞ for the
specialization ANY JobfBlue-collar;White-collarg. For
general data analysis, ScoreðANY JobÞ ¼ 62 þ 52 ¼ 61.
For classification analysis,

EðT ½ANY Job�Þ ¼ � 6

11
� log2

6

11
� 5

11
� log2

5

11
¼ 0:994;

EðT ½Blue-collar�Þ ¼ � 2

6
� log2

2

6
� 4

6
� log2

4

6
¼ 0:918;

EðT ½White-collar�Þ ¼ � 5

5
� log2

5

5
� 0

5
� log2

0

5
¼ 0:0;

InfoGainðANY JobÞ ¼ EðT ½ANY Job�Þ

� 6

11
� EðT ½Blue-collar�Þ þ 5

11
� EðT ½White-collar�Þ

� �

¼ 0:493;

InfoGainðANY JobÞ ¼ 0:493:

Updating IsV alidðxÞ and jT ½qidx�j. Given an LKC-

privacy requirement, a specialization on value x is valid

(i.e., IsV alidðxÞ ¼ true) if jT ½qidj�j � K and P ðsjqidjÞ ¼
jT ½qidj^s�j
jT ½qidj�j � C for any qidj with jqidjj � L containing x and

for any s 2 S. The following data structure, called Quasi-

Identifier Tree ðQIT Þ, can efficiently maintain these counts.

Definition 4.2 (QIT). For each QIDj ¼ fD1; . . . ; Dqg, QITj is

a tree of q levels, where level i > 0 represents generalized
values for Di. A root-to-leaf path represents an existing qidj
on QIDj in the generalized data Tg. The leaf nodes store the
jT ½qidj�j and jT ½qidj ^ s�j for every sensitive value s 2 S. A

branch is trimmed if its jT ½qidj�j ¼ 0.

QITj is kept at a data provider if the data provider owns
some attributes in QIDj. On specializing the winner w, a
data provider updates its QITjs that contain the attribute of
w: creates the nodes for the new qidjs and computes
jT ½qidj�j and jT ½qidj ^ s�j for every sensitive value s 2 S. We
can obtain jT ½qidj�j and jT ½qidj ^ s�j from the local copy of
TIPS: jT ½qidj�j ¼

P
jPcj, where Pc is on Linkc and qidj is the

generalized value on QIDj for Pc. jT ½qidj ^ s�j can be
computed similarly. Note that jPcj is given by the count
statistics for w collected in Section 4.2.2.

4.3 Analysis

Our approach produces the same integrated table as the
single data provider anonymization algorithm [13] on a joint
table, and ensures that no data provider learns more
detailed information about any other provider other than
what they agreed to share. This claim follows from the fact
that PHDMashup performs exactly the same sequence of
specializations as in [13] but in a distributed manner where
TA and TB are kept locally at the sources. The only
information revealed to each other is [Cutj and Tg at each
iteration. However, such information is more general than
the final mashup table that the two data providers have
agreed to share.

PHDMashup (Algorithm 1) is extendable for multiple
(more than two) data providers with minor changes: in
Line 5, each data provider should communicate with all the
other data providers for determining the winner. In Line 8,
the data provider holding the winner specialization should
instruct all the other data providers. In Line 10, a data
provider should wait for instruction from the winner data
provider. Our algorithm is based on the assumption that all
the data providers are semihonest. An interesting extension
would be to consider the presence of malicious and selfish
data providers [29], [38], [39], [40]. In such a scenario, the
algorithm has to be both secure and incentive compatible.

The overhead cost of session establishment in Phase I
involves creating a session link between a mashup
coordinator and a data recipient, and a session link between
a mashup coordinator and each contributing data provider.
A session link is simply an integer value (e.g., a Job ID) and
is either used to actively keep the data recipient connected
or to allow for asynchronous polling for the status of a
current job. The data structure size for maintaining a
session of a mashup request is linear to the number of
contributing data providers; therefore, the overhead is
limited. In case the number of data recipients or the number
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of mashup requests is large, the load of the mashup
coordinator can be balanced across multiple servers.

The computational cost of PHDMashup in Phase II can be
summarized as follows: each iteration involves the follow-
ing work: 1) Scan the records in TA½w� and TB½w� for
updating TIPS and maintaining count statistics (Sec-
tion 4.2.2). 2) Update QITj, InfoGainðxÞ, and IsV alidðxÞ
for affected candidates x (Section 4.2.3). 3) Send “instruc-
tion” to the remote data providers. The instruction contains
only uids of the records in TA½w� or TB½w� and child values c
in childðwÞ, therefore, is compact. Only the work in
1) involves accessing data records; the work in 2) makes
use of the count statistics without accessing data records
and is restricted to only affected candidates. This feature
makes our approach scalable. We will evaluate the scal-
ability of the algorithm on real-life data in the next section.

For the communication cost 3, each data provider
communicates (Line 5 in Algorithm 1) with others to
determine the global winner candidate. Thus, each data
provider sends n� 1 messages, where n is the number of
data providers. Then, the data provider of the winner
specialization (Line 8) sends instruction to other data
providers. This communication process continues for at
most s times, where s is the number of valid specializations
bounded by the number of distinct values in [QIDj. Hence,
for a given data set, the total communication cost is
s� ½nðn� 1Þ þ ðn� 1Þ� ¼ s� ðn2 � 1Þ � Oðn2Þ. I f n ¼ 2,
then the total communication cost is 3s. In real-life data
mashup application, the number of contributing data
providers for an information request is usually small.

5 EMPIRICAL STUDY

We implement the proposed PHDMashup in a distributed
web service environment. Each data provider is running on
an Intel Core2 Quad Q6600 2.4 GHz PC with 2 GB RAM
connected to a LAN. The objectives of the empirical study
are to evaluate the benefit of data mashup for joint data
analysis, and the impacts of anonymization and dimension-
ality on the data quality with respect to the information
requirements. We first describe the data set and the
settings, followed by the results.

Due to the privacy agreement, we cannot use the raw
data from the social network companies for experiments, so
we employ the de facto benchmark census data set Adult
[41], which is also a real-life data set, to illustrate the
performance of our proposed architecture and algorithm.
The Adult data set has six numerical attributes, eight
categorical attributes, and a binary Class attribute repre-
senting two income levels �50 K or >50 K. Table 3
describes each attribute. It contains 45,222 records after
removing records with missing values. We model a 2-data
provider scenario with two private tables TA and TB as
follows: TA contains the first nine attributes, and TB
contains the remaining five attributes. We consider Divorced
and Separated in the attribute Marital-status as sensitive, and
the remaining 13 attributes as QID. A common UID is
added to both tables for joining. The taxonomy trees for all
categorical attributes are from [8].

5.1 Benefits of Mashup

A trivial yet incorrect solution to avoid privacy concerns is
to not integrate the data; each data provider simply
performs the classification analysis on its own attributes
and releases the data mining result, such as the classifier, to
the data recipient. Our first goal is to illustrate the benefit of
data mashup over this trivial solution with respect to the
classification requirement.

To evaluate the impact on classification quality (Case 1
in Section 3.2.1), we use all records for anonymization,
build a C4.5 classifier [2] on 2/3 of the anonymized records
as the training set (30,162 records), and measure the
classification error on 1/3 of the anonymized records as the
testing set (15,060 records). Both the training and testing
steps use all 14 attributes. Lower classification error means
better data quality. We collect two types of classification
errors from the testing set: Mashup Classification Error
(MCE) is the error on the mashup data produced by our
PHDMashup algorithm. Source error (SE) is the error on
individual raw data table without generalization. SE for
TA, denoted by SEðAÞ, is 17.7 percent and SE for TB,
denoted by SEðBÞ, is 17.9 percent. SE �MCE measures
the benefit of data mashup over individual private table.

Fig. 4 depicts the MCE for the adversary’s prior
knowledge L ¼ 2, L ¼ 4, and L ¼ 6 with confidence thresh-
old C ¼ 20% and anonymity threshold K ranging from 20 to
100. For example, MCE ¼ 16:3% for L ¼ 4 and K ¼ 60,
suggesting that the benefit of mashup, SE �MCE, is
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approximately 1.5 percent. This experiment demonstrates
the benefit of data mashup over a wide range of privacy
requirements. The benefit for all test cases illustrated in
Fig. 4 spans from 1.3 to 2.1 percent. The benefit decreases as
L increases because more generalization is required in order
to thwart the linkage attacks. In practice, the benefit is more
than the accuracy consideration because our method allows
the participating data providers to share data for joint data
analysis, rather than sharing a classifier from each provider.

5.2 Impacts of Anonymization

Our second goal is to illustrate the impacts for achieving
LKC-privacy with respect to classification analysis and
general data analysis.

To evaluate the impacts on classification quality (Case 1
in Section 3.2.1), we collect several classification errors, in
addition to MCE, from the testing set: Baseline Error (BE) is
the error measured on all 14 raw data attributes without
generalization. BE �MCE represents the cost in terms of
classification quality for achieving a given LKC-privacy
requirement. A naive method to avoid record and attributes
linkages is to simply remove all QID attributes. Thus, we
also measure Upper bound Error (UE), which is the error on
the raw data with all QID attributes removed. UE �MCE
represents the benefit of our method over the naive
approach. The experimental results below suggest that
our method PHDMashup can yield a small MCE �BE
(low cost) and a large UE �MCE (high benefit).

Fig. 5 depicts the MCE for the adversary’s prior
knowledge L ¼ 2, L ¼ 4, and L ¼ 6 with confidence thresh-
old C ¼ 20% and anonymity threshold K ranging from 20
to 100. For example, at L ¼ 4, K ¼ 60, and C ¼ 20,
MCE ¼ 16:3%. The cost is MCE �BE ¼ 1:6%, where
BE ¼ 14:7%. The benefit is UE �MCE ¼ 8:3%, where
UE ¼ 24:6%. For all test cases in Fig. 5, the cost MCE �
BE spans from 0.4 percent to 1.7 percent and the benefit
UE �MCE spans from 8.2 to 9.5 percent. This result
illustrates that the cost of anonymization is low and the
benefit of anonymization is high, suggesting that accurate
classification and privacy protection can coexist even for a
wide range of anonymity threshold K. Typically, there are
redundant classification patterns in the data. Though
generalization may eliminate some useful patterns, other
patterns emerge to help the classification task.

Fig. 6 depicts the MCE for the adversary’s prior
knowledge L ¼ 2, L ¼ 4, and L ¼ 6 with K ¼ 100 and

confidence threshold C ranging from 5 to 30 percent. MCE

stays flat at 15.7 percent for L ¼ 2, at 16.4 percent for L ¼ 4

and L ¼ 6. For all test cases in Fig. 6, the cost MCE �BE
spans from 1 to 1.7 percent and the benefit UE �MCE

spans from 8.2 to 8.9 percent. This result suggests that the

MCE is insensitive to the change of the confidence

threshold C, implying that it does not cost much to thwart

attribute linkages.
To evaluate the costs on general analysis quality (Case 2

in Section 3.2.2), we use all records for generalization and

measure the mashup discernibility ratio (MDR) on the final

mashup data

MDRðT Þ ¼
P

qid jT ½qid�j
2

jT j2
: ð4Þ

MDR is the normalized discernibility cost [36], with

0 �MDR � 1. The lower MDR indicates the higher data

quality.
Fig. 7 depicts the MDR for the adversary’s prior

knowledge L ¼ 2, L ¼ 4, and L ¼ 6 with confidence thresh-

old C ¼ 20% and anonymity threshold K ranging from 20

to 100. For all test cases in Fig. 7, MDR spans from 0.02 to

4.92 percent, suggesting that it costs very little to achieve a

given LKC-privacy requirement even for a wide range of

adversary’s prior knowledge L and anonymity threshold K.

Similar to the measure on classification error, MDR is

insensitive to the change of the confidence threshold C.
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The result in Fig. 7 also shows that MDR does not
increase monotonically with respect to the increase K
because PHDMashup employs a greedy approach for
selecting a specialization at each iteration. The greedy
approach can guarantee the identified solution is suboptimal
but not necessarily global optimal. Although a global
optimal solution is desirable, finding the optimal solution
significantly degrades the efficiency and scalability of the
method, which are also important requirements for real-life
data mashup.

5.3 Impacts of Dimensionality

Our third goal is to evaluate the impact of dimensionality,
i.e., the number of QID attributes, on the data quality with
respect to the distortion metric proposed in [42]. Each time a
categorical value is generalized to the parent value in a
record, there is one unit of distortion. For a numerical
attribute, if a value v is generalized to an interval ½a; bÞ, there
is ðb� aÞ=ðf2� f1Þ unit of distortion for a record containing
v, where ½f1; f2Þ is the full range of the numerical attribute.
The distortion is normalized by the number of records. The
distortion per record (DPR) is separately computed for
categorical attributes and numerical attributes, denoted
by DPR Categorical and DPR Numerical, respectively.

Fig. 8 depicts the DPR Categorical and DPR Numerical
for the adversary’s prior knowledge L ¼ 4 with confidence
thresholdC ¼ 20% and anonymity thresholdK ¼ 60 for 4, 7,
10, and 13QID attributes. DPR Categorical spans from 3.98
to 11.24 and DPR Numerical spans from 0.62 to 4.05. This
result illustrates that the distortion per record generally
increases as the number of QID attributes increases because
more generalizations are required in order to achieve the
same LKC-privacy requirement.

5.4 Efficiency and Scalability

Our method takes at most 20 seconds for every previous
experiment. Out of the 20 seconds, approximately 8 seconds
is spent on initializing network sockets, reading data
records from disk, and writing the generalized data to
disk. The actual costs for data anonymization and network
communication are relatively low.

Our other claim is the scalability of handling large data
sets by maintaining count statistics instead of scanning raw
records. We evaluate this claim on an enlarged version of
the Adult data set. We combine the training and testing sets,
giving 45,222 records, and for each original record r in the

combined set, we create �� 1 variations of r, where � > 1
is the blowup scale. Together with original records, the
enlarged data set has �� 45;222 records.

Fig. 9 depicts the runtime from 200,000 to 1 million
records for L ¼ 4, K ¼ 20, C ¼ 100%. The total runtime for
anonymizing 1 million records is 132 seconds, where
50 seconds are spent on reading raw data, 58 seconds are
spent on anonymization, and 24 seconds are spent on
writing the anonymous data. Our algorithm is scalable due
to the fact that we use the count statistics to update the
Score, and thus it only takes one scan of data per iteration
to anonymize the data. As the number of records increases,
the total runtime increases linearly.

6 SUMMARY

The experiments verified several claims about the
PHDMashup algorithm. First, data mashup leads to
improved information utility compared to the information
utility separately available on each private table. Second,
PHDMashup achieves a broad range of LKC-privacy
requirements without significantly sacrificing the informa-
tion utility. The cost for anonymization is low, and the
benefit is significant. Third, our proposed architecture and
method are scalable for large data sets. Our work provides
a practical solution to the problem of high-dimensional data
mashup with the dual goals of information sharing and
privacy protection.

7 CONCLUSION AND LESSON LEARNED

We implement a data mashup application for the online
advertising industry in social networks, and generalize
their privacy and information requirements to the problem
of privacy-preserving data mashup for the purpose of joint
data analysis on the high-dimensional data. We formalize
this problem as achieving the LKC-privacy on the mashup
data without revealing more detailed information in the
process. We present a solution and evaluate the benefits of
data mashup and the impacts of generalization. Compared
to classic secure multiparty computation, a unique feature
of our method is to allow data sharing instead of only result
sharing. This feature is especially important for data
analysis that requires user interaction. Being able to share
data records would permit such exploratory data analysis
and explanation of results.
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Fig. 8. Impacts of dimensionality (L ¼ 4, K ¼ 60, and C ¼ 20%).
Fig. 9. Scalability (L ¼ 4, K ¼ 20, and C ¼ 100%).



Finally, we would like to share our experience of
collaboration with industrial practitioners. In general,
industrial practitioners prefer a simple privacy model that
is intuitive to understand and to explain to their clients,
such as LKC-privacy. Often, their primary concern is
whether or not the anonymous data are still effective for
data analysis; solutions that solely satisfy some privacy
requirement are insufficient. The industry demands anon-
ymization methods that can preserve information for
various data analysis tasks.
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