
Preserving Privacy and Frequent Sharing Patterns for
Social Network Data Publishing

Benjamin C. M. Fung
CIISE, Concordia University

Montreal, QC, Canada

fung@ciise.concordia.ca

Yan’an Jin
Huazhong University of Science and Technology

Hubei University of Economics, P. R. China

yan.an.jin@hbue.edu.cn

Jiaming Li
CIISE, Concordia University

Montreal, QC, Canada

l jiamin@ciise.concordia.ca

Abstract—Social network data provide valuable information
for companies to better understand the characteristics of their
potential customers with respect to their communities. Yet,
sharing social network data in its raw form raises serious
privacy concerns because a successful privacy attack not only
compromises the sensitive information of the target victim but
also the relationship with his/her friends or even their private
information. In recent years, several anonymization techniques
have been proposed to solve these issues. Most of them focus
on how to achieve a given privacy model but fail to preserve the
data mining knowledge required for data recipients. In this paper,
we propose a method to k-anonymize a social network dataset
with the goal of preserving frequent sharing patterns, one of the
most important kinds of knowledge required for marketing and
consumer behaviour analysis. Experimental results on real-life
data illustrate the trade-off between privacy and utility loss with
respect to the preservation of frequent sharing patterns.

I. INTRODUCTION

In recent years, the emergence of social network applica-
tions, such as Facebook, Twitter, and MySpace, has provided
a new source of information for consumer behaviour analysis.
By identifying the common preferences with respect to the
customers’ background information and their connections, a
company can better customize their products and marketing
strategy for different communities. Thus, there is an urge to
share social network data together with the set-valued data
of the participants. The set-valued data, for example, can be
online purchase transactions or click history on advertisements
on social network websites. However, releasing social network
data in its raw form raises serious privacy concerns to the
participants. In this paper, we present a method to anonymize
the social network with the goals of hiding the identities of
the participants and preserving the frequent sharing patterns
within a community.

A. Motivating Scenario

Figure 1(a) depicts a typical social network of 11 partici-
pants together with their names, jobs, and purchased items via
the advertisements in the social network. The social network
service provider wants to share such useful data to its cooper-
ative partners who placed advertisements for market analysis.
Yet, sharing such information would compromise the privacy
of participants, which in turn damages the image of the social
network service provider. A naive method is to de-identify the
social network data by simply removing the explicit identifiers,
such as name and birthdate. However, many previous works

(a) Raw social network

(b) Anonymized social network

Fig. 1. Sample social network

in privacy-preserving data publishing [1] have already shown
that simply removing explicit identifiers is insufficient because
an adversary may utilize some external knowledge to identify
an individual from the data. The following example illustrates
a privacy attack on a de-identified social network.

Example I.1. Consider the social network in Figure 1(a). Even
if the names of the participants have been removed before
releasing the data, an adversary may still identify an individual
using neighborhood attack [2]. Suppose the adversary knows
the target victim Toby has four friends and two of his friends
know each other. Given such background knowledge, the
adversary can easily identify Toby’s vertex from the social
network. One effective way to thwart this kind of neighborhood
attack is to ensure that the 1-neighborhood network structure of
Toby is isomorphically similar to the 1-neighborhood network
structure of at least k − 1 other vertices in the shared social
network data. This privacy model is known as k-anonymity on
social network data [2][3]. To make Toby 2-anonymous, two
edges, indicated by the dashed lines in Figure 1(b), are added
between Ben and Sarah, and Y ang and Sarah.

Achieving k-anonymity on social network is not a new

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

479ASONAM 2013, August 25-28, 2013, Niagara Falls, Canada
978-1-4799-1498-2/13/$31.00 ©2013 IEEE

This is the preprint version. See
IEEE for the final official version.

problem. It has been previously studied in [2]. The challenge
addressed in this paper is how to preserve the frequent patterns
shared within a community [4], known as frequent sharing
patterns, so that the data recipient can still retrieve them even
from the k-anonymous social network data. Specifically, a
frequent sharing pattern is a combination of vertex labels that is
shared within a connected subgraph with a minimum number
of vertices specified by the social network data holder. The
following example illustrates the general idea of minimizing
the impact on frequent sharing patterns. A formal definition is
given in Section II.

Example I.2. Consider Figure 1(a) again. The pattern
{Laptop} has support 5 because a maximum of five connected
vertices contain Laptop. Similarly, the pattern {Mouse} has
support 4. Let the data-holder-specified minimum support be 5.
Then {Student} and {Laptop} are frequent but {Professor}
and {Mouse} are not. To make Toby’s neighborhood struc-
ture 2-anonymous, we have the option to add two edges as
described in Example I.1 or add an edge between Lily and
Ben. The latter option is less desirable because adding an
edge between Lily and Ben would increase the support of
{Mouse} and {Professor,Mouse} from 4 to 5, resulting in
some false frequent sharing patterns.

B. Challenges and Contributions

The challenges of anonymizing social network data for
frequent sharing patterns mining are summarized as follows.
First, social network data are a composition of graph data
and set-valued data, representing the relationships among
the participants and the (sensitive) personal information of
the participants, respectively. Thus, existing anonymization
methods for k-anonymity [5], �-diversity [6], and confidence
bounding [7] that are designed for tabular data are not ap-
plicable to social network data. Second, in order to preserve
the frequent sharing patterns, a straight-forward approach is to
first extract all frequent sharing patterns and then minimize the
impact on the extracted patterns in the anonymization process.
However, the preprocessing step of extracting the frequent
sharing patterns from social network is expensive. Third, real-
life social network data are usually very large; therefore, it is
essential to develop a scalable anonymization algorithm.

The contributions of this paper are summarized as fol-
lows. First, to the best of our knowledge, this is the first
anonymization algorithm to achieve k-anonymity on social
network data while minimizing the impact on frequent sharing
patterns in the set-valued data. Second, our proposed method is
not only effective but also scalable to anonymize large volume
of social network data. Third, we verify the effectiveness of our
proposed method by extensive experiments on real-life data.
The results suggest that our algorithm can effectively preserve
the privacy with reasonable trade-off between privacy and
information utility measured in terms of preserving frequent
sharing patterns.

The rest of the paper is organized as follows. In Section II,
we formally define the problem. Our proposed anonymization
method for preserving frequent sharing patterns is presented in
Section III. Our experimental results are shown in Section IV.
Related works are discussed in Section V. Section ?? con-
cludes the paper.

II. THE PROBLEM

In this paper, we consider a social network as an undirected,
unweighted graph G = (V,E, L), where V represents a set
of vertices, E ⊆ V × V is a set of edges without labels,
L denotes a set of categorical labels or simply labels on
V . L(v) ⊆ L denotes a set of labels of a vertex v ∈ V .
For example in Figure 1(a), L(vToby) = {Student, Laptop}
and L(vLily) = {Professor,Mouse}. The 1-neighborhood
of a vertex v, denoted by N1(v), is the induced subgraph
of the neighbors of v. For example, Figure 2 depicts the 1-
neighborhood of Toby, i.e., N1(vToby).

The research problem studied in this paper is to transform
a given social network G with labeled vertices into a k-
anonymous version while preserving as many frequent spat-
terns as possible. The notions of k-anonymity and frequent
spatterns are formally defined as follows.

A. Privacy Model

Suppose an adversary knows the 1-neighborhood network
structure of a target victim as background knowledge, and
wants to identify the vertex of the target victim in G. To
thwart this identity attack, we employ the privacy model of
k-anonymity on social network [2]. The general idea is to
ensure that the 1-neighborhood network structure of any vertex
in a social network G is isomorphically similar to the 1-
neighborhood network structure of at least k−1 other vertices
in G.

Definition II.1 (k-anonymous social network). Let G be a
social network. Let k be a privacy threshold specified by social
network data holder. A vertex v in G is k-anonymous if there
exists at least k− 1 other vertices u1, . . . , uk−1 ∈ V such that
N1(v) and N1(u1), . . . , N

1(uk−1) are isomorphic. A social
network G is k-anonymous if every vertex v ∈ V in G is
k-anonymous [2].

For example, the social network in Figure 1(b) satisfies
2-anonymity.

B. Frequent Spatterns

Consider a social network G = (V,E, L) as defined above.
Below, we formally define the notions of sharing pattern
(spattern), maximal subgraph, and frequent spattern [4].

Definition II.2 (Spattern). A sharing pattern, or simply spat-
tern, p is a non-empty set of labels, p ⊆ L and p �= ∅. A vertex
v ∈ V contains a pattern p if p ⊆ L(v).

To determine the popularity of a pattern within a commu-
nity, we define the notion of maximal subgraph of a spattern.

Fig. 2. 1-neighborhood of Toby

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

480

Fig. 3. Example of maximal subgraph of a spattern

Definition II.3 (Maximal subgraph of spattern). A connected
subgraph Gs of G is a maximal subgraph of a spattern p,
denoted by Gs(p), if ∀v∀u((v ∈ Gs → p ⊆ L(v)) ∧ (u ∈
N1(v) ∧ u /∈ Gs → p � L(u))). The support of spattern p in
Gs, denoted by Sup(p|Gs), is the number of vertices in Gs

containing p.

The first condition v ∈ Gs → p ⊆ L(v) states that all
vertices in Gs contain the pattern p. The second condition
u ∈ N1(v) ∧ u /∈ Gs → p � L(u) states that the subgraph
containing the pattern p is maximal.

Example II.1. Consider Figure 1(a). Vertex vToby contains
spatterns {Student}, {Laptop}, and {Student, Laptop}. Fig-
ure 3 depicts the two maximal subgraphs G1 (composed of
v0, v1, v2, v3, and v4) and G2 (composed of v6) of spattern
{Student, Laptop}. Sup({Student, Laptop}|G1) = 5 and
Sup({Student, Laptop}|G2) = 1. G3 (composed of v0, v1,
v2, and v3) is not a maximal subgraph of a spattern since v4 is
connected to G3, meanwhile, v4 and G3 have the same pattern
{Student, Laptop}.

Definition II.4 (Frequent spattern). Let G1(p), . . . , Gm(p)
be all the maximal subgraphs of a spattern p in G. The
support of a spattern p in G, denoted by Sup(p), is the
max(Sup(p|G1(p)), . . . , Sup(p|Gm(p))). Let MinSup be
the minimum support threshold specified by the social network
data holder. A spattern p is a frequent spattern in G if
Sup(p) ≥ MinSup.

Definition II.5 (Maximal frequent spattern). A frequent spat-
tern is a maximal frequent spattern in G if any of its proper
superset is not frequent in G.

Example II.2. Consider Figure 1(b) with the additional
edges. Suppose MinSup = 5. {Laptop}, {Student}, and
{Student, Laptop} are frequent spatterns. {Professor},
{Mouse}, and {Professor,Mouse} have supports 4, so they
are not frequent spatterns.

C. Problem Statement

Definition II.6 (Social Network Anonymization for Frequent
Spatterns). Given a social network G with labeled vertices, a
k-anonymity requirement, and a minimum support threshold
MinSup, the problem of anonymization of social network
for frequent spatterns is to transform G to satisfy the given
k-anonymity requirement while preserving as many frequent
spatterns as possible.

The problem of achieving k-anonymity in a social network
has been proven to be NP-hard [2]. Thus, we propose a
heuristic approach to tackle the problem.

Algorithm 1 Overview of the Anonymization Algorithm

Input: Social network G = (V,E, L) and anonymization
threshold k;

Output: k-anonymous social network;
1: V List ← V ;
2: Sort V List by degrees in descending order;
3: while V List �= ∅ do
4: TopK ← first k disjointed vertices in V List;
5: Call SmoothingDegree(TopK);
6: Call MakeIsomorphic(TopK,AffectedV);
7: V List.Remove(TopK);
8: V List.InsertAndSort(AffectedV);
9: end while

III. THE ANONYMIZATION METHOD

In this section, we present a method to anonymize the
social network G = (V,E, L) to achieve k-anonymity. Al-
gorithm 1 provides an overview of the algorithm. According
to the power law degree distribution [8], most of the vertices
in a social network have low degrees, and only few vertices
have large degrees. Therefore, our proposed method starts
anonymization from the vertices with the largest degrees. The
vertices with lower degrees are much easier to anonymize.
The algorithm first sorts the vertices V by their degrees in de-
scending order, stores the sorted vertices in V List, iteratively
processes the first k disjointed vertices in V List, denoted by
TopK, and then removes TopK from V List. Each iteration
of processing the TopK vertices consists of two steps. The
first step is to transform the TopK vertices to have the same
degree. The second step is to extract the 1-neighborhood of the
TopK vertices and add edges to make them isomorphic. The
challenge is that making a group of vertices isomorphic may
break the isomorphism of some previously processed vertices.
Thus, the algorithm has to add the affected vertices, denoted
by AffectedV , back to V List. This process repeats until
V List becomes empty. The details of the two steps, namely
SmoothingDegree (Line 5) and MakeIsomorphic (Line 6),
are described as follows.

A. Degree Smoothing

Given k disjointed vertices, denoted by TopK, that are
sorted by degree in descending order, the goal of this step
is to make them having the same degree by adding edges.
Algorithm 2 describes the general idea of this procedure. Let
v0 be the first vertex of TopK, i.e., the one with the largest
degree among the k vertices. For each vertex vi in TopK,
the procedure computes the number of edges, denoted by d,
required to be added to vi, and heuristically selects d vertices
with the least degrees from V . Vertices with low degrees are
preferable because they can be efficiently obtained from the
end of the V List, and they are relatively easy to smoothen,
if necessary, in later iterations. Due to the power law degree
distribution [8], it is very likely that more than d vertices have
the same least degree. The question is how to select the vertices
from these candidates for adding edges with minimal impacts
on the frequent spatterns.

Adding edges increases the support of some spatterns.
Consequently, some spatterns that were not frequent before the
anonymization may become frequent after the anonymization,

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

481

Algorithm 2 SmoothingDegree(TopK)

Input: TopK sorted by degrees in descending order;
Output: TopK with the same degree;

1: v0 = TopK.popfirst();
2: while TopK �= ∅ do
3: vi = TopK.popfirst();
4: d = degree(v0)− degree(vi);
5: Add d edges to vi based on minimum Cost;
6: end while

resulting in some false frequent spatterns. Thus, the heuristic
function for selecting the target vertices should minimize the
increase of the support. In other words, the function selects a
vertex vj with a label that has minimal overlap with the label
of vertex vi:

Cost(vi, vj) = |L(vi) ∩ L(vj)| (1)

where L(vi) and L(vj) denote the labels of vi and vj ,
respectively. If more than d vertices share the same least degree
and Cost, the algorithm randomly chooses d of them.

Fig. 4. Degree smoothing with k = 2

Example III.1. Consider Figure 4 with k = 2. After sorting
all vertices in degree descending order, v0 has the largest
degree degree(v0) = 4, v1 is the vertex with the second
largest degree, with degree(v1) = 3, that is not connected
with v0. Thus, d = degree(v0) − degree(v1) = 1, and one
edge has to be added between v1 and an another vertex,
which has the least degree. In this example, both v2 and v3
has degree 1; therefore, we choose the one minimum overlap
in their labels: Cost(v1, v2) = |{Professor, Laptop} ∩
{Professor, Laptop}| = 2 and Cost(v1, v3) =
|{Professor, Laptop} ∩ {Student,Mouse}| = 0. Since
Cost(v1, v3) < Cost(v1, v2), we add an edge between v1 and
v3.

B. Making Isomorphic

After smoothing the degree of the TopK vertices, the next
step is to make them isomorphic. Specifically, the goal of this
step is to add edges to the 1-neighborhood of TopK vertices
in order to make them isomorphic. Similar to the technique of
DFS Code [9], we employ a technique called BFS coding to
identify the missing edges. Algorithm 3 describes the steps.
The general idea is to compare the 1-neighborhood of the
first vertex, denoted by N1(v0), with the 1-neighborhood of
each of the remaining vertices, denoted by N1(vx), in TopK,
and compare their BFS codes to determine and to add the
missing edges (Lines 5-6). The next task is to identify the
previously k-anonymized vertices that are ruined by the newly
added edges. In other words, these affected vertices, denoted

Algorithm 3 MakeIsomorphic(TopK,AffectedV)

Input: TopK sorted by degrees in descending order;
Output: TopK with isomorphic 1-neighborhood;

1: v0 = TopK.popfirst();
2: for i := 1 to 2 do
3: for each vx ∈ TopK do
4: if BFS(N1(v0)) �= BFS(N1(vx)) then
5: Add edges to N1(v0) based on BFS(N1(vx));
6: Add edges to N1(vx) based on BFS(N1(v0));
7: for each va /∈ V List do
8: if va ∈ N1(v0) ∨ va ∈ N1(vx) then
9: AffectedV.Add(va);

10: for each vy ∈ TopK do
11: if vy ∈ AnonymousGroup(va) then
12: AffectedV.Add(vy);
13: end if
14: end for
15: end if
16: end for
17: end if
18: end for
19: end for

Fig. 5. BFS tree

by AffectedV , have to be put back to the V List for re-
anonymization. Lines 7-16 describe this detection process. A
previously k-anonymized vertex is affected by the newly added
edges if it satisfies one of the following conditions:

1) the vertex is a neighbor of v0 or a neighbor of vx
(Line 9), or

2) the vertex is in TopK and shares the same k-
anonymous group with another vertex va such that
va is a neighbor of v0 or a neighbor of vx (Lines
10-14).

After the first round, the 1-neighborhood of v0 is the su-
pergraph of others. Then the algorithm runs the same steps
once again to ensure the structure of the 1-neighborhood of
all vertices in TopK are copies of the 1-neighborhood of v0.
In the rest of this section, we focus on how to compute the
BFS code the 1-neighborhood of a given vertex, and how to
compute two BFS codes in order to determine the missing
edges.

To facilitate the comparison of the structure of graphs, we
use a breath-first search tree (BFS-tree) to encode the two
graphs and compare their BFS codes. The general idea is to
traverse the vertices using a breath-first search by following the
subscripts of the vertices. Consider Figure 5 as an example. We
start the BFS coding from the vertex with the largest degree,
which is v0, followed by v1, v2, v3 and finally the edges
between v2 and v3. Thus, The 1-neighborhood BFS Code of
v0, denoted by BFS(N1(v0)), is (01020323).

Next, we can determine the missing edges between two
subgraphs by comparing their BFS codes. The following

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

482

example illustrates the idea.

Example III.2. Consider Figure 6. The encoding always starts
from 0, so v5 − v8 in Figure 6(b) become v0 − v4. The
BFS Codes of N1(v0) and N1(v5) are (010203041423) and
(0102030434), respectively. By comparing the two BFS codes,
we know that (14) and (23) are not in N1(v5) and (34) are
not in N1(v0). Therefore, we add an edge between v3 and v4
in N1(v0) and add two edges between v6 and v9 and between
v7 and v8 in N1(v5). After adding these edges, the two graphs
become isomorphic.

The following example illustrates how to isomorphize the
1-neighborhood of three vertices.

Example III.3. Consider the 1-neighborhoods of v0, v5,
and v10 in Figure 7(a). To make them isomorphic, we start
from N1(v0) and iteratively compare it with N1(v5) and
N1(v10). By comparing BFS(N1(v0)) with BFS(N1(v5))
and BFS(N1(v10)), we add an edge between v1 and v2 and
another edge between v2 and v3 as shown in Figure 7(b).
Yet, the three 1-neighborhoods are not isomorphic yet because
N1(v5) and N1(v10) are different. Since N1(v0) must be a
supergraph of N1(v5) and N1(v10). We once again compare
BFS(N1(v0)) with BFS(N1(v5)) and BFS(N1(v10)), add
an edge between v7 and v8 as depicted in Figure 7(c).

C. Analysis and Discussion

In this section, we analyze the computational complexity
of the aforementioned procedures and discuss the limitations
of our proposed algorithm.

In the SmoothingDegree algorithm, the heuristic function
first selects the vertices with the lowest degree and then com-
putes the impact on spatterns. The computational complexity
of the algorithm is O(knlogn), where k is the anonymization
threshold, n is the number of the vertices with the lowest
degree. In the MakeIsomorphic algorithm, we use BFS code
to encode the 1-neighborhood a given vertex. We also need to
find those affected vertices and put them into V List again.
Considering the worst case, the computational complexity of
the algorithm is O(k3 × |V | + k × |V |2), where k is the
anonymization threshold and |V | is the number of vertices in
N1(vi), where vi ∈ TopK.

An alternative solution to tackle the problem is to first
extract the frequent spatterns from the raw social network
graph. Then at each iteration, the method chooses a vertex for
adding edge with a heuristic function that minimizes the impact
on the frequent spatterns. This alternative solution suffers from
two shortcomings:

1) Extracting frequent spatterns is computationally ex-
pensive and doing so will significantly increases the
complexity of the anonymization algorithm.

(a) N1(v0) (b) N1(v5)

Fig. 6. Making isomorphic

(a) 3 neighborhoods before anonymization

(b) 3 neighborhoods after first anonymization, the
dashed edges are new added edges

(c) 3 neighborhoods after second anonymization, the
dashed edges are new added edges

Fig. 7. Example of 3-neighborhood anonymization

2) The notion of frequent spatterns depends on the user-
specified minimum support threshold. In real-life data
publishing, it is difficult for the data holder to deter-
mine an appropriate minimum threshold in advance
on behalf of the data recipient. Also, the evaluation
must then depend on the specified minimum support
threshold.

Supported by the experimental results, we would like to
emphasize that our proposed algorithm can effectively preserve
the (maximal) frequent itemsets although the algorithm does
not actually extract the frequent itemsets from the social
network.

We would also like to provide a justification on
why we choose the vertices with the lowest degree in
the SmoothingDegree algorithm. First, adding edges be-
tween vertices with large degrees may affect the previ-
ously anonymized vertices and increase the chance of re-
anonymization, which degrades the efficiency and affects the
diameter of the social network [2]. Second, since the BFS
coding technique can only deal with the disjointed vertices,
adding edges between vertices with large degrees will corrupt
the disjointed vertices and increase the difficulty to achieve
k-anonymity.

Though k-anonymity technique is effective to thwart neigh-
borhood attack on social network, our approach has some limi-
tations. First, our approach can only deal with 1-neighborhood,
if an adversary has the background knowledge beyond 1-
neighborhood, the k-anonymous social network may still suffer
from neighborhood attacks. Second, we assume that the ad-
versary has the background knowledge of the structure of the
social network. If the adversary has both the structural back-
ground knowledge of the social network and the partial label
information of the target victim, our approach is insufficient
for this kind of attack.

IV. EXPERIMENTAL EVALUATION

The objective of the experiments is to evaluate the per-
formance of the proposed algorithm with respect to the data
quality of the anonymous social network. The experiments

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

483

Algorithm 4 Relabel(v, V List)

Input: A vertex v and a list of vertices excluding v
Output: A relabeled social network

1: for i = 1 to M do
2: for each x ∈ N1(v) do
3: if Li(x) == Li(v) then
4: labelNum(Li(x)) ← labelNum(Li(v));
5: Relabel(x, V List− x);
6: end if
7: end for
8: end for

were conducted on a PC with Core i7 2GHz CPU with 8GB
memory running on Windows 7.

A. Datasets

We conducted the experiments on three real-life datasets,
namely Gnutella051, Gnutella082 [10], and Adult3. Gnutella05
and Gnutella08 are snapshots of the Gnutella peer-to-peer file
sharing network in August 2002. In both datasets, vertices rep-
resent host computers and the edges represent the connections.
Gnutella05 has 8,846 vertices and 31,839 edges. Gnutella08
has 6,301 vertices and 20,777 edges. We converted the original
directed graphs into indirected graphs for our experiment. As
the two datasets have no labels, we used the Adult dataset,
which has been previously employed in [11][12], to synthesize
the vertex labels. Adult has 45,222 records on 8 categorical
attributes.

As the numbers of records in Adult are different from
the number of vertices in Gnutella05 and Gnutella08, we
sequentially associated each record in adult with Gnutella05
and Gnutella08 based on the order given in the raw datasets.
The numerical attributes in Adult dataset were removed.

B. Frequent Spatterns Extraction

To evaluate the data utility on frequent spatterns, we
measure the change of the frequent spatterns before and after
anonymization. We use a tool called MAFIA [13] to extract
the frequent spatterns.

In frequent itemsets mining, the support of an itemset
is simply the number of transactions containing the itemset.
However, in frequent spatterns mining, we cannot simply treat
the label of each vertex as a transaction because the support
of a spattern is the number of vertices in a maximal subgraph
of the spattern. (See Definition II.3.) In other words, even two
disjoint vertices have the same label, the support of the label
is only 1. Thus, we need to first relabel the vertex labels such
that two labels share the same label number only if they have
the same label and their vertices are connected.

Suppose the label of each vertex is sorted in alphabetical
order. Let Lj(v), a sub-label of L(v), be the jth label of
vertex v. For example, vToby has L1(vToby) = {Student}
and L2(vToby) = {Laptop} in Figure 1(a). The first step is

1http://snap.stanford.edu/data/p2p-Gnutella05.html
2http://snap.stanford.edu/data/p2p-Gnutella08.html
3http://archive.ics.uci.edu/ml/datasets/Adult

(a) sub-label after assignment (b) relabeled graph with spatterns

Fig. 8. Relabeling

to assign a temporary distinct sub-label number to each sub-
label of every vertex, denoted by labelNum(Li(v)), and then
call the depth-first recursive function Relabel(v, V −v), where
v can be any vertex in V , as described in Algorithm 4. The
general idea is iterate through each sub-label of every neighbor
of a given vertex v and copy the sub-label number from v to its
neighbor x if their sub-labels are the same. To avoid relabeling
the same sub-label more than once, we use a boolean flag to
skip the visited vertices.

Example IV.1. Consider Figure 8(a). The label in each vertex
contains two sub-labels: L1(v) and L2(v). We first assign
a distinct sub-label number to every sub-label. For exam-
ple, labelNum(L1(v2)) = 3 and labelNum(L2(v1)) = 5.
Next, we start a depth-first search on v0 for L1 since it
has the lowest sub-label number. v0, v1, and v2 are con-
nected and L1(v0), L1(v1), and L1(v2) are the same, so
we reassign the sub-label numbers of Student in v1 and v2
to labelNum(L1(v1)) = 1 and labelNum(L1(v2)) = 1,
respectively. Similarly, we reassign the sub-label number of
Laptop in v1 to labelNum(L2(v1)) = 4. Figure 8(b) depicts
the relabeled graph.

After relabeling the vertices, each vertex is transformed
into a transaction and its sub-label numbers are treated as
transaction items. Then MAFIA is applied to extract the
frequent spatterns.

C. Data Utility on Frequent Spatterns

The first experiment is to evaluate the impact of
anonymization on frequent spatterns. The utility loss is calcu-
lated by FSLoss = A−B

B , where B and A denotes the number
of frequent spatterns extracted before and after anonymization,
respectively. The value of FSLoss is non-negative. The higher
value of FSLoss means the higher number of false positive
frequent spatterns, implying higher utility loss.

Figures 9 depicts the utility loss on frequent spatterns with
anonymization threshold 5 ≤ k ≤ 20, and minimum support
MinSup = 8%, 12%, 16%, 20% on p2p-Gnutella08 and p2p-
Gnutella05. For example, at MinSup = 16%, FSLoss =
21.3%, 22.7%, 26.7%, 28% for 5 ≤ k ≤ 20, respectively. This
result suggests that as k increase, more fake edges have to
be added in order to achieve the k-anonymity requirement,
resulting in higher FSLoss. Yet, the impact of anonymization
on FSLoss is mild.

V. RELATED WORKS

Privacy threats on social network data can be summarized
into three types, namely identity disclosure, attribute disclo-
sure, and link re-identification, depending on the adversary’s

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

484

(a) p2p-Gnutella08 (b) p2p-Gnutella05

Fig. 9. Utility loss on frequent spatterns

background knowledge on the social network data. For iden-
tity disclosure, the attack goal is to identify the vertex that
represents a target victim. For attribute disclosure, the attack
goal is to identify or infer some sensitive information about
a target victim. For link re-identification, the attack goal is to
identify sensitive relationships of a target victim. We briefly
review the related works on thwarting identity disclosures with
anonymization technique in the enhanced model [1], which
represents the social network data as a graph in which labeled
vertices denote participants and their associated information
such as jobs and purchased items and edges denote the
relationships between participants.

Existing anonymization techniques for thwarting identity
disclosure on social networks are primarily classified into three
categories: adding or removing edges [2] [14] [15], gener-
alization [16] [17], and randomization [18] [19]. However,
generalization and randomization technique are not applica-
ble to the problem of preserving frequent sharing patterns
studied in this paper because the generalized graph is a
transformation of the original graph and a randomized graph
produces noised patterns. Our approach falls into the category
of adding edges. Zhou and Pei [2] generalize node labels and
inserted edges into the network to achieve k-neighborhood.
Cheng et al. [14] introduce a k-isomorphism technique to
thwart structural attack in social networks, ensuring that on
social network, even if the adversary knows the information
of an individual, or the relationship among the individuals,
privacy will still be protected. Bonchi et al. [15] describe a
k-obfuscation model which ensures that an adversary cannot
infer the vertex in the obfuscated graph based on the vertex
of its original graph. However, the aforementioned approaches
employ traditional utility measures, such as graph topological
properties, graph spectral properties, and aggregate network
queries, to evaluate the information utility of the anonymized
social network. In contrast, our proposed method aims at
preserving frequent itemsets in the anonymization process and
evaluates the information utility from a different aspect.

VI. ACKNOWLEDGEMENT

The research is supported in part by the Discovery Grants
(356065-2013) from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES

[1] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Computing
Surveys, vol. 42, no. 4, pp. 14:1–14:53, June 2010.

[2] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in Proceedings of the 2008 IEEE 24th Inter-
national Conference on Data Engineering, 2008, pp. 506–515.

[3] L. Sweeney, “k-anonymity: a model for protecting privacy,” Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[4] M. Fukuzaki, M. Seki, H. Kashima, and J. Sese, “Finding itemset-
sharing patterns in a large itemset-associated graph,” in Proceedings of
the 14th Pacific-Asia conference on Advances in Knowledge Discovery
and Data Mining, 2010, pp. 147–159.

[5] P. Samarati and L. Sweeney, “Protecting privacy when disclosing
information: K-anonymity and its enforcement through generalization
and suppression,” SRI International, Tech. Rep., 1998.

[6] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam, “L-diversity: Privacy beyond k-anonymity,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 1, March 2007.

[7] K. Wang, B. C. M. Fung, and P. S. Yu, “Handicapping attacker’s confi-
dence: an alternative to k-anonymization,” Knowledge and Information
Systems, vol. 11, pp. 345–368, April 2007.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communication, 1999, pp. 251–262.

[9] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM), 2002, pp. 721–724.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, March 2007.

[11] N. Mohammed, B. C. M. Fung, and M. Debbabi, “Anonymity meets
game theory: secure data integration with malicious participants,” Very
Large Data Bases Journal (VLDBJ), vol. 20, no. 4, pp. 567–588, August
2011.

[12] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C.-K. Lee, “Cen-
tralized and distributed anonymization for high-dimensional healthcare
data,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 4, no. 4, pp. 18:1–18:33, October 2010.

[13] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: A maximal frequent
itemset algorithm for transactional databases,” in Proceedings of the
17th International Conference on Data Engineering, 2001, pp. 443–
452.

[14] J. Cheng, A. W.-C. Fu, and J. Liu, “K-isomorphism: Privacy preserving
network publication against structural attacks,” in Proceedings of the
ACM SIGMOD International Conference on Management of data, 2010,
pp. 459–470.

[15] F. Bonchi, A. Gionis, and T. Tassa, “Identity obfuscation in graphs
through the information theoretic lens,” in Proceedings of the IEEE
27th International Conference on Data Engineering (ICDE), 2011, pp.
924–935.

[16] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis, “Resisting
structural re-identification in anonymized social networks,” Proceedings
of the VLDB Endowment, vol. 1, no. 1, pp. 102–114, 2008.

[17] A. Campan and T. M. Truta, “A clustering approach for data and
structural anonymity in social networks,” in In Proceedings of the 2nd
ACM SIGKDD International Workshop on Privacy, Security, and Trust
in KDD Workshop, 2008, pp. 1–10.

[18] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing
social networks,” Computer Science Department, University of Mas-
sachusetts Amherst, Tech. Rep. 07-19, 2007.

[19] X. Wu, X. Ying, K. Liu, and L. Chen, A Survey of Algorithms
for Privacy-Preservation of Graphs and Social Networks. Kluwer
Academic Publishers, 2009, ch. Managing and Mining Graph Data.

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

485

