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Abstract—To gain an in-depth understanding of the behaviour
of a malware, reverse engineers have to disassemble the mal-
ware, analyze the resulting assembly code, and then archive the
commented assembly code in a malware repository for future
reference. In this paper, we have developed an assembly code
clone detection system called BinClone to identify the code clone
fragments from a collection of malware binaries with the fol-
lowing major contributions. First, we introduce two deterministic
clone detection methods with the goals of improving the recall
rate and facilitating malware analysis. Second, our methods
allow malware analysts to discover both exact and inexact clones
at different token normalization levels. Third, we evaluate our
proposed clone detection methods on real-life malware binaries.
To the best of our knowledge, this is the first work that studies the
problem of assembly code clone detection for malware analysis.

I. INTRODUCTION

Reverse engineering is a manual and time-consuming pro-
cess, but it is often the primary step taken to gain an in-
depth understanding of a piece of malware. To achieve a more
efficient analysis, reverse engineers can manually compare the
assembly code under study with a repository of previously
analyzed assembly code and identify identical or similar code
fragments. By identifying the matched code fragments and
transferring the comments from the previously analyzed to
the new assembly code, analysts can minimize redundant
efforts and focus their attention on the new functionalities
of the malware. Yet, the comparison process itself is also a
challenging task, and the chances of identifying similar code
fragments often depend on the experience and knowledge of
the analyst. In this paper, we present an assembly code clone
detection system to support malware analysis and evaluate its
performance in terms of accuracy, efficiency, and scalability
on the assembly code of real life binary and malware files.

The problem of assembly code clone detection for malware
analysis is informally described as follows: Given a large
repository of previously analyzed malware files and a new
target file, the goal is to identify all the code fragments in
the repository that are syntactically or semantically similar to
the code fragments in the target malware file. The challenges
associated with this problem are summarized as follows:

Simple keywords matching insufficiency: A simple method
to identify assembly code clones is to identify some keywords
such as constants, strings, and imported function names in
a code fragment, and then attempt to match them in other
fragments. Another alternative method is to perform a keyword
search using the RESource IDA Pro plug-in [28]. Although
essential, the keyword search capability is insufficient for
assembly code clone detection, as many code fragments do
not contain any uniquely identifying keywords.

Large code volume: The size of an assembly file can
range from a couple of kilobytes to over dozens of megabytes
of textual data. The efficiency of a clone detection method
refers to the period of time required to identify all the clones.
Scalability refers to its capability to handle a large collection
of assembly code.

Deterministic clone results: To support effective malware
analysis, the clone detection method must be deterministic,
i.e., the identified clone detection results have to be repeatable
given the same search query and malware repository. Other-
wise, it will be very difficult for a reverse engineer to draw
any conclusions on the clone results.

Contributions: Sæbjørnsen et al. [30] presented a method
to identify clone pairs that are not exactly identical. Their
general approach is to first extract a set of features from each
region, create a feature vector for each of them, and then use
locality-sensitive hashing (LSH) to find the nearest neighbor
vectors of a given query vector. Although this approach shows
some encouraging results in identifying clone pairs that are not
exactly identical, its assumption on the uniform distribution
of vectors may not hold as the number of features (i.e.,
dimensions) increases, resulting in false negatives. In this
paper, we develop an assembly code clone detection framework
based on [30] and made significant extensions in different
components to support the special needs of clone detection
for malware analysis. The contributions of this paper are
summarized as follows:

• Improved inexact clone detection. We propose two new
inexact clone detection methods to improve the recall rate
and to improve the efficiency by employing a filtering
process. Also, our technique is robust against clones that
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have reordered instruction caused by different compiler
optimization methods.

• Flexible normalization procedure. We present a generic
method to allow malware analysts to discover both exact
and inexact clones at different normalization levels of
assembly tokens, namely, memory references, registers,
and constant values. Experimental results suggest that nor-
malizations can help improve the recall when identifying
Type I and II clones.

• Support for malware analysis. The clone detection method
has to be deterministic in order to support malware anal-
ysis. Thus, any clone detection method that employs ran-
domization, such as the LSH approach used in [30], does
not satisfy this requirement. For this reason, our proposed
inexact clone detection methods are deterministic. Finally,
we evaluate our proposed methods on real-life malware
binaries obtained from the National Cyber-Forensics and
Training Alliance (NCFTA) Canada1. To the best of our
knowledge, this is the first work that studies the problem
of assembly code clone detection for malware analysis.
Experimental results on real life malware binaries suggest
that our proposed clone detection algorithm is effective.

The rest of this paper is organized as follows: Section II
provides related work and background information on clone
detection, followed by a formal definition of the clone de-
tection problem in Section III. The proposed clone detection
framework is described in Section IV, and its performance
evaluation is presented in Section V. Section VI concludes the
paper.

II. RELATED WORK

Most of the existing source code clone detection techniques
are not directly applicable to assembly code. Source code
contains different types of control flow statements, such as
while-loop, for-loop, switch-case, and if-then-else. In contrast,
assembly code consists of a large collection of instructions
that share a nearly identical format. Applying the existing
source code clone detection methods such as program de-
pendency graph (PDG) [24][22], text [18][25], tree [11][32],
token [2][14], similarity distance [5], and metric-based ap-
proaches [23][26] on assembly code may result in many
false positives (i.e., low precision). Also, as most malware
are not written in Java, Java bytecode clone detection meth-
ods [20][27][13] are not directly applicable for malware anal-
ysis. For example, Java bytecode does not consider registers.

The following definitions of clone types are commonly
used in the literature [29] of source code clone detection. Type
I, II, and III are known as textual clones, while Type IV clones
are known as semantic clones. We utilize the same clones types
for assembly code clone detection.

Type I: Identical code fragments except for variations in
whitespace, layouts, and comments.

Type II: Structurally and syntactically identical fragments
except for variations in identifiers, literals, types, layouts, and
comments.

1http://www.ncfta.ca

Type III: Copied fragments with further modifications.
Statements can be changed, added, or removed, in addition to
variations in identifiers, literals, types, layouts, and comments.

Type IV: Code fragments which perform the same com-
putation, but implemented using different syntactic variants.

The clone detection methods on assembly code can be
broadly categorized as follows:

Text-based approach: Jang et al. [15][16] used a finger-
printing algorithm based on bloom filters to cluster malware
samples. While their work does not directly concern the
comparison of unknown assembly code to previously analyzed
samples, it does present a potential solution to address the
scalability requirement of any comparison system.

Token-based approach: Schulman [31] proposed a system
to create a database of previously analyzed binaries to rec-
ognize duplicate functions. This appears to be the first work
on detecting code clones at the functional level. Karim et
al. [19] addressed the problem of classifying new malware
into existing malware families whose individual entries share
common code. Walenstein et al. [33] further extended this
approach to match assembly code by comparing n-grams and
n-perms extracted from disassembled binaries that have been
unpacked and unencrypted. A vector model for the comparison
of entire binaries is used but is ineffective, unless most of the
binary is a clone of another previously analyzed binary.

Metric-based approach: Bruschi et al. [6] presented a
technique to normalize assembly code to detect polymorphic
and metamorphic malware. The prototype is based on using
a normalization technique to ease the comparison between
malware samples. The prototype implementation has some
restrictions regarding the identification of program character-
istics that can be used to measure the similarity of samples.
Sæbjørnsen et al. [30] presented a general clone detection
framework that utilizes an existing tree similarity framework,
models the assembly instruction sequences as vectors, and
groups similar vectors together.

Structural-based approach: Dullien et al. [10] presented the
research results on executable code comparison for attacker
correlation. They implemented a system that can identify
code similarities in executable files. Dullien also developed
a software tool called BinDiff 2 that compares binary files
using a control flowgraph. It parses and extracts features
of every function, and then iteratively matches its callers
and callees. The objective of BinDiff is to analyze software
patches. Carrera and Erdelyi [7] addressed the challenge of
having a large number of malware samples. They developed
a system based on graph theory to rapidly and automatically
analyze and classify malware based on its underlying code
structure. Briones et al. [4] designed an automated classifica-
tion system for binaries with a similar internal structure. They
used graph theory to identify similar functions that are used to
classify malware samples. Flake [12] presented a method that
constructs an isomorphism between the groups of functions
that are used into two different versions of the same binary.

BinCrowd3 creates a repository that stores the analyzed
assembly code together with their function names, comments,

2http://www.zynamics.com/bindiff.html
3http://www.zynamics.com/bincrowd.html
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or other related information. This tool employs the BinDiff
algorithm to discover known functions in other disassembled
files. Christodorescu et al. [8] proposed a novel structural
analysis technique to compare worm structures. This technique
is based on comparison of colored graphs to characterize a
worm’s structure. One drawback of this approach is that it
decides that some portions of a given executable resemble
another portion of another executable without considering
whether or not they are the same. Anju et al. [1] proposed
a method for malware detection based on control flow graph
optimization. They defined architecture for detecting malicious
patterns in executable files.

Behavioral-based approach: Comparetti et al. [9] devel-
oped a system called REANIMATOR that allows the identi-
fication of dormant functionalities in malware. They exploit
the fact that a dynamic malware analysis captures malware
execution and reports its behavior. This approach can be
useful if one wants to match different code portions that are
semantically identical but syntactically different. Jin et al. [17]
proposed a binary function clustering method to group similar
functions with respect to their behaviour. Their method first
captures the semantic of each function using the machine state
changes made at the functional level. Then, a clustering method
using hashing is used to identify code clones based on common
features. Bayer et al [3] proposed a method to group malware
by their behaviour, but this problem is different from assembly
clone detection.

Hybrid approach: Wang et al. [34] presented a tool called
BMAT that creates mappings between old and new versions
of binaries. This tool is used to generate profile information
of applications and illustrates how to propagate stale profiles
from an old to a new version. Khoo et al. [21] developed a
search engine that allows searching for binary code against
some existing open source and code repositories. First, they
tokenized assembly functions and then extracted some features
to build a query term. As they considered only assembly
functions as the unit of comparison, their work cannot find
code clones within functions. Their experiments were not
performed on malware as we do in this paper, but their
results on GNU C libraries show that their search engine can
efficiently identify the matched binary code with a high recall
rate, with the trade-off of relatively low precision.

III. PROBLEM DEFINITION

We first provide an informal description of the assembly
code clone detection problem followed by a formal problem
description and an example. Given a large collection of previ-
ously analyzed assembly files and a specific target assembly
file or code fragment, a user would like to identify all the
code fragments in the previously analyzed assembly files that
are syntactically or semantically similar to the target assembly
file or code fragment.

Let A = {A1, . . . , An} be a collection of previously
analyzed assembly files, where each assembly file Ai consists
of m lines of assembly code, denoted by f [1 : m]. In the rest of
this section, we assume the assembly code has been normalized
according to Section IV. A code fragment f [a : b] in an
assembly file Ai refers to a subsequence of assembly code
from line a to line b in Ai inclusively, where 1 ≤ a ≤ b ≤ m.

(a) Procedure foo (b) Procedure bar

Fig. 1: Sample Procedures

|f [a : b]| denotes the number of lines of assembly code in
f [a : b]. We define two notions of clones as follows: Intuitively,
two code fragments are an exact clone pair if they have the
same sequence of assembly instructions. Two code fragments
that share similar instructions with respect to the mnemonics
and operands are considered as an inexact clone pair.

Definition 3.1 (Exact clone): Let f [a : b] and f [c : d] be
two arbitrary non-empty code fragments in A. f [a : b] and
f [c : d] are an exact clone pair if |f [a : b]| = |f [c : d]|
and f [a] = f [c], . . . , f [b] = f [d]. The relation = denotes that
two code fragments are identical with respect to the sequence
of mnemonics and operands types appearing in the line of
assembly code instruction.

Definition 3.2 (Inexact clone): Let f [a : b] and f [c : d] be
two arbitrary non-empty code fragments in A. Let sim(f [a :
b], f [c : d]) be a function that measures the similarity between
two code fragments f [a : b] and f [c : d]. f [a : b] and f [c : d]
are an inexact clone pair if sim(f [a : b], f [c : d]) ≥ minS,
where minS is a user-specified minimum similarity threshold
0 ≤ minS ≤ 1.

Note that an exact clone pair has sim(f [a : b], f [c : d]) =
1. In other words, an exact clone pair is also an inexact clone
pair with similarity equal to 1. Given a similarity threshold
minS, the inexact clone detection process will also identify
all exact clones. At first glance, the two notions of clones can
be merged into one, and it seems to be unnecessary to develop
two different clone detection processes for identifying exact
and inexact clones separately. However, for malware analysis,
a reverse engineer might sometimes want to efficiently identify
only the exact clones. The problem of assembly code clone
detection is to identify all exact and inexact clones from the
collection of assembly files A.

Example 1: Suppose the collection of assembly code A
contains only two procedures as shown in Figure 1. The code
fragment f [25, 31] in foo and the code fragment f [51, 57] in
bar are an exact clone pair. Also, the code fragment f [30, 36]
in foo and the code fragment f [56, 62] in bar are an inexact
clone pair.
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Fig. 3: System Architecture

(a) Normalized foo (b) Normalized bar

Fig. 2: Normalized Procedures

IV. CLONE DETECTION SYSTEM

The proposed clone detection system consists of five major
components, namely the pre-processor, clone region detector,
clone merger, clone database, and clone visualizer. Figure 3
provides an overview of the implemented components. The
pre-processor first disassembles a collection of binary files into
assembly files. The clone region detector parses procedures in
the assembly files, partitions each function into a sequence
of regions, and identifies the clones among the regions. The
output of the clone region detector is a collection of clone
regions. The clone merger then combines consecutive clone
regions into larger clones. Afterwards, the resulting clones are
stored into a database, which is an XML file in our current
implementation. Finally, the clone visualizer takes the XML
file as input and interactively shows the clones to the user. A
detailed description of each component is given below.

A. Pre-processor

The pre-processor involves disassembling the binary code
into assembly code, indexing the tokens, and normalizing the
assembly code for clone comparison.

1) Disassembler: This step disassembles the input binary
files into the collection of assembly files A using a disassem-
bler such as IDA Pro. Each assembly file Af ∈ A contains a set
of functions. Each function contains a sequence of assembly
code instructions and each assembly instruction consists of a

mnemonic and a sequence of operands. Mnemonics are used to
represent the low-level machine operations. The operands can
be classified into three categories, namely memory reference,
register reference and constant values.

2) Normalizer: Two code fragments may be considered as
an exact clone even if some of their operands are different. For
example, two instructions can be identical even if one uses the
register eax and the other, ebx. Thus, it is essential that the
assembly code is normalized before the comparison.

The objective of the normalizer is to generalize the memory
references, registers, and constant values to an appropriate
level selected by the user. For constant values, the user has the
possibility to generalize them to V ALx, where x is an index
number, or to V AL, which simply ignores the exact constant
value. For registers, the user can generalize them according
to the normalization hierarchy depicted in Figure 4. The top-
most level REG generalizes all registers disregarding of their
type. The next level differentiates between General Registers
(e.g., EAX, EBX), Segment Registers (e.g., CS, DS), as well
as Index and Pointer Registers (e.g., ESI, EDI). Finally, the
bottom level breaks down the General Registers into 3 groups
by size, namely 32-, 16-, and 8-bit registers.

Figures 2a and 2b show the normalized versions of foo and
bar using the second level of the hierarchy.

REG

REGIdxPtrREGGenREGSeg

REGGen32REGGen16REGGen8

Fig. 4: Normalization Hierarchy for Registers

B. Clone Region Detector

The clone region detector consists of three steps. The first
step partitions each function into an array of regions. The
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second and third steps respectively identifies exact and inexact
clones, among the regions created in the first step.

1) Regionizer: Each function is partitioned into an array of
overlapping regions using a sliding window with a size of at
most w statements, where w is a user-specified threshold. Fig-
ure 5 shows the extracted regions of the normalized procedure
foo in Figure 2a with w = 15.

Fig. 5: Regionization for w = 15

2) Exact Clone Detector: Refer to Definitions 3.1 and 3.2.
A clone pair is defined as an unordered pair of code regions
that have similar normalized statements. A clone cluster is
a group of clone pairs. This step identifies the exact clone
pairs among the regions by comparing their assembly code
instructions. Two regions are considered as an exact clone
pair if all the normalized statements in the two regions are
identical. A naive approach to identify the exact clone pairs
is to compare every pair of regions. Yet, this naive approach
is too computationally expensive with a complexity of O(n2),
where n is the total number of regions. Thus, we used a hash-
ing approach with linear complexity and the same accuracy.
Specifically, two regions are considered as an exact clone pair
if they share the same hash value. As this approach uses a hash
algorithm to map each region to an integer value, all identical
regions are mapped to the same bucket without false negatives.
The process requires only one scan of the regions.

Algorithm 1 provides the details of the method. First, an
empty hash table H is initialized. Each entry in the hash table
contains a hash value v with a corresponding array of regions
having such a hash value. In lines 4-6, the method iterates
through each region r, creates a hash value v, and adds the
region r to the corresponding array H(v). Each entry H(v)
contains an exact clone cluster. In lines 7-9, the method iterates
through each clone cluster and constructs an array of exact
clone pairs denoted by EC.

3) Inexact Clone Detector: The objective of the inexact
clone detector is to identify the inexact clone pairs from a
given collection of regions. The detector first extracts some
features from each region, constructs a feature vector, and then
groups the feature vectors by similarity. Two regions are con-
sidered as an inexact clone pair if the similarity between their

Algorithm 1: Exact Clone Detector

input : set of regions R
output: set of exact clone pairs EC

1 begin
2 H ← ∅;
3 EC ← ∅;
4 foreach region r ∈ R do
5 v ← hash(r);
6 H(v) ← H(v) ∪ {r};

7 foreach H(v) ∈ H do
8 for i = 0 → |H(v)| do
9 for j = i+ 1 → |H(v)| do

10 EC ← EC ∪ {(ri, rj)};

11 return EC;

feature vectors is within a user-specified minimum similarity
threshold.

The feature vectors are constructed based on four groups
of features from the assembly instructions [30]. The first group
of features includes all mnemonics. In other words, each
distinct mnemonic forms a feature. The second group covers
all operand types. The third group includes all combinations
of mnemonics and the type of the first operand. Finally, the
last group includes all combinations of the first two operands.

In this section, two inexact clone detection methods that it-
eratively improve the accuracy of clone detection are proposed
in five steps.

Sequential Feature Selection Method: Algorithm 2 pro-
vides an overview of the sequential feature selection method
for inexact clone detection.

1) Compute medians: This step computes the median
of each feature on all regions. The medians serve as
a point of division for grouping the feature vectors
in the subsequent steps. The feature values, however,
may have a very large range. Therefore, the medians
are computed to avoid the negative impact of outliers.

2) Filter out features: This step filters out the features
that have their median equal to 0. The rationale is
that some features may appear only once or a few
times in all extracted regions, implying that they are
unimportant for the purpose of region comparison.
Thus, removing the features with a median of zero
can improve the accuracy and efficiency of the inexact
clone detection method and decrease the false positive
error rate.

3) Generate binary vectors: This step constructs a bi-
nary vector for each region by comparing the feature
vector of the region with the median vector. If a
feature value is larger than the corresponding median,
then 1 is inserted into the entry of the binary vector.
Otherwise, 0 is inserted.

4) Partition into sub-vectors: The fourth step is to
partition each binary vector into a sequence of sub-
vectors of size SBSize.

5) Hash sub-vectors: Given that the size of each sub-
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vector is SBSize, there are 2SBSize possible com-
binations of binary values. For each sub-vector, a
hash with 2SBSize number of buckets is created to
store the regions having the same sub-vector values.
The regions are hashed by computing the decimal
number of the sub-vector values. The inexact clone
pairs are identified in this step by keeping track of the
frequency of region co-occurrences in all inexact hash
tables’ buckets. The region pairs with the number
of co-occurrences above or equal to the similarity
threshold minS are considered as inexact clone pairs.

Algorithm 2: Sequential Feature Selection

input : set of regions R
set of features F
similarity threshold minS

output: set of inexact clone pairs IC
1 SBSize ← sub− vectors′size; Binary ← ∅;
2 Hk ← ∅;
3 M ← ComputeMedians(F ); /* Step1 */
4 foreach m ∈ M do /* Step2 */
5 if m = 0 then
6 M ← M −m;

7 foreach r ∈ R do /* Step3 */
8 for k = 0 → length(M) do
9 if F [k] ≥ M [k] then

10 Binary[k] ← 1;

11 else
12 Binary[k] ← 0;

13 foreach r ∈ R do /* Step4 */
14 for i = 0 → length(Binary)− SBSize+ 1 do
15 for j = 0 → SBSize do
16 sub− vectori[j] ← Binary[i+ j];

17 foreach r ∈ R do /* Step5 */
18 foreach k = 0 → Numberofsub− vectors do
19 Hk ← Compute the decimal number;
20 R′ ← find other regions with the same hash

value

21 foreach r′ ∈ R′ do
22 if r and r′ occurred more than the minS

threshold then
23 IC ← IC ∪ {(r, r′)};

24 return IC;

Example 2: Figure 6 shows a collection of features gener-
ated from a dataset after the filtering process. For simplicity,
only a small set of features is shown here. The dashed
rectangles show the sub-vectors of the feature vector with a
user-defined sub-vector of size 5. Let the user-defined sub-
vector size be 5. There are thus n − 5 + 1 sub-vectors for
n extracted features after the filtering process and 25 = 32
possible hash values (decimal numbers) for each sub-vector,
resulting in 32 entries in each associated inexact hash table.
Step 5 maps the regions into these hash tables by computing
the decimal number of their binary vectors.

Two-Combination Method: This method follows the same

Fig. 6: Step 3 - SFS Inexact Detection Method with SBSize =
5

general steps, but the detailed process in Step 3 is different. In-
stead of creating sub-vectors with the user-defined-length size,
all possible two-combinations of the remaining features after
the filtering process are constructed. Each two-combination
vector acts as a sub-vector. Then, each feature vector is mapped
into its sub-vectors. Sub-vectors are the same size as two-
combinations, which is equal to 2. In this case, the user does
not have the flexibility to choose the size of sub-vectors.

Example 3: Figure 7 shows all possible two-combinations
of the features in Figure 6, each of which is a sub-vector. Let n
be the number of features after the filtering process. There are
C(n, 2) = n×(n−1)

2 sub-vectors. Given that each sub-vector is
a binary vector of size 2, there are 22 = 4 possible hash values,
implying that each inexact hash table contains 4 entries. This
method maps the regions into sub-vectors based on their binary
vectors generated from Step 3.

mov push

mov REGREG

mov REGMEM

mov movREG

mov MEM

mov VAL

mov REG

mov jnb

mov call

push REGREG

push REGMEM

push movREG

push MEM

push VAL

push REG

push jnb

push call

call REGREG

call REGMEM

call movREG

call MEM

call VAL

call REG

call jnb

jnb REGREG

jnb REGMEM

jnb movREG

jnb MEM

jnb VAL

jnb REG

REG REGREG

REG REGMEM

REG movREG

REG MEM

REG VAL

VAL REGREG

VAL REGMEM

VAL movREG

VAL MEM

MEM REGREG

MEM REGMEM

MEM movREG

movREG REGREG

movREG REGMEM

REGMEM REGREG

Fig. 7: Step 3 - TC Inexact Detection Method

The two proposed inexact detection methods generate
different numbers of sub-vectors and different sub-vector sizes.
These characteristics affect the efficiency and scalability of
inexact clone detection.

The sequential feature selection method considers only
the sub-vectors with consecutive features, while the two-
combination method considers all possible two-combinations.
Therefore, the set of sub-vectors generated by the sequen-
tial feature selection method is a subset of the sub-vectors
generated by the two-combination method. As a result, the
sequential feature selection method performs better than the
two-combination method in terms of scalability, but the two-
combination method performs better in terms of recall rate.
Experimental results in Section V also support this observation.
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Fig. 8: Duplicate Clone Merger with w = 10 and overlapped
size of 0.6

C. Clone Merger

1) Duplicate Clone Merger: The inexact clone detector
may misclassify two consecutive regions to be a clone. This
step is intended to remove the clones that are highly over-
lapping consecutive regions. A fixed overlapping threshold of
50% is defined that indicates the fraction of allowed overlapped
instructions of two consecutive regions that can still be con-
sidered as a clone pair. In other words, the consecutive regions
with half part overlapped instructions would be discarded.

Example 4: Figure 8 provides an example for this step. It
shows two consecutive regions with a window of size 10 and
an overlapping ratio of 60%. Since the overlapping ratio is
above %50 , the clone pair is discarded.

2) Maximal Clone Merger: Since the clone detection pro-
cesses operate on regions, the size of the identified clones is
bounded by the window size w. As a result, a natural large
clone fragment may be broken down into small, consecutive
cloned regions, making the analysis difficult. The objective of
this step is to merge the smaller consecutive clone regions into
a larger clone. All identified clone fragments are then stored
in the user-specified XML file.

Algorithm 3 provides the maximal clone merger process
where CP is the set of identified clone pairs and MC is the
set of maximal merged clone pairs after the merging process.
The overlap function finds the overlapping clones in lines 4-5.

Example 5: Suppose clone pairs c and c′ are a pair of
regions {A,B} and {A′, B′}, respectively. Two clones are
overlapping if each of their regions shares some instructions.
Hence, c and c′ are overlapping cloned pairs if {A,A′} and
{B,B′} have overlapping instructions.

Example 6: Figure 9 provides an example of the maximal
clone merger process. With window size w = 5, every region
in lines 50 - 60 on the left corresponds to a region in lines
105 - 115 on the right, represented by 6 clone pairs. Since all
6 clone pairs are consecutive, they are merged into one clone
pair, as indicated by the dashed rectangles.

D. Clone Database

The clone detection results are stored in an XML file.
The XML file contains four nodes, namely parameters, as-
sembly files, clone files, and token references.

Fig. 9: Maximal Clone Merger with w = 5

Algorithm 3: Maximal Clone Merger

input : set of clone pairs CP
output: set of maximal merged clone pairs MC

1 begin
2 MC ← ∅;
3 foreach clone pair c and c′ ∈ CP do
4 if overlap(region A ∈ c, region A′ ∈ c′) and

overlap(region B ∈ c, region B′ ∈ c′) then
5 CP ← merge(c, c′);
6 MC ← CP ;
7 return MC;

• The parameters node stores the user-specified parameters,
such as the window size w, minimal similarity threshold
minS, and normalization level.

• The assembly files node stores a list of assembly files.
The primary objective is to assign a unique fileID to
each assembly file for subsequent references. Some basic
statistics, such as the number of functions and the number
of regions found, are also stored in the corresponding node.

• The clone files node stores the clone detection results.
Specifically, the clone files node stores a list of clone files,
in which each clone file stores a list of clone pairs.

• The token references node stores the token indexes. Specif-
ically, the token references node stores three lists of tokens,
namely constants, strings, and imports, with their locations
indicated by fileIDs and line numbers.

E. Clone Visualizer

A graphical user interface (GUI) has been implemented
to allow the user to input the required parameters, read
the user-specified target code fragment or target tokens, and
interactively identify the matched clone fragments or tokens
from the assembly files. First, the user has to specify the
set of parameters. This set consists of assembly folder path,
XML report destination path, window size, minimal similarity
minS, register normalization level, choice of inexact detection
method, and sub-vector size, if the inexact detection sequential
feature selection method is selected. Next, the program shows
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Fig. 10: Accuracy (DLL files)

Name Type Size # of Functions # of LOC

Zeus Trojan Horse 9 MB 45,954 594,153
Blaster Worm 70 KB 13 2,642

TABLE I: Malware Specifications

all pairs of clone files. A user can click on a file pair to see a
list of clone pairs between the two files.

V. EXPERIMENTAL RESULTS

The objective of the empirical study is to evaluate the
proposed assembly code clone detection method in terms of
accuracy, efficiency, and scalability. The program was written
in Visual C++. All experiments were performed on an Intel
Xeon X5460 3.16 GHz Quad-Core processor-based server with
48GB of RAM running Windows Server 2003.

The experiments were conducted on three sets of binary
files. The first dataset is an assortment of DLL files converted
into 18 assembly files using IDA Pro. The second dataset
contains two well-known malware, Zeus and Blaster. Zeus is
a trojan horse that extracts banking information using man-
in-the-browser keystroke logging and form grabbing. Zeus
is also known as the king of bank fraud trojan viruses,
having been used by thousands of criminals to scam from
banking customers around the world for years. Blaster is a
computer worm that spreads by exploiting a buffer overflow on
computers running Microsoft Windows simply by spamming
itself to large numbers of random IP addresses. The intent
of choosing these two well-known malware is to show that
malware share a large number of code clones. Table I shows
some basic information on the two disassembled malware. The
second dataset is an assortment of 70 malware obtained from
NCFTA Canada. The files were disassembled and their total
size is over 10 MB.

A. Accuracy

To evaluate the accuracy of the proposed clone detection
methods, some code fragments were first selected from the
18 assembly files. Then, clones of the code fragments were
manually identified in the assembly files. Finally, the detec-
tion results of the proposed system were compared with the
manually identified clones in order to compute the following

Window Size: 20 40 60 80

# of Exact Clones 18,010 17,225 17,162 16,971
# of Inexact Clones (SFS) 266,335 272,008 274,346 759,953
# of Inexact Clones (TC) 285,132 441,575 736,396 1,053,801

TABLE II: Number of Clones (Malware Assortment)

three objective measures:

Precision(Solution,Result) =
nij

|Result| (1)

Recall(Solution,Result) =
nij

|Solution| (2)

F (Solution,Result) =
2×Recall × Precision

Recall + Precision
(3)

where Solution is the set of manually identified clone frag-
ments, Result is the set of code fragments in a clone detection
result, and nij is the number of code fragments in both
Solution and Result. Intuitively, F(Solution, Result) measures
the quality of the clone detection Result with respect to the
Solution by the harmonic mean of Recall and Precision. To
compute the precision of the exact detection, we observed
if the found code clones were exactly the same with respect
to Definition 3.1. The same strategy was applied to compute
the precision of inexact detection methods with respect to the
chosen minimum similarity threshold minS. As the goal is to
evaluate the quality of the results with respect to a manually
identified solution, it is infeasible to perform the evaluation in
this manner on an extremely large collection of assembly files.

Figure 10 shows the precision, recall, and F-measure for
minimum similarity threshold minS = 0.5 and minS = 0.8
using the assortment of DLL files. Both the sequential feature
selection and the two-combination inexact detection methods
are evaluated. Experimental results show a better precision for
the sequential feature selection when compared with the two-
combination method for inexact clone detection. By consid-
ering the fact that the sequential feature selection has fewer
sub-vectors, Figure 10a implies that a higher number of inexact
sub-vectors increases the number of false positives. In contrast,
the two-combination method yields a higher recall rate, as
explained in Section IV-B3. The precision and F-measure are
consistently above 75% for both inexact detection methods.
The recall is above 80% for the sequential feature selection
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(a) Runtime vs. Window Size (b) Sequential Feature Selection (c) Two-Combination

Fig. 11: Efficiency and Scalability

and 100% for the two-combination method, suggesting that
the clone detection methods are effective.

To evaluate the precision of the second dataset (Zeus and
Blaster), the first 10 regions were selected from each malware.
Then, for each selected region, the proposed clone detection
methods were used to search for its clones in the rest of the
code. Each of the identified clone in the result was manually
examined in order to compute the precision for both exact and
inexact code clones. To compute the precision of the exact
detection, we observed if the found code clones are exactly
the same with respect to Definition 3.1. The same strategy
was applied to compute the precision of inexact detection
methods with respect to the chosen minimum similarity thresh-
old minS. With minimum similarity threshold minS = 0.8,
and window size w ranging from 20 to 80, the precision
consistently stayed above 90%, suggesting that the proposed
methods are effective in identifying clones in malware.

We also evaluated the number of exact and inexact clones
identified by our method in the third dataset (malware col-
lection) for different window sizes for both the sequential
feature selection and two-combination inexact detection meth-
ods. Table II shows that there is a large number of exact and
inexact clones in malware. The results suggest that malware
programmers reuse code at both regional and functional levels.
Also, the two-combination method (TC) can identify more
clones than the sequential feature selection method (SFS).

B. Efficiency and Scalability

Figure 11a depicts the runtime for both exact and inexact
clone detection methods for a window size ranging from 20
to 80 using the malware assortment dataset. The process took
26 to 30 seconds when the sequential feature selection inexact
clone detection method was used and 41 to 68 seconds for the
two-combination inexact clone detection. In general, runtime
decreases as the window size increases, as fewer regions results
in fewer clones. Figure 11b illustrates the runtime of the
sequential feature selection method using 10 to 70 malware
files with window size w = 40, and minimum similarity
minS = 0.8. The total processing time for the sample malware
assortment ranges from 8 to 258 seconds. Figure 11c shows
the runtime for the same dataset and settings for the two-
combination inexact detection method. The total processing
time ranges from 35 to 980 seconds. As mentioned in Sec-
tion IV-B3, the sequential feature selection method performs

better in terms of scalability, as it has fewer number of inexact
sub-vectors.

C. Comparison with the LSH Approach

Sæbjørnsen et al. [30] presented an inexact clone detection
method to identify inexact clone pairs by using locality-
sensitive hashing (LSH) to find the nearest neighbor vectors
of a given query vector. Their assumption on the uniform
distribution of vectors in the LSH method affects the number
of false-negative errors, i.e., the recall rate. LSH consists of
m hash functions. Each hash function hi maps a vector v to
a binary vector by computing the dot product of v and a base
vector bi. If the computed result is negative, the vector will be
mapped to 0. Otherwise, it will map to 1. The base vector and
vector v must share the same size. Using these parameters,
the LSH value lsh(v) of a vector v is defined as the following
equation:

lsh(v) = (h1(v), h2(v), . . . , hm(v)) (4)

In brief, the LSH method splits a vector space into 2m sub-
spaces by m base vectors. These base vectors are chosen
randomly and the distribution of vectors is not considered.
If the distribution of vectors is lopsided, then LSH cannot
split the vector space efficiently, resulting in incorrect subspace
assignment for some vectors. The accuracy of finding the
nearest neighbor problem using LSH depends on parameters
selection, which is challenging in large dimension feature
vectors. Also, due to the use of randomization, the clone
results produced by LSH are non-deterministic. Some malware
analysts clearly indicate that this non-deterministic behaviour
is unacceptable, as it will be very difficult for a reverse
engineer to produce a consistent malware analysis. To avoid the
non-deterministic behaviour as in LSH, the proposed methods
employ fixed parameters derived from the data. The first one is
the number of subspaces, which is the number of sub-vectors,
while the second parameter is the subspaces dimensions.

VI. CONCLUSIONS

This paper has presented some significant extensions based
on the work of Sæbjørnsen et al.
[30]. First, we proposed two efficient and effective inexact
clone detection methods capable of finding Type III clones.
Experimental results suggest that the two-combination inexact
detection method can eliminate all false negatives. Second,
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unlike the LSH approach employed in [30], our proposed clone
detection methods are deterministic, an important property for
malware analysis as specified by reverse engineers. Third, we
implemented a flexible normalization scheme to normalize
assembly code instructions so that clone detection can be
performed at different levels, depending on the purpose, to
detect Type II and III clones. Experimental results on real
life data suggest that our implemented system can effectively
identify exact and inexact clones in assembly code.
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