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ABSTRACT
Radio Frequency IDentification (RFID) is a technology of
automatic object identification. Retailers and manufactur-
ers have created compelling business cases for deploying
RFID in their supply chains. Yet, the uniquely identifiable
objects pose a privacy threat to individuals. In this paper,
we study the privacy threats caused by publishing RFID
data. Even if the explicit identifying information, such as
name and social security number, has been removed from
the published RFID data, an adversary may identify a tar-
get victim’s record or infer her sensitive value by matching a
priori known visited locations and timestamps. RFID data
by default is high-dimensional and sparse, so applying tra-
ditional K-anonymity to RFID data suffers from the curse
of high dimensionality, and would result in poor data useful-
ness. We define a new privacy model, develop an anonymiza-
tion algorithm to accommodate special challenges on RFID
data, and evaluate its performance in terms of data qual-
ity, efficiency, and scalability. To the best of our knowledge,
this is the first work on anonymizing high-dimensional RFID
data.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and
protection; H.2.8 [Database Applications]: Data mining

Keywords
Information sharing, privacy protection, anonymity, sensi-
tive information, data mining
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Figure 1: Data Flow in RFID System

1. INTRODUCTION
Radio Frequency IDentification (RFID) is a technology

for automatic identification of single or bulk objects from
a distance, using radio signals. RFID has wide applica-
tions in many areas including manufacturing, healthcare,
and transportation. Figure 1 depicts an overview of a RFID
information system, typically consisting of a large number
of tags and readers and an infrastructure for handling high
volume of RFID data. A tag is a small device that can be
attached to an object, such as a person or a manufactured
item, for the purpose of unique identification. A reader is an
electronic device positioned in a strategic location, such as
warehouse loading bay or metro station entrance, that com-
municates with the RFID tag. A reader broadcasts a radio
signal to the tag, which then transmits its information back
to the reader [17]. Streams of RFID data records, in the for-
mat of 〈EPC, loc, t〉, are then stored in a RFID database,
where EPC (Electronic Product Code) is a unique identifier
of the tagged object, loc is the location of the reader, and t
is the time of detection. A data recipient (or a data analy-
sis module) could obtain the information on either specific
tagged objects or general workflow patterns [10] by submit-
ting data requests to the query engine. The query engine
then responds to the requests by joining the RFID data with
some object-specific data.

Retailers and manufacturers have created compelling busi-
ness cases for deploying RFID in their supply chains, from
reducing out-of-stocks at Wal-Mart to up-selling consumers
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Table 1: Raw patient-specific path table T
EPC Path Diagnosis ...

1 〈a1 → d2 → b3 → e4 → f6 → c7〉 HIV
2 〈b3 → e4 → f6 → e8〉 Flu
3 〈b3 → c7 → e8〉 Flu
4 〈d2 → f6 → c7 → e8〉 Allergy
5 〈d2 → c5 → f6 → c7〉 HIV
6 〈c5 → f6 → e9〉 Allergy
7 〈d2 → c5 → c7 → e9〉 Fever
8 〈f6 → c7 → e9〉 Fever

in Prada. Yet, the uniquely identifiable objects pose a pri-
vacy threat to individuals, such as tracing a person’s move-
ments, and profiling individuals become possible. Most pre-
vious work on privacy-preserving RFID technology [17] fo-
cused on the threats caused by the physical RFID tags.
They proposed techniques like EPC re-encryption and killing
tags [11] to address the privacy issues in the data collec-
tion phase, but these techniques cannot address the privacy
threats in the data publishing phase, when a large volume
of RFID data is released to a third party.

In this paper, we study the privacy threats in the data
publishing phase and define a practical privacy model to
accommodate the special challenges of RFID data. We pro-
pose an anonymization algorithm (the data anonymizer in
Figure 1) to transform the underlying raw object-specific
RFID data into a version that is immunized against privacy
attacks. The term “publishing” has a broad sense here. It
includes sharing the RFID data with specific recipients and
releasing data for public download. The general assumption
is that the recipient could be an adversary, who attempts
to associate a target victim (or multiple victims) to some
sensitive information from the published data.

There are many real-life examples on RFID data pub-
lishing in healthcare [23]. Recently, some hospitals have
adopted RFID sensory system to track the positions of their
patients, doctors, medical equipments, and devices inside a
hospital, with the goals of minimizing medical errors and
improving the management of patients and resources. Ana-
lyzing RFID data, however, is a non-trivial task. The hos-
pital management often does not have the expertise to per-
form the analysis hence outsource this process, thus, requires
granting a third party access to the RFIDs and patient data.
The following example illustrates the privacy threats caused
by publishing RFID data.

Example 1.1. A hospital wants to release the patient-
specific path table, Table 1, to a third party for data anal-
ysis. Explicit identifiers, such as patient names and EPC,
are removed. Each record contains a path and some patient-
specific information, where a path contains a sequence of
pairs (lociti) indicating the patient’s visited location loci at
timestamp ti. For example, EPC#3 has a path 〈b3 → c7 →
e8〉, meaning that the patient has visited locations b, c, and
e at timestamps 3, 7, and 8, respectively. Without loss of
generality, we assume that each data record contains only
one sensitive attribute, namely diagnosis, in this example.

A data recipient, who could be an adversary, seeks to
identify the record and/or sensitive value of a target victim
from the published data. We focus on two types of pri-
vacy attacks: (1) Record linkage: if a path in the table is so
specific that not many people match it, releasing the RFID
data may lead to linking the victim’s record, and therefore,
her contracted diagnosis. Suppose that the adversary knows
that the target victim, Alice, has visited e and c at times-

Table 2: Anonymous table T ′ for L=2, K=2, C=50%
EPC Path Diagnosis ...

1 〈b3 → f6 → c7〉 HIV
2 〈b3 → f6 → e8〉 Flu
3 〈b3 → c7 → e8〉 Flu
4 〈f6 → c7 → e8〉 Allergy
5 〈c5 → f6 → c7〉 HIV
6 〈c5 → f6 → e9〉 Allergy
7 〈c5 → c7 → e9〉 Fever
8 〈f6 → c7 → e9〉 Fever

tamps 4 and 7, respectively. Alice’s record, together with
her sensitive value (HIV in this case), can be uniquely iden-
tified because EPC#1 is the only record that contains e4
and c7. (2) Attribute linkage: if a sensitive value occurs
frequently together with some combination of pairs, then
the sensitive information can be inferred from such combi-
nation even though the exact record of the victim cannot
be identified. Suppose the adversary knows that another
target victim, Bob, has visited d2 and f6. Since two out of
the three records (EPC#1,4,5) containing d2 and f6 have
sensitive value HIV, the adversary can infer that Bob has
HIV with 2/3 = 67% confidence.

Many privacy models, such as K-anonymity [3][4][5][6][7]
[12][16][20][26], `-diversity [14], confidence bounding [21][22],
and t-closeness [13] have been proposed to thwart privacy
threats caused by record linkages and attribute linkages in
the context of relational databases. All these works assume a
given set of attributes called quasi-identifier (QID) that can
identify an individual. Although these privacy models are
effective for anonymization on relational databases, they are
not applicable to RFID data due to two special challenges
posed by RFID data:

High dimensionality: RFID data by default is high-
dimensional due to the large combinations of locations and
timestamps. Consider a hospital having 50 rooms that op-
erate 12 hours per day. The RFID data table would have
50 × 12 = 600 dimensions. Each dimension could be a
potential quasi-identifying (QID) attribute used for record
or attribute linkages. Traditional privacy model, say K-
anonymity, would include all dimensions into a single QID
and require every path to be shared by at least K records.
Due to the curse of high dimensionality [2], it is very likely
that lots of data have to be suppressed in order to satisfy K-
anonymity. For example, to achieve 2-anonymity in Table 1,
a1, d2, b3, e4, c7, e9 have to be suppressed even if K is small.
Such anonymous data becomes useless for data analysis.

Data sparseness: RFID data is usually sparse. Con-
sider patients in a hospital or passengers in a public tran-
sit system. They usually visit only few locations compared
to all available locations, so each RFID path is relatively
short. Anonymizing these short paths in a high-dimensional
space poses great challenge for traditional anonymization
techniques because the paths have little overlap. Enforcing
K-anonymity on sparse data would render the data useless.

Traditional K-anonymity and its extended privacy models
assume that a QID contains all attributes (dimensions) be-
cause the adversary could potentially use any or even all QID
attributes as prior knowledge to perform record or attribute
linkages. However, in real-life privacy attacks, it is unlikely
that an adversary could know all locations and timestamps
that the target victim has visited because it requires non-
trivial effort to gather each piece of prior knowledge from
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so many possible locations at different time. Thus, it is rea-
sonable to assume that the adversary’s prior knowledge is
bounded by at most L pairs of locations and timestamps
that the target victim has visited.

Based on this assumption, we define a new privacy model
called LKC-privacy for anonymizing high-dimensional, sparse
RFID data. The general intuition is to ensure that every
possible subsequence q with maximum length L in any path
of a RFID data table T is shared by at least K records in T
and the confidence of inferring any sensitive values S from
q is not greater than C, where L and K are positive integer
thresholds, 0 ≤ C ≤ 1 is a real number threshold, and S is
a set of sensitive values specified by the data holder. LKC-
privacy bounds the probability of a successful record linkage
attack to be ≤ 1/K and bounds the probability of a success-
ful attribute linkage attack to be ≤ C, provided that the ad-
versary’s prior knowledge on the target victim is not more
than L pairs of locations and timestamps. Table 2 shows
an example of anonymous table T ′ that satisfies (2, 2, 50%)-
privacy by suppressing a1, d2, e4 from Table 1. Every pos-
sible subsequence q with maximum length 2 is shared by at
least 2 records and the confidence of inferring the sensitive
value HIV from q is not greater than 50%. In contrast, to
achieve traditional 2-anonymity, we need to further suppress
b3, c7, e9, resulting in much higher information loss.

Our contributions in this paper are summarized as follows.
First, we formally define a new privacy model, called LKC-
privacy, for anonymizing high-dimensional, sparse RFID data
(Section 3). Second, we propose an efficient anonymiza-
tion algorithm to transform a table to satisfy a given LKC-
privacy requirement (Section 4). Finally, we evaluate the
performance of our proposed model and method in terms
of data quality, efficiency, and scalability (Section 5). To
the best of our knowledge, this is a pioneering work on
anonymizing high-dimensional, sparse RFID data.

2. RELATED WORK
Most previous research on RFID focuses on utilizing RFID

technology and analyzing RFID data [9][10]. Solutions for
addressing its privacy issues are limited. Below, we summa-
rize the literature related to RFID privacy.

A comprehensive privacy-preserving information system
must protect its data throughout its lifecycle, from data
collection to data analysis. Most previous work on privacy-
preserving RFID technology [17] focused on the threats caused
by the physical RFID tags and proposed techniques like
killing tags, sleeping tags, and EPC re-encryption [11]. They
addressed the privacy and security issues at the communi-
cation layer among tags and readers, but ignored the pro-
tection of the database layer, where a large amount of RFID
data actually resides. This paper provides a complement to
the existing privacy-preserving RFID hardware technology.

The database community has spent lots of effort on privacy-
preserving data publishing, where the goal is to transform
relational data into an anonymous version for preventing
record and attribute linkages. K-anonymity [3][12][16] and
its extensions [4][5][6][7][13][14][20][21][22][24][25][26] are not
applicable to anonymizing RFID data due to the problem of
high dimensionality [2] and data sparseness discussed in Sec-
tion 1. We tackle this challenge by exploiting the assump-
tion that the adversary knows at most L pairs of previously
visited locations and timestamps by a target victim.

There are some recent study of anonymizing high-dimensional

transaction data [8][19][27]. Ghinita et al [8] proposed a per-
mutation method, which the general idea is to first group
transactions with close proximity and then associate each
group to a set of mixed sensitive values.Terrovotis et al [19]
and Yu et al [27] extended the traditional K-anonymity
model by assuming that the adversary knows at most m
transaction items of the target victim. All these works [8][19]
[27] consider a transaction as a set of items. In contrast, our
RFID path is a sequence of locations and timestamps. In
our model, an adversary having prior knowledge sequence
〈a, b〉 is considered to be different from prior knowledge of
sequence 〈b, a〉; therefore, their proposed privacy models and
methods are not applicable to our problem.

Recently, there are few works on anonymizing moving ob-
jects [1][18]. [1] extends the traditional K-anonymity model
to anonymize a set of moving objects. The intuition is to
have at least K moving objects within the radius of the
path of every moving object, where the radius is a user-
specified threshold. Our approach is different from [1] in
two major aspects. First, their model does not consider
the privacy threats caused by attribute linkage between the
path and the sensitive attribute. Second, they assume that
all moving objects have continuous timestamps. This as-
sumption may hold in mobile phone or LBS applications,
where the user’s location is continuously detected while the
phone is turned on. However, this assumption does not hold
for RFID because a RFID-tagged object (e.g., smart cards
used in transportation) is unlikely to be continuously de-
tected by a RFID reader. These differences imply different
privacy threats and models. Terrovitis et al [18] assumes a
very different attack model on moving objects. They con-
sider that the locations themselves are sensitive information
and the adversary attempts to infer some sensitive locations
visited by the target victim that are unknown to the ad-
versary. They do not specifically address the high dimen-
sionality problem in RFID data, which is the theme of this
paper.

3. PROBLEM DEFINITION

3.1 Object-Specific Path Table
A typical RFID system generates a sequence of RFID data

records of the form 〈EPC, loc, t〉, where each record indi-
cates a RFID reader in location loc has detected an object
having electronic product code (EPC) at time t. We as-
sume that the RFID-tagged item is attached to or carried
by some moving object, for example, patients in a hospital
or passengers in a public transit system.

A pair (lociti) represents that the object has visited lo-
cation loci at time ti. The path of an object, denoted by
〈(loc1t1) . . . (locntn)〉, is a sequence of pairs that can be ob-
tained by first grouping the RFID records by EPC and then
sorting the records in each group by timestamps. A times-
tamp is the entry time to a location, so the object is assumed
to be staying in the same location until its new location is
detected by another reader. An object may revisit the same
locations at different timestamps, but consecutive pairs hav-
ing the same location are duplicates and, therefore, are re-
moved. For example, in 〈a1 → b3 → b4 → b6 → c7 → b8〉,
b4 and b6 are removed but b8 is kept. At any time, an object
can be at only one location, so a1 → b1 is not a valid se-
quence. Timestamps in a path must increase monotonically.

An object-specific path table T is a collection of records in
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the form

〈(loc1t1) → . . . → (locntn)〉 : s1, . . . , sp : d1, . . . , dm,

where 〈(loc1t1) → . . . → (locntn)〉 is a path, si ∈ Si are
sensitive attributes, and di ∈ Di are quasi-identifying (QID)
attributes associated with the object. In the rest of this
paper, the term “record” refers to the above form. The QID
attributes are relational data and can be anonymized by
existing methods [7][13][14][16][22] for relational data. This
paper focuses on the paths and sensitive attributes.

3.2 Privacy Threats
Suppose a data holder wants to publish an object-specific

path table T to some recipient(s) for data analysis. Ex-
plicit identifiers, e.g., name, SSN, and EPC, have been
removed. The path, together with the object-specific at-
tributes, are assumed to be important for the task of data
analysis; otherwise, they should be removed. One recip-
ient, the adversary, seeks to identify the record or sensi-
tive values of some target victim V in T . As explained in
Section 1, we assume that the adversary knows at most L
pairs of location and timestamp that the victim V has pre-
viously visited. We use κ = 〈(loc1t1) → . . . → (locztz)〉
to denote such prior knowledge, where z ≤ L. Using the
prior knowledge κ, the adversary could identify a group of
records in T , denoted by G(κ), that “matches” κ. A record
matches κ if κ is a subsequence of the path in the record.
For example in Table 1, if κ = 〈e4 → c7〉, then EPC#1
[〈a1 → d2 → b3 → e4 → f6 → c7〉 : HIV ] matches κ, but
EPC#4 [〈d2 → f6 → c7 → e8〉 : Allergy] does not. An ad-
versary could utilize G(κ) to perform two types of privacy
attacks:

1. Record linkage: G(κ) is a set of candidate records that
contains the victim V ’s record. If the group size of
G(κ), denoted by |G(κ)|, is small, then the adversary
may identify V ’s record from G(κ), and therefore, V ’s
sensitive value.

2. Attribute linkage: Given G(κ), the adversary may infer
that V has sensitive value s with confidence

Conf(s|G(κ)) = |G(κ
⋃

s)|
|G(κ)| ,

where G(κ
⋃

s) denotes the set of records containing
both κ and s. Conf(s|G(κ)) is the percentage of the
records in G(κ) containing s. The privacy of V is at
risk if Conf(s|G(κ)) is high.

Example 1.1 illustrates these two types of attacks.

3.3 Privacy Models
The problem studied in this paper is to transform the raw

object-specific path table T to a version T ′ that is immu-
nized against record and attribute linkages. We define two
separate privacy models LK-anonymity and LC-dilution to
thwart record linkages and attribute linkages, respectively,
followed by a unified model. The adversary’s prior knowl-
edge κ could be any subsequence q with a maximum length
L of any path in T .

Definition 3.1 (LK-anonymity). An object-specific
path table T satisfies LK-anonymity if and only if |G(q)| ≥
K for any subsequence q with |q| ≤ L of any path in T ,
where K is a positive anonymity threshold.

Definition 3.2 (LC-dilution). Let S be a set of data
holder-specified sensitive values from sensitive attributes
S1, . . . , Sm. An object-specific path table T satisfies LC-
dilution if and only if Conf(s|G(q)) ≤ C for any s ∈ S and
for any subsequence q with |q| ≤ L of any path in T , where
0 ≤ C ≤ 1 is a confidence threshold.

Definition 3.3 (LKC-privacy). An object-specific
path table T satisfies LKC-privacy if T satisfies both LK-
anonymity and LC-dilution.

LK-anonymity bounds the probability of a successful
record linkage to ≤ 1/K. LK-dilution bounds the probabil-
ity of a successful attribute linkage to ≤ C. LKC-privacy
bounds both. Note, not all values in sensitive attributes
S1, . . . , Sm are sensitive. For example, HIV could be sen-
sitive, but flu may not be. Our proposed privacy model is
flexible to accommodate different privacy need by allowing
the data holder to specify a set of sensitive values S in Def-
inition 3.2.

3.4 Problem Statement
We can transform an object-specific path table T to sat-

isfy LKC-privacy by performing a sequence of suppressions
on selected pairs from T . In this paper, we employ global
suppression, meaning that if a pair p is chosen to be sup-
pressed, all instances of p in T are suppressed. We use Sup
to denote the set of suppressed pairs. Table 2 is the result
of suppressing a1, d2, and e4 from Table 1. This suppres-
sion scheme offers several advantages over generalization for
anonymizing RFID data. First, it does not require a pre-
defined taxonomy tree for generalization, which often is un-
available in real-life databases. Second, RFID data could be
extremely sparse. Enforcing generalization on RFID data
may result in generalizing many “neighbor” objects even if
there is only a small number of outlier pairs, such as a1 in
Table 1. Suppression offers the flexibility of removing those
outliers without affecting the rest of the data.

Definition 3.4 (Anonymization for RFID). Given
an object-specific path table T a LKC-privacy requirement,
and a set of sensitive values S, the problem of anonymization
for RFID is to identify a transformed version T ′ that satis-
fies the LKC-privacy requirement by suppressing a minimal
number of instances of pairs in T .

K-anonymity [16] is a special case of LKC-privacy with
L = ∞ and C = 100%. Confidence bounding [22] is a
special case LKC-privacy with L = ∞ and K = 1. Given
that achieving optimal K-anonymity and optimal confidence
bounding have been proven to be NP-hard [15][22], achiev-
ing optimal LKC-privacy is also NP-hard. Thus, we pro-
pose a greedy algorithm to efficiently identify a sub-optimal
solution.

4. ANONYMIZATION METHOD
Given an object-specific path table T and a LKC-privacy

requirement, our goal is to remove all “violations” from T ,
where a violation is a subsequence of a path in T that vi-
olates the LKC-privacy requirement. We first define the
notion of violation in Section 4.1 followed by a greedy algo-
rithm in Section 4.2 to remove all violations.
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4.1 Identifying Violations
A subsequence q in T is a violation if its length is less

than maximum length threshold L and its group G(q) vio-
lates LK-anonymity, LC-dilution, or both. The adversary’s
prior knowledge κ could be any of such subsequence q. Thus,
removing all violations means eliminating all possible chan-
nels of record and attribute linkage attacks.

Definition 4.1 (Violation). Let q be a subsequence
of a path in T with |q| ≤ L and |G(q)| > 0. q is a violation
with respect to a LKC-privacy requirement if |G(q)| < K
or Conf(s|G(q)) > C.

Example 4.1. In Table 1, a sequence q1 = 〈e4 → c7〉 is
a violation if K = 2 because |G(q1)| = 1 < 2. A sequence
q2 = 〈d2 → f6〉 is a violation if C = 50% and S = {HIV }
because Conf(HIV |G(q2)) = 67% > 50%.

We note two properties in the notion of violation. (1) If q
is a violation with |G(q)| < K, then any super sequence of q,
denoted by q′, is also a violation because |G(q′)| ≤ |G(q)| <
K. This property has two implications. First, it implies
that the number of violations could be huge, so it is not fea-
sible to first generate all violations and then remove them.
Second, if L ≤ L′, a table T satisfying L′K-anonymity must
satisfy LK-anonymity because |G(q)| ≥ |G(q′)| ≥ K. (2)
If q is a violation with Conf(s|G(q)) > C and |G(q)| ≥ K,
its super sequence q′ may or may not be a violation because
Conf(s|G(q′)) ≥ Conf(s|G(q)) does not always hold. Thus,
to achieve LC-dilution, it is insufficient to ensure any sub-
sequence q with length L in T to satisfy Conf(s|G(q)) ≥ C.
Instead, we need to ensure any subsequence q with length
less than or equal to L in T to satisfy Conf(s|G(q)) ≥ C.

Enumerating all possible violations is infeasible. Our in-
sight is that among all the violations, there exists some min-
imal sequences called “critical violations.” We show that a
violation exists in table T if and only if a critical violation
exists in T .

Definition 4.2 (Critical violation). A violation q
is a critical violation if every proper subsequence of q is a
non-violation.

Example 4.2. In Table 1, if K = 2, C = 50%, S =
{HIV }, a sequence q1 = 〈e4 → c7〉 is a critical violation
because |G(q1)| = 1 < 2, and both 〈e4〉 and 〈c7〉 are non-
violations. A sequence q2 = 〈d2 → e4 → c7〉 is a violation
but it is a not a critical violation because its subsequence
〈e4 → c7〉 is a violation.

Observation 4.1. A table T ′ satisfies LKC-privacy if
and only if T ′ contains no critical violation because each
violation is a super sequence of a critical violation. Thus, if
T ′ contains no critical violations, then T ′ contains no viola-
tions.

Next, we propose an algorithm to efficiently identify all
critical violations in T with respect to a LKC-privacy re-
quirement. Based on Definition 4.2, we generate all critical
violations of size i + 1, denoted by Vi+1, by incrementally
extending non-violations of size i, denoted by Ui, with an
additional pair.

Algorithm 1 summarizes the steps for generating critical
violations. Line 1 initializes the candidate set C1 to be the

Algorithm 1 Generate Critical Violations (GenViolations)

Input: Raw RFID path table T
Input: Thresholds L, K, and C.
Input: Sensitive values S.
Output: Critical violations V .
1: let candidate set C1 be the set of all distinct pairs in T ;
2: i = 1;
3: repeat
4: scan T once to obtain |G(q)| and Conf(s|G(q)) for every

sequence q ∈ Ci and for every sensitive value s ∈ S;
5: for all sequence q ∈ Ci do
6: if |G(q)| > 0 then
7: if |G(q)| < K or Conf(s|G(q)) > C for any s ∈ S

then
8: add q to Vi;
9: else

10: add q to Ui;
11: end if
12: end if
13: end for
14: ++i;
15: generate candidate set Ci by Ui−1 1 Ui−1;
16: for all sequence q ∈ Ci do
17: if q is a super sequence of v for any v ∈ Vi−1 then
18: remove q from Ci;
19: end if
20: end for
21: until i > L or Ci = ∅
22: return V = V1

⋃
. . .

⋃
Vi−1;

set of all distinct pairs in any paths in the raw table T . Line
4 scans the raw data once to obtain the support counts to
compute |G(q)| and Conf(s|G(q)) for every sequence q ∈ Ci

and for every sensitive value s ∈ S. Lines 5-13 loops through
every candidate q ∈ Ci of |G(q)| > 0, and puts q to the
critical violation set Vi if it violates LK-anonymity or LC-
dilution; otherwise, puts q to the non-violation set Ui. Once
a violation is found, we remove it from subsequent iterations
because its super sequence must not be a critical violation.
Line 15 generates a candidate set Ci by self-joining Ui−1.
Two sequences qx = 〈(locx

1 tx
1) → . . . → (locx

i−1t
x
i−1)〉 and

qy = 〈(locy
1ty

1) → . . . → (locy
i−1t

y
i−1)〉 in Ui−1 can be joined

only if the first i − 2 pairs of qx and qy are identical and
tx
i−1 < ty

i−1. The joined sequence is 〈(locx
1 tx

1) → . . . →
(locx

i−1t
x
i−1) → (locy

i−1t
y
i−1)〉. Lines 16-20 removes a candi-

date q from Ci if q is a super sequence of any sequence in
Vi−1 because all proper subsequences of a critical violation
must be a non-violation.

Example 4.3. Consider Table 1 with L = 2, K = 2,
C = 50%, and S = {HIV }. First, we generate candi-
date set C1 = {a1, d2, b3, e4c5, f6, c7, e8, e9}, which is a
set of distinct pairs in T . Then, we scan Table 1 to iden-
tify the critical violations from C1 and put them in V1 =
{a1}. The remaining sequences are non-violations U1 =
{d2, b3, e4, c5, f6, c7, e8, e9}. Next, we generate C2 = {d2b3,
d2e4, d2c5, d2f6, d2c7, d2e8, d2e9, b3e4, b3c5, b3f6, b3c7, b3e8,
b3e9, e4c5, e4f6, e4c7, e4e8, e4e9, c5f6, c5c7, c5e8, c5e9, f6c7,
f6e8, f6e9, c7e8, c7e9, e8e9} and scan once Table 1 to deter-
mine critical violations V2 = {d2b3, d2e4, d2f6, d2e8, d2e9,
e4c7, e4e8}.
4.2 Anonymization Algorithm

We propose a greedy algorithm to transform raw table T
to an anonymous table T ′ with respect to a given LKC-
privacy requirement by a sequence of suppressions. In each
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Algorithm 2 RFID Data Anonymizer

Input: Raw RFID path table T
Input: Thresholds L, K, and C.
Input: Sensitive values S.
Output: Anonymous T ′ that satisfies LKC-privacy.
1: V = Call GenViolations(T , L, K, C, S) in Algorithm 1;
2: build the Critical Violation Tree (CVT) with Score Table;
3: while Score Table is not empty do
4: select winner pair w that has the highest Score;
5: delete all critical violations containing w in CVT;
6: update Score of a candidate x if both w and x were con-

tained in the same critical violation;
7: remove w in Score Table;
8: add w to Sup;
9: end while

10: for every w ∈ Sup, suppress all instances of w from T ;
11: return the suppressed T as T ′;

iteration, the algorithm selects a suppression on value v
based on a greedy selection function. In general, a sup-
pression on a value v in T increases privacy because it re-
moves critical violations, and decreases information utility
because it suppresses pairs in T . Therefore, we define the
greedy function, Score(p), to select a suppression on a pair
p that maximizes the number of critical violations removed
and minimizes the number of pair instances suppressed in
T . Score(p) is formally defined as follows:

Score(p) =
PrivGain(p)

InfoLoss(p)
, (1)

where PrivGain(p) is the number of critical violations con-
taining pair p and InfoLoss(p) is the number of instances
of pair p in T . Alternative greedy functions could be

Score(p) = PrivGain(p), (2)

which aims at eliminating all critical violations but ignores
the information loss caused by the suppression, or

Score(p) =
1

InfoLoss(p)
, (3)

which aims at minimizing the number of suppressed in-
stances in T but ignores how many critical violations can
be removed by the suppression. In Section 5, we will evalu-
ate the performance of these variations.

Algorithm 2 summarizes the RFID data anonymization
algorithm. Lines 1-2 call Algorithm 1 to generate all critical
violations and build a tree to represent them. At each iter-
ation in Lines 3-9, the algorithm selects the winner pair w
that has the highest Score(p) among all candidates for sup-
pression, removes the critical violations containing w, and
incrementally updates the Score of the affected candidates
due to the suppression on w. Sup denotes the set of all
suppressed winner pairs. They are collectively suppressed
in Line 10 in one scan of T . Finally, Algorithm 2 returns
the anonymized T as T ′. The most expensive operations
are to identify the critical violations containing w and to
update the Score of the affected candidates. Below, we pro-
pose a data structure called critical violation tree (CVT) to
efficiently support these operations.

Definition 4.3 (Critical Violation Tree (CVT)).
CVT is a tree structure that represents each critical vio-
lation as a tree path from root-to-leaf. Each node keeps

Figure 2: Initial Critical Violation Tree (CVT)

Figure 3: CVT after suppressing e4

track of a count of critical violations sharing the same pre-
fix. The count at the root is the total number of critical
violations. CVT has a Score Table that maintains every can-
didate pair p for suppression, together with its PrivGain(p),
InfoLoss(p), and Score(p). Each candidate pair p in the
Score Table has a link, denoted by Linkp, that links up all
the nodes in CVT containing p. PrivGain(p) is the sum of
the counts of critical violations on Linkp.

Figure 2 depicts the initial CVT generated from V1 and V2

in Example 4.3. The winner pair e4, which has the highest
Score, is identified from the Score Table. Then, the algo-
rithm traverses Linke4 to identify all critical violations con-
taining e4 and deletes them from CVT accordingly. When a
winner pair w is suppressed from CVT, the entire branch of
w is trimmed. This provides an efficient method for remov-
ing critical violations. In Figures 2 and 3, when e4 is sup-
pressed, all its descendants are removed as well. The count
of critical violations of e4’s ancestor nodes is decremented
by the count of critical violations of the deleted e4 node.
If a candidate pair p and the winner pair w are contained
in some critical violation, then PrivGain(p), and therefore
Score(p), has to be updated for adding up the counts on
Linkp. For example, after e4 is suppressed, PrivGain(d2),
PrivGain(c7), and PrivGain(e8) have to be updated. A
pair p with PrivGain(p) = 0 in Score Table is removed.

5. EMPIRICAL STUDY
We evaluated the performance of our proposed method

in terms of data quality after anonymization, efficiency of
anonymization, and scalability for handling large data set.
All experiments were conducted on a PC with Intel Core2
Quad 2.4GHz with 2GB of RAM. Unless otherwise specified,
all experiments on our proposed method use Equation 1 as
the Score function.
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(b) C = 60%
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(c) C = 100%

Figure 4: Distortion ratio vs. K

The employed data set is a simulation of the travel route
of 20,000 passengers in a subway transit system with 26
stations for 24 hours. Each record in the object-specific
path table corresponds to the route of one passenger. There
are 26 × 24 possible pairs, forming 624 dimensions. To
simulate different traveling patterns, 16,000 passengers have
a maximum path length of 4 pairs, 3,500 passengers have a
maximum path length of 6 pairs, and 500 passengers have
a maximum path length of 24 pairs. Each record contains a
sensitive attribute with 5 possible values. We considered one
of them, namely HIV , to be sensitive in our experiments.

5.1 Distortion
Our first experiment is to measure the data quality of the

LKC-privacy protected table T ′. We use distortion ratio
to measure the information loss caused by suppression. Let
N(T ) and N(T ′) be the total number of pair instances in ta-
bles T and T ′, respectively. The distortion ratio, computed

by N(T )−N(T ′)
N(T )

, measures the percentage of pair instances

suppressed for achieving a given LKC-privacy requirement.
Higher distortion ratio means lower data quality. We also
compare our method with the traditional K-anonymization.

Figure 4 depicts the distortion ratio of our method for
maximum length 1 ≤ L ≤ 3 for anonymity thresholds 10 ≤
K ≤ 50 at confidence thresholds C = 20%, 60%, 100%, and
compares the result with the traditional K-anonymity. In
general, the distortion ratio is insensitive to the increase of
K and stays between 3% to 10% for 1 ≤ L ≤ 3 because this
requirement only requires every sequence with a maximum
length of 3 to be shared by at least 50 records among 20,000
records. Compared to traditional K-anonymity which con-
sistently stays above 40%, our anonymization method can
effectively reduce information loss on high-dimensional data.
As L increases to 4, the distortion ratio increases signifi-
cantly because the majority of records have a path length
of 4 pairs. Therefore, setting L = 4 yields similar result
to traditional K-anonymity. It is also interesting to note
that the distortion ratio is insensitive to the change of confi-
dence threshold C, implying that the primary driving force
for suppressions is LK-anonymity, not LC-dilution. This
fact is also reflected in Figure 4(c) at C = 100%, which is
equivalent to ignoring LC-dilution.

The result can be summarized as follows. (1) The dis-
tortion ratio is not sensitive to the change of anonymity
threshold K unless K is set to an unreasonably high range
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Figure 5: Scalability (L = 3, K = 30, C = 60%)

such as K > 1000. (2) The distortion ratio is not sensi-
tive to the change of confidence threshold C. (3) As the
maximum length L increases, distortion ratio increases. (4)

Score(p) = PrivGain(p)
InfoLoss(p)

consistently yields the lowest dis-

tortion ratio among the three Score functions given in Sec-
tion 4.2.

5.2 Efficiency and Scalability
Next, we examine the efficiency and scalability of our pro-

posed anonymization method. For all the test cases con-
ducted in Section 5.1, our method takes less than 1 second
to complete. In an effort to further evaluate the scalabil-
ity of our method, we conducted an experiment on some
extremely large synthetic RFID data sets.

Figure 5 depicts the runtime in seconds from 200,000 to
1 million records for L = 3, K = 30, C = 60%. The total
runtime for anonymizing 1 million records is 76 seconds,
where 60 seconds are spent on identifying critical violations
and 16 seconds are spent on reading raw data file and writing
anonymous file. Thanks to the effective critical violation
tree (CVT) data structure, the program takes less than 1
second on suppressing all violations.

6. CONCLUSION
RFID is a promising technology applicable in many ar-

eas, but many of its privacy issues have not yet been ad-
dressed. In this paper, we illustrate the privacy threats
caused by publishing RFID data, formally define a privacy
model, called LKC-privacy, for the high-dimensional, sparse
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RFID data, and propose an efficient anonymization algo-
rithm to transform a RFID data set to satisfy a given LKC-
privacy requirement. We demonstrate that applying tradi-
tional K-anonymity on high-dimensional RFID data would
render the data useless due to the curse of high-dimensionality.
Experimental result suggests that our method can efficiently
anonymize large RFID data sets with significantly better
data quality than the traditional K-anonymity method.
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