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Efficient inexact assembly code search: The
assembly code vector space is highly .y
skewed. Small blocks tend to be similarto —— {
each other and large blocks tendtobe T KA
sparsely distributed in the space. Original it -
hyperplane hashing with banding technique S U | R
equally partitions the space and does not
handle the unevenly distributed data well. e = }
\We propose a new adaptive locality sensitive T A e e
hashing (ALSH) scheme to approximate
the cosine similarity. ALSH organizes Lo L ... _JS— L —— LA
buckets into a tree structure. To our
best knowledge, ALSH is the Figure 5. The index structure for the Adaptive Lo-
First incremental locality cality Sensitive Hashing (ALSH).

sensitive hashing scheme that
solves this issue specifically for cosine space with theoretical guarantee.
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Scalable sub-linear subgraph “PPel.
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search: We propose a Ma- |
pReduce subgraph search al-
gorithm based on the Apache Reducer
Spark computational frame-
work without an additional
iIndex. Different to the existing
subgraph isomorphism
search problem in data
mining, we need to retrieve
subgraphs that are both iso-
morphic to the query and the
repository functions as
graphs. Thus, existing algo-
rithms are not directly applica-
ble. Algorithmically, our ap-
proach is bounded by polyno-
mial complexity. However, our
experiment suggests that it is
sub-linear in practice.
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the three steps. Preprocessing:
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Figure 6. The index structure for the Adaptive Lo-
cality Sensitive Hashing (ALSH).
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Figure 7: (a) the EDF function on repository function clone pair similarity, (b) the kernel density & histogram of the cosine similar-
ity of each basic block's 20th-nearest neighbor, (c) the EDF on per assembly function block count, and (d) the kernel density &
histogram on assembly function block count < 40.

Figure 8. Scalability study. (a): Average Indexing Time vs. Number of Functions in the Repository.
(b): Average Query Response Time vs. Number of Functions in the Repository.




