k decreases rincreases

..

#=, Technical Detalls

Assembly Code Search Engine

for Reverse Engineer
Steven H. H. Ding* Benjamin C. M. Fung* Philippe Charland™

Efficient inexact assembly code search: The
assembly code vector space is highly .y
skewed. Small blocks tend to be similarto —— {
each other and large blocks tendtobe T KA
sparsely distributed in the space. Original it -
hyperplane hashing with banding technique S U | R
equally partitions the space and does not
handle the unevenly distributed data well. e = }
\We propose a new adaptive locality sensitive T A e e
hashing (ALSH) scheme to approximate
the cosine similarity. ALSH organizes Lo L ... _JS— L —— LA
buckets into a tree structure. To our
best knowledge, ALSH is the Figure 5. The index structure for the Adaptive Lo-
First incremental locality cality Sensitive Hashing (ALSH).

sensitive hashing scheme that
solves this issue specifically for cosine space with theoretical guarantee.

*Data Mining and Security Lab, School of Information Studies,

er

Scalable sub-linear subgraph “PPel.
108

search: We propose a Ma- |
pReduce subgraph search al-
gorithm based on the Apache Reducer
Spark computational frame-
work without an additional
iIndex. Different to the existing
subgraph isomorphism
search problem in data
mining, we need to retrieve
subgraphs that are both iso-
morphic to the query and the
repository functions as
graphs. Thus, existing algo-
rithms are not directly applica-
ble. Algorithmically, our ap-
proach is bounded by polyno-
mial complexity. However, our
experiment suggests that it is
sub-linear in practice.

| u
E x p e rl m e n ta I Empirical Distribution Function (EDF) Kernel Density & Histogram
1.00 -

McGill University, Montreal, Canada | t
+Mission Critical Cyber Security Section, y 4 i vaiuation "
'v g (s<1.00,p=0.26) é |
Defence R&D Canada — Valcartier, Quebec, Canada Ove rall Architecture o
PV ————————— The search process consists of T e BT S

the three steps. Preprocessing:

Disassembly
| == After parsing the input (either a
l— Assembly Produce a binary surrogate P J P (

m code binary file or assembly functions) into

: Assembly normalizer : .

: fnction [control flow graphs, this step normallz_es W
: parser assembly code into a general form. Find

basic blocks clone pairs: Given a list of

(a)

'Research Problem

Adaptive LSH module

S b h h | - - roac zip ur xpat soncpp ibpn ibti penss qlite inyxm i vg.
. Cloned — assembly basic blocks from the previous M T Approach Buip2 Curl Fxpat JTsoncpp Libpng LG Openssl Sqlite Tinyxml 7 | Ave.
Reverse engineer A bl d I . b hs of _ Index Composite 857 766 693 725 814 772 638 726 638 729 746
/ S SSEMmbly code analysis oubgraphs of i | pairs of basic i step, it finds all the clone pairs of . We construct a new labeled e s . N N S S 8
! y ~_Isone of the critical Reducer o) — L. blocks using adaptive locality sensitive one-to-many assembly code clone v | cupuerr —mr s —mr o
A binary file Y comethingsmilarPrOCESSES for detecting and L R | | vector || features hashing. Search the subgraph clones: Given dataset that is available to the O | MixGroh TS o TR
- - - merge -perm
before? proving software plagiarism and od g _ . the list of clone block pairs, the MapReduce research community by linking the . S .
- ‘ Flnd exact/lnexact CIOﬂES Of y y LSH-S 965 901 794 .854 .894 922 882 .845 768 758 858
Disassemble / _ s it a library software patent infringements assembly blocks module merges and constructs the subgraph source code and assembly function ———
GEEE function? " . Composite 645 495 375 353 * 541 482 288 405 261 409 425
N—— when the source code is Figure 3. Assembly clone search data flow. clones. Note that this clone search process § level clones. L . . e L. W
E e . T unavailable. It Is also a common does not require any source code. ® O e B L B 1 | T A N
CMP R2,R3 | . . . : P MixGram 727 598 363 337 513 512 *.464 471 286 383 465
S e practice to discover exploits and ﬁ f Bl We benchmark the performance of O e e e
" FR‘:: [ﬁﬂ'# t vulnerabilities in existing software. : . : o icti -Of-the- ' e 0 L e
e T 1 Thn blarrv anakiak Brocess » J SOTwar The Kam1n0 engine is designed f Plugn W [twelve existing state-of-the-art solutions | wee =97 o o—— o—— o o o o o o w
LOR. RS, [R11Hsct) 9 ' y y P HOwever, It IS a manua”y Intensive and Web-baced user interface and clone vicualization | on the dataset US|ng th ree typlcal Ramln) 7.780 7.633 7479 SHIE ATT SE7 Al 610 213 ".405 | .ol
RN time-consuming process tor general key-value storage " SEEmEE mEmmmm nformation retrieval metrics (Table 1) e T I R T
B = . InntTormation retrieval metrics aple i Constant 354 459 539 132 473 502 199 379 229 495 | 376
| o pnd the Apache Spark Karm1n0 boosts the clone search o |oomme e
e T Panen o SonrsEeporltansuneiin computational framework. Its _ (amin0 engine it and vields stabl ’ P | NiixGram —SB—oi TS ———pr— 1"
. . . ' : . . @ MixGraph 334 407 D72 .064 .345 351 211 387 .244 371 .329
A binary file can be disassembled push egpk j { solution stack, as shown In — ETr— Assembly code q_ua ity and yields stabie re§u S dCross TR e N NSRS S—
in to as list of assembly functions. | = = | e Figure 2, consists of three sssembly code LD | processing different datasets and metrics. T e e e s e
A function can be represented as | A —— | +?Ch : layers. The data storage layer # clone search tifities w . e af . luster (4 nod Table 1: Benchmark results of different assembly code clone search approaches. We employed three evaluation
' : e SERIEE i sush . LTS i f f i | : - e | \ = metrics: the Area Under the Receiver Operating Characteristic Curve (AUROC), the Area Under the Precision-
a ContrOl flOW graph (See Flgure 2).: ﬁz:h offset Format : : push offset KULLIL: : IS Concerned Wlth hOW tk © data . - Distributed/Local Map-Reduce compatible execution framework i © als0 s up a min Cus e (no es) Re(fall Cutrve (AUPR), and the Mean Aferage Igrecz'sz'on at Position 10((MAP@1)0§. @ denotes that the method
Per our dISCUSSIOn Wlth) praCtICa| | :fﬂl :[::I;I,)r;nt: | | ::31 %lzr;?r;ntf | | |S Stored and Indexed . T|,. e f(Memory and CPUs) tO evaluate the Scalab”lty Of Kam1 nO is not scalable and we cannot obtain a result for this dataset within 24 hours.
. : mov ebp+msg], 1 'I:'ype | | r:;v :E::: :::_g % ; “» .
search engine should be ableto o shor Tocamese| Sone | | 5o snort ERORITTENE E distributed/local execution layer) (Figure 8).
. ' | 1 : . | ,
deCOW pOSG the glven query : Ry ecx,ﬁ : : o ebp+var_4] 66_ABTESE: : mana_ges and exeCUFeS The JObS | Average Indexing Time per—Function Average Query Response Time per—Function
assembly function to different | h offset aThekey1sd| | i [oush ofrset TS AN S submitted by the engine. The . o Z 3207
_ | S b ol ey iz Short Toc AGTO0R | _ _ g4 Data Storage layer (hard drives) A;-g_ B
known subgraph .Clones which can i o tocamose | 1 Shore I 5 Kam1n0 engine splits a search Graphbased Bucketbased | o Esis- £ 2797
help reverse ehIneers ,b etter : S, et : : iﬁﬁ-‘“’g[ebmarg_e] 2, ol query Into mUIt!ple Jobs _and dat;itggf = dat;zt;zf 5% Apache Cassandra 3 5 257
understand the function's | S T, I O - 2 i coordinates their execution flow. 5 315 & 1707
composition. A subgraph consists i __eep's e e call dsrprines 5 . | . . S 215 >
> ' S - : i B e Figure 4. The solution stack of implementation. £ 165" o 1297
of several interconnected basic T i o S -
blocks; and there are three types | BB oo ., || e e | e > meiman | - S R R < S e s
. S MoV esp, ebp mov esp, ebp ; : /mov esp, ebp <€——>» Ablockto block clone pair : = - . N bs AR AN AT AR AR AP RO RN AP WS q,\Q q,'\\ SRR N b AL AN AV AL \P‘ NN NN NS SN P
Of C|OneS between baS|C bIOCkS : e ebp bor Eop : E':zzn ebp A jump ik between two : - E._ Kam1 nO 1S Open_source and avallable on GItHUb (@) Number of Functions in Repository (b) Number of Functions in Repository e

- Scan the code to check out Kam1n0 and the

k Figure 2. An example cloned subgraph paper.

Source Function Similarity (s)

(b)

1 1 (]
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1

--

Figure 6. The index structure for the Adaptive Lo-
cality Sensitive Hashing (ALSH).

——————————

A block-to-block
clone pair

A cloned subgraph

. i Cloned subgraphs
.\ of afunction

Empirical Distribution Function (EDF) Kernel Density & Histogram
1.00 - ®
0151
1<100,p=0.983) (1<200,p=0.994)
__0.75 -
o
0.10 -
> z
2 0.50 %
O a
T 0.05 -
0-0.25
0.00 - 0.00 - —
(I) 1 (I)O 2(I)O 3(I)O (I) 1I0 2I0 3IO 4IO
Number of Basic Blocks per Function Number of Basic Blocks per Function

Cosine Similarity of the 20th-nearest Neighbour.

()

(d)

Figure 7: (a) the EDF function on repository function clone pair similarity, (b) the kernel density & histogram of the cosine similar-
ity of each basic block's 20th-nearest neighbor, (c) the EDF on per assembly function block count, and (d) the kernel density &
histogram on assembly function block count < 40.

Figure 8. Scalability study. (a): Average Indexing Time vs. Number of Functions in the Repository.
(b): Average Query Response Time vs. Number of Functions in the Repository.

