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Introduction 
In the last few years, information networks in various application 
domains, such as social networks, communication networks and 
transportation networks, have experienced vigorous developments, 
and have enabled a wide spectrum of data analysis tasks. 
 
 
 
 
 
 
 
      
 
 

 
Figure 1. Examples of increasing demands on network data 

Network data often contains sensitive information. Thus, publishing 
network  data  with  provable  privacy  guarantees  is  of  utmost 
importance. In this paper, we study the problem of releasing 
possibly correlated network data under differential privacy (DP) [1]. 
We analyze the privacy guarantee of DP in the correlated setting. 
We propose the first practical non-interactive solution for network 
data publication. Extensive experimental results demonstrate that 
our solution preserves high utility and scales to large-scale real-life 
data. 

 
 
 
 
 

Neighboring graphs are defined as graphs differing in at most an 
edge. Edge differential privacy [1, 2] is then defined as follows. 
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Anonymization Algorithm 

Conclusions 

We employ four real-life datasets that are publicly available and 
examine data utility of sanitized network data in terms of three 
common data analysis tasks: cut query, degree distribution and 
shortest path length. 
 
We compare our density-based exploration and reconstruction 
approach (DER) with a random graph (Random) of the same 
numbers of nodes and edges, a simple Laplace mechanism based 
approach (Laplace) [4] and a simplified version of DER (DE, 
without Step 3). 

We analyzed the properties of DP in the correlated setting and indicated that DP 
is flexible to handle data correlation. We presented an efficient non-interactive 
approach for publishing correlated network data. This is the first work that gives a 
practical solution for network data publication under DP. Extensive experiments 
demonstrate that our solution performs well for various data analysis tasks on 
different types of real-life network datasets. 
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DP under Correlation 

Intuitively, edge DP prevents any single edge from being unveiled. 
DP gives one of the strongest privacy guarantees; however, its 
application to network data is hindered by the fact that network data 
may be inherently correlated [3]: the presence or absence of an 
edge can be reflected by several other edges. Fortunately, DP is 
flexible to cope with correlation as long as the extent of correlation 
can be measured.  

Definition 1. A randomized algorithm A gives ε-differential privacy if 
for any neighboring graphs G and G’  and, for any possible output 
O ∈ Range(A), 

Pr [A(G) = O] ≤ exp(ε) × Pr [A(G’) = O] 

Datasets |V| |E| Edge Density 

  ca-GrQc 5,242 14,484 0.00106 

  ca-HepTh 5,000 17,120 0.00137 

  wiki-Vote 7,115 100,762 0.00398 

     STM 1,012 7,860 0.01536 

Key Observation. To cancel out the effect of data correlation, one 
should add extra Laplace noise that is proportional to the extent of 
correlation.  

This observation allows DP under correlation to be interpreted in 
terms of group differential privacy [1]. 

Raw graph G with a 
random vertex labeling 

Step 1: Identify a good vertex labeling 
that makes the corresponding adjacency 
matrix form dense clusters of 1s by a 
greedy permutation-based algorithm 

Step 2: Explore dense/sparse regions of the 
adjacency matrix by adapting a standard 
quadtree structure in a differentially private 
and data-dependent way 

Step 3: Reconstruct a noisy 
adjacency matrix based on a 
novel use of the exponential 
mechanism 

Table 1. Experimental dataset statistics 

Figure 2. Average relative error of cut queries 

Figure 3. KL-divergence of degree distributions 

Figure 4. Distributions of shortest path lengths of different approaches 
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