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ABSTRACT 

With the revolution in information technology, the dependence of the NATO countries on their information 

systems continues to grow. However, this represents a point of vulnerability, as these systems are exposed to 

malicious software (malware). Understanding malware to mitigate it requires software reverse engineering, 

but this is a manually intensive and time-consuming process. The learning curve to master it is quite steep 

and with today’s proliferation of malware, this results in the very few available reverse engineers being 

quickly saturated. This article presents the research results on code clone search to accelerate the reverse 

engineering process. As developing stealthy and persistent malware requires a high degree of technical 

complexity, it is quite common for code fragments to be reused between different malware. The objective is 

thus to use code clone search to correlate previously analyzed with new malware to automatically identify 

the similarities between them and thereby, the code fragments they share. This would prevent reverse 

engineers from reanalyzing the code fragments of a new malware, which have already been analyzed in a 

previous context.  

1.0 INTRODUCTION 

The revolution in information technology is resulting in a growing dependence on information and 

communication systems and is a point of vulnerability for NATO countries. While information systems-

based assets confer a distinct advantage for NATO militaries, these militaries are also vulnerable if 

adversaries interfere with these assets. Unfortunately, the technology required to disrupt and damage an 

information system is far less sophisticated and expensive than the amount of investment required to create 

the system. Cyber attacks offer an adversary maximum anonymity and a low risk of personal injury. The 

infrastructure required to conduct such attacks is relatively small, which makes this type of operation 

extremely attractive. In the past years, the overall sophistication, volume, and degree of coordination of these 

attacks have increased, which means that there will be a continuing demand for improved protection and 

countermeasures.  

It is a common scenario that the only piece of evidence of a successful cyber attack is the malicious 

executable code itself. Analyzing malicious code (malware) requires software reverse engineering, as 
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malware source code is unavailable most of the time. Software reverse engineering is a manually intensive 

and time-consuming process, whose objective is to determine the functionality of a program. It consists in 

taking a program’s executable binary, translating it into assembly code, and then manually analyzing the 

resulting assembly code. Most of the steps involve translating assembly code into a series of abstractions that 

represent the overall flow of a program to determine its functionality. The learning curve to master reverse 

engineering is quite steep and once mastered, the process is hindered when a program is obfuscated by anti-

reversing techniques or actively tries to avoid detection, as most malware do. The demanding requirements 

of reverse engineering, combined with today’s proliferation of malware, have resulted in the very few 

available reverse engineers being quickly saturated.  

During the last few years, the sophistication of malware has evolved considerably. While it used to consist of 

small programs written mostly in assembly which spread by infecting other executable files, today’s 

malware is written using high-level languages, comes in many forms (e.g., botnets, rootkits, malicious 

document files), and each new version of a malware (i.e., variant) improves on the previous one, by adding 

new capabilities and fixing bugs. As developing stealthy and persistent malware requires a high degree of 

technical complexity, it is quite common for code fragments to be reused between different malware.  

The fact that malware authors exchange source code among them, have adopted a versioning approach, and 

use evasion techniques to bypass antivirus detection have resulted in a proliferation of malware. Reverse 

engineers should thus leverage the code reuse in the production of malware and be able to correlate different 

malware to identify the similarities between them and thereby, the code fragments they share. This would 

prevent reverse engineers from reanalyzing the code fragments of a new malware, which have already been 

analyzed in a previous context. A direct comparison (i.e., syntactic) of malware variants would be fruitless, 

as different compiler settings can be used to generate vastly different executable code from identical source 

code input. To address this problem, the present article applies clone detection and search to identify the 

code fragments shared between different malware to reduce redundant analysis efforts. The remainder of this 

article is organized as follows: Section 2 provides background information on clone detection, followed by a 

formal definition of the clone search problem in Section 3. The proposed clone search framework is 

described in Section 4 and its evaluation is presented in Section 5. Finally, Section 6 discusses the 

conclusion and future work.  

2.0 BACKGROUND 

Clone detection is a technique to identify duplicate code fragments in a code base. Traditionally, it has been 

used to decrease code size by consolidating it and thus, facilitate program comprehension and software 

maintenance. This need stems from the fact that reusing code fragments by copying and pasting them, with 

or without minor modifications, is a common scenario in software development that can be detrimental to 

software maintenance and evolution. For example, if a bug is found in a code fragment, then all similar code 

fragments must also be verified for the presence of this bug.  

As clone detection is an important problem, it has been studied extensively and numerous clone detection 

techniques exist. Depending on the code level analysis used, they can be classified within the following 

categories: text-based [10, 16, 9], token-based [2, 11, 3, 8], tree-based [4, 22, 6], metrics-based [13, 17], and 

graph-based [14, 12, 15]. While most existing clone detection techniques operate on source code, clone 

detection has also been applied to binary code, since source code is not always available, as in the case of 

commercial off-the-shelf (COTS) software. One important application of clone detection on binary code is 

the detection of copyright infringements. For example, closed source software should not contain open 

source code released under the GNU General Public License (GPL). The proposed approach in this article 
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operates on binary code. But before describing it in detail, a brief introduction on the clone detection 

terminology is provided.  

A code fragment is any sequence of code lines, with or without comments, at any granularity level (e.g., 

function, code block) [21]. A code fragment is a clone of another code fragment if they are similar according 

to a given definition of similarity [21]. In clone detection, code fragments can be similar based on their 

program text (textual similarity) or functionality (functional similarity). Two similar code fragments form a 

clone pair and several clone pairs form a clone cluster. In the literature, the following definitions of the 

different clone types are commonly used [20]:  

• Textual Similarity 

• Type I: Identical code fragments except for variations in whitespace, layouts, and comments.  

• Type II: Structurally and syntactically identical fragments except for variations in identifiers, 

literals, types, layout, and comments. 

• Type III: Copied fragments with further modifications. Statements can be changed, added, or 

removed, in addition to variations in identifiers, literals, types, layout, and comments. 

• Functional Similarity 

• Type IV: Code fragments which perform the same computation, but implemented using 

different syntactic variants. These are also referred as semantic clones.  

3.0 ASSEMBLY CODE CLONE SEARCH 

As previously mentioned, the objective of clone detection is to identify all the highly similar code fragments 

within a code base which, in the worst case, might involve the comparison of every code fragment pair. But 

given a collection of previously analyzed assembly files and a target assembly code fragment, such as in the 

case of malware analysis, the objective is not to identify all the duplicate code fragments. It is only to 

identify all the code fragments in the previously analyzed assembly files that are syntactically or 

semantically similar to the target assembly code fragment. This problem, known as assembly code clone 

search, is formally defined next.  

Let A = {A1,...,An} be a collection of previously analyzed assembly files, where each assembly file Ai consists 

of a sequence of assembly code instructions <c1, …, cm>. A code fragment f in an assembly file Ai refers to a 

subsequence of assembly code instructions f = <ci, …, cj> in Ai, where 1 ≤ i ≤ j ≤ m. Let t = <t1, …, tk> be the 

user-specified target code fragment. Let sim(fx, fy) be a function that measures the similarity between two 

code fragments fx and fy. Let minS be a user-specified minimum similarity threshold. The problem of 

assembly code clone search is to identify all matched code fragments M where every code fragment fx  M 

satisfies the following conditions:  

1.  Ai  A | fx Ai, i.e., the code fragment fx is a subsequence of some assembly file Ai. 

2. sim(fx, t) ≤ minS, i.e., the similarity between the code fragment fx and the target code fragment t is 

within the threshold minS.  
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4.0 ASSEMBLY CODE CLONE SEARCH FRAMEWORK 

4.1 Framework Overview 

The code clone search prototype system developed in the context of this research work implements an 

improved version of the code clone detection framework proposed by Saebjornsen et al. [18]. Figure 1 

provides an overview of its nine processes. A high-level description of each of them is first provided, 

followed by a detailed description of the normalization and inexact clone detection processes.  

 

Figure 1: Code clone search process overview (extended from Saebjornsen et al. [18]) 

1. Disassembler: The first step is to disassemble the input binaries into assembly files using a 

disassembler, such as IDA Pro [7].  

2. Regionizer: The second step consists of identifying all the functions for each assembly file. Then, 

each function is partitioned into an array of overlapping regions with a size of at most w instructions, 

using a sliding window with a step size of s, where w and s are user-specified parameters. Figure 2 

below shows an example.  

  mov edi, edi   

  push ebp   

  push ebp, esp   

  mov eax, dword ptr [epb+8]   

Figure 2: Regionizer with a window size of 2 and a stride of 1 

3. Normalizer: The third step normalizes constants, memory addresses, and registers in each region to 

facilitate their comparison in the subsequent clone detection process. Section 4.2 illustrates the 

improvement made to the original normalization process.  

4. Exact clone detector: A clone pair is defined as an unordered pair of clone regions which have 

similar normalized instructions. A clone cluster is a group of clone pairs. The exact clone detector 

identifies clones among the regions by comparing their instruction mnemonics. Two regions are 

considered an exact clone if and only if all the normalized instructions in the two regions are 

identical. A naïve approach to identify exact clones would be to compare every region pair. Yet, this 

approach is too computationally expensive with a complexity of O(n
2
), where n is the total number 

of regions. Thus, a hashing approach is used. Specifically, two regions are considered an exact clone 
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if they share the same hash value. The exact clone detector is an improvement over the work of 

Schulman [19].  

5. Inexact clone detector: This step extracts features for each region and forms a feature vector, 

denoted by v, for each region. Two regions rx and ry are considered an inexact clone if the similarity 

between their feature vectors, denoted by sim(vx, vy), is within a user-specified minimum similarity 

threshold minS. Section 4.3 explains this process in details. The resulting set of identified clone 

clusters might contain many overlapping regions that are meaningless for analysis purposes. This 

happens when the step size s is smaller than the window size w. A post-processor identifies and 

removes these trivial overlapping instruction sequences.  

6. Duplicate clone merger: The inexact clone detector might misclassify two consecutive regions as a 

clone. The duplicate clone merger removes clones that are just highly overlapping consecutive 

regions. This also happens when the step size s is smaller than the windows size w.  

7. Maximal clone merger: Since the clone detection process operates on regions, the maximum size 

of the identified clones will correspond to the region size. This prevents the identification of cloned 

fragments spread over consecutive cloned regions. As it is more useful to identify a large clone than 

several smaller ones, the seventh step merges consecutive cloned regions into a larger clone.  

8. Token indexer: Separately from the aforementioned clone detection process, this step parses the 

assembly files to create indexes for constants, strings, and imported function names. The goal is to 

facilitate the direct access to these tokens during code clone search.  

9. Visualizer: A graphical user interface was also implemented to allow users input the required 

parameters for code clone detection, specify target code fragments or tokens, and display the 

matched clone fragments or tokens from the assembly files.  

For more details about the regionizer, exact clone detector, duplicate clone merger, and maximal clone 

merger processes, refer to [18]. In the remaining of this section, the improvements and extensions made in 

this research compared to the original work of Saebjornsen et al. [18] are described.  

4.2 Normalizer 

In assembly code, an instruction typically consists of a mnemonic (e.g., mov) and an operands list. Possible 

operands can be a register (e.g., eax), a constant (e.g., 0x30004040), or a memory address (e.g., 

[0x4000349e]). As two or more code regions can be similar except for differences in the instructions 

operands used, these need to be normalized in order to take into account these variations. Different works in 

the literature were investigated and extensive experiments were performed on assembly code samples. These 

revealed that different normalization techniques can result in significantly different clones. Therefore, to add 

flexibility to the clone detection and search process, the following normalization scheme was implemented. 

A constant can be normalized to VAL or VALx, where x is an index number. Similarly, a memory address can 

be normalized to MEM or MEMx. Registers can be normalized according to the hierarchy shown in Figure 3. 

This figure also illustrates how the EAX, CS, and EDI registers would be mapped according to the different 

normalization levels.  
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REG 
eax REG 

cs REG 

edi REG 

REGSeg, REGGen, REGIdxPtr 
eax REGGen 

cs REGSeg 

edi REGIdxPtr 

REGGen8, REGGen16, REGGen32 
eax REGGen32 

ax REGGen16 

ah REGGen8 

REGx 
eax REG0 

cs REG1 

edi REG2 

Figure 3: Normalization hierarchy for registers and mapping examples 

Using the more abstract normalization level, Figure 4 illustrates how some sample assembly code 

instructions would be normalized.  

Table 1: Normalized assembly code instructions 

Assembly Code Normalized Assembly Code 
 mov edi, edi  mov REG, REG 

 push ebp  push REG 

 push ebp, esp  push REG, REG 

 mov eax, dword ptr [epb+8]  mov REG, MEM 

4.3 Inexact Clone Detector 

In [18], Saebjornsen et al. proposed an inexact clone detector to identify clone pairs that are not exactly 

identical. In general, their approach consists of first extracting a set of features from each region and then 

searching for other code regions with the same or similar feature set. Specifically, a feature vector is 

constructed based on the following five types of features from each region [18]:  

• M, representing the mnemonic of the instruction 

• OPTYPE, representing the type of each operand in an instruction 

• M × OPTYPE, representing the combination of the mnemonic and the type of the first operand, 

when one is present 

• OPTYPE × OPTYPE, representing the types of the first and second operands, in that order, of an 

instruction with at least two operands 

• OPTYPE × Nk, representing each normalized operand with an index under a chosen limit k 

Using the same set of features, a new approach which can efficiently identify inexact clone pairs is proposed. 

REG

REGSeg

REGx

REGGen REGIdxPtr

REGGen8 REGGen16 REGGen32
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Its algorithm can be described in the following four steps:  

1. Compute median vector: The median of each feature for all regions is computed. The resulting 

vector is called the median vector. Intuitively, a feature having a median equal to zero implies that 

the majority of regions do not contain this feature. It should thus be removed, as it cannot be used to 

differentiate regions.  

2. Compute binary vectors: A binary vector is computed for each region by comparing the value of a 

feature vector with the corresponding value in the median vector. If the feature value is larger than 

the corresponding median, then 1 is inserted into the binary vector. Otherwise, 0 is inserted. For a 

region with feature values <0, 2, 1, 4, 1>, its binary vector would be <0, 0, 0, 1, 0> with respect to 

the median vector <1, 5, 2, 3, 3>.  

3. Hash binary vectors: For each binary vector, a hash key of every k consecutive features is 

iteratively computed, where k is a user-specified parameter. The regions having the same hash key 

are put into the same bucket of a hash table. For example, Table 2 shows that regions 6, 7, 33, and 

76 are hashed into the same bucket with respect to the first five consecutive features. The number of 

hash tables is bounded by the size of the binary vectors, i.e., the number of features having non-zero 

medians.  

Table 2: Hash table for inexact clone detection 

Key Values (Region No.) 

0  8, 9, 22, 156 

1  6, 7, 33, 76 

2  0, 56, 87, 12 

…  … 

31  53, 21, 1, 9 

4. Construct clone pairs: Intuitively, regions that frequently appear together in the same buckets of 

different hash tables are similar. They should therefore form a clone pair. The co-occurrence of 

regions can be computed by simply scanning the hash tables and keeping track of the co-occurrence 

counts using a score table such as Table 3. For example, for hash key 0 in Table 2, the scores of {8, 

9}, {8, 22}, {8, 156}, {9, 22}, {9, 156}, and {22, 156} are incremented by 1. Similarly, for hash key 

31, the scores of {53, 21}, {53, 1}, {53, 9}, {21, 1}, {21, 9}, and {1, 9} are also incremented by 1. 

The pairs of regions having a score above the user-specified threshold minS are considered as clone 

pairs.  

Table 3: Score table for inexact clone detection 

Region No.  0 1 2 3 4 … N 

0 - 3 1 1 1 … 12 

1 - - 4 2 8 … 4 

2 - - - 6 6 … 0 

3 - - - - 5 … 0 

4 - - - - - ... 1 

… … … … … … … … 

N - - - - - … - 
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5.0 EMPIRICAL STUDY 

The objective of the empirical study was to evaluate the proposed assembly code clone search approach in 

terms of precision, efficiency, and scalability. Experiments were conducted using three different sets of 

binary files. The first set contains two well-known malware: Zeus and Blaster. Zeus [5] is a Trojan horse that 

attempts to steal confidential information from a compromised computer. Blaster [1] is a worm that 

propagates by exploiting a buffer overflow vulnerability in the Microsoft Windows Remote Procedure Call 

(RPC) interface. The second set is a collection of 70 malware obtained from the National Cyber-Forensics 

and Training Alliance (NCFTA) Canada. The third and final set is an assortment of 18 open source Dynamic 

Link Libraries (DLLs). The experiments were performed on an Intel Xeon X5460 3.16 GHz Quad-Core 

processor-based server with 48GB of RAM running Windows Server 2003.   

5.1 Accuracy 

To evaluate the accuracy of the proposed approach, 20 code fragments were first selected from the 18 

disassembled DLLs and clones of these code fragments were manually identified in the assembly files. Then, 

the manually identified clones were compared with the results generated by the implemented code clone 

search approach to compute the following three measures:  

•          (               )   
   

        
 

•       (               )   
   

          
 

•  (               )   
          (               )           (        ) 

      (               )          (               )
 

where Solution is the set of manually identified code clones, Result is the set of code fragments in a search 

result, and nij is the number of code fragments in both Solution and Result. Intuitively, F(Solution, Result) 

measures the quality of the search Result with respect to the Solution by the harmonic mean of Recall and 

Precision. As the goal is to evaluate the quality of the search results with respect to a manually identified 

solution, it is infeasible to perform this experiment on a large collection of assembly files.  

Figure 4 shows the resulting precision, recall, and F-score measures for two different minimum similarity 

thresholds minS (0.5 and 0.8) using a step size s = 1 and a maximum number of features k = 40. Recall, 

precision, and F-score are consistently above 80% for different window sizes, suggesting that the clone 

detection method is accurate.  

   

Figure 4: Accuracy for s = 1 and k = 40 (open source DLLs) 
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To evaluate the precision of the proposed clone search method using Zeus and Blaster, the first 10 regions of 

each malware were selected as target code fragments. Clones of each selected region were then searched in 

the rest of the assembly code. Each identified clone was then manually reviewed to determine whether it was 

a valid clone or not. Using a step size s = 1, a maximum number of features k = 40, a minimum similarity 

threshold minS = 0.8, and a window size w ranging from 20 to 80, the precision was consistently above 96%. 

The approach was also applied on the collection of 70 malware to evaluate the number of both exact and 

inexact clones detected. Table 4 shows the numbers for various window sizes.  

Table 4: Number of exact and inexact clones detected (malware assortment) 

Window Size Exact Clones Inexact Clones 

20 18,010 26,6335 

40 17,225 27,2008 

60 17,162 27,4346 

80 16,971 75,9953 

5.2 Efficiency 

Figure 5 depicts the runtime in seconds for the exact, inexact, and for both clone detection using the 

following parameters: s = 1, k = 40, and minS = 0.80. The sample set was the Zeus and Blaster malware, and 

various window sizes ranging from 20 to 80 were used. The clone detection process took between 23 and 30 

seconds, indicating that its efficiency is not sensitive to the window size.  

 

Figure 5: Runtime vs. window size (Zeus and Blaster malware) 

5.3 Scalability 

Figure 6 illustrates the runtime in seconds for the different steps of the process using 10 to 70 malware and 

the following parameters: s = 1, k = 40, and minS = 0.80. The first step reads and processes the data. The 

second and third step respectively detects exact and inexact clones. Step 4 merges the clones and finally, the 

results are saved into an XML file. The total processing time ranges from 8 to 258 seconds.  
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Figure 6: Scalability (malware collection) 

6.0 CONCLUSION AND FUTURE WORK 

In this article, the prototype of a clone search system for malware analysis was implemented. It expands on 

the work of Saebjornsen et al. [18] through several improvements and extensions. First, a flexible 

normalization scheme was implemented. Second, a new inexact clone detection method was developed. 

Third, a search capability on constants, strings, and imported function names was added. Finally, a graphical 

user interface was implemented to browse and visualize the identified clones. The performance of the clone 

search system was evaluated in terms of accuracy, efficiency, and scalability. Experimental results suggest 

that the implemented clone search algorithm is effective at identifying both exact and inexact clones in 

assembly code. The current prototype implementation, like most of the works in the literature, supports the 

identification of syntactic clones (Type I, II, and III). The identification of semantic clones (Type IV) 

remains a challenging research problem for both source and assembly code. Future work will consist of 

investigating other approaches for identifying semantic clones in assembly code and conducting additional 

case studies to validate them.  
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