

STO-MP-IST-111 1 - 1

Clone Search for Malicious Code Correlation

Philippe Charland
Mission Critical Cyber Security Section

Defence Research and Development Canada – Valcartier

2459 Pie-XI Blvd North, Quebec, QC

Canada, G3J 1X5

philippe.charland@drdc-rddc.gc.ca

Benjamin C. M. Fung Mohammad Reza Farhadi
Concordia Institute for Information Systems Engineering

Concordia University

1455 de Maisonneuve Blvd. West, Montreal, QC

Canada, H3G 1M8

{fung, mo_farha}@ciise.concordia.ca

ABSTRACT

With the revolution in information technology, the dependence of the NATO countries on their information

systems continues to grow. However, this represents a point of vulnerability, as these systems are exposed to

malicious software (malware). Understanding malware to mitigate it requires software reverse engineering,

but this is a manually intensive and time-consuming process. The learning curve to master it is quite steep

and with today’s proliferation of malware, this results in the very few available reverse engineers being

quickly saturated. This article presents the research results on code clone search to accelerate the reverse

engineering process. As developing stealthy and persistent malware requires a high degree of technical

complexity, it is quite common for code fragments to be reused between different malware. The objective is

thus to use code clone search to correlate previously analyzed with new malware to automatically identify

the similarities between them and thereby, the code fragments they share. This would prevent reverse

engineers from reanalyzing the code fragments of a new malware, which have already been analyzed in a

previous context.

1.0 INTRODUCTION

The revolution in information technology is resulting in a growing dependence on information and

communication systems and is a point of vulnerability for NATO countries. While information systems-

based assets confer a distinct advantage for NATO militaries, these militaries are also vulnerable if

adversaries interfere with these assets. Unfortunately, the technology required to disrupt and damage an

information system is far less sophisticated and expensive than the amount of investment required to create

the system. Cyber attacks offer an adversary maximum anonymity and a low risk of personal injury. The

infrastructure required to conduct such attacks is relatively small, which makes this type of operation

extremely attractive. In the past years, the overall sophistication, volume, and degree of coordination of these

attacks have increased, which means that there will be a continuing demand for improved protection and

countermeasures.

It is a common scenario that the only piece of evidence of a successful cyber attack is the malicious

executable code itself. Analyzing malicious code (malware) requires software reverse engineering, as

Clone Search for Malicious Code Correlation

1 - 2 STO-MP-IST-111

malware source code is unavailable most of the time. Software reverse engineering is a manually intensive

and time-consuming process, whose objective is to determine the functionality of a program. It consists in

taking a program’s executable binary, translating it into assembly code, and then manually analyzing the

resulting assembly code. Most of the steps involve translating assembly code into a series of abstractions that

represent the overall flow of a program to determine its functionality. The learning curve to master reverse

engineering is quite steep and once mastered, the process is hindered when a program is obfuscated by anti-

reversing techniques or actively tries to avoid detection, as most malware do. The demanding requirements

of reverse engineering, combined with today’s proliferation of malware, have resulted in the very few

available reverse engineers being quickly saturated.

During the last few years, the sophistication of malware has evolved considerably. While it used to consist of

small programs written mostly in assembly which spread by infecting other executable files, today’s

malware is written using high-level languages, comes in many forms (e.g., botnets, rootkits, malicious

document files), and each new version of a malware (i.e., variant) improves on the previous one, by adding

new capabilities and fixing bugs. As developing stealthy and persistent malware requires a high degree of

technical complexity, it is quite common for code fragments to be reused between different malware.

The fact that malware authors exchange source code among them, have adopted a versioning approach, and

use evasion techniques to bypass antivirus detection have resulted in a proliferation of malware. Reverse

engineers should thus leverage the code reuse in the production of malware and be able to correlate different

malware to identify the similarities between them and thereby, the code fragments they share. This would

prevent reverse engineers from reanalyzing the code fragments of a new malware, which have already been

analyzed in a previous context. A direct comparison (i.e., syntactic) of malware variants would be fruitless,

as different compiler settings can be used to generate vastly different executable code from identical source

code input. To address this problem, the present article applies clone detection and search to identify the

code fragments shared between different malware to reduce redundant analysis efforts. The remainder of this

article is organized as follows: Section 2 provides background information on clone detection, followed by a

formal definition of the clone search problem in Section 3. The proposed clone search framework is

described in Section 4 and its evaluation is presented in Section 5. Finally, Section 6 discusses the

conclusion and future work.

2.0 BACKGROUND

Clone detection is a technique to identify duplicate code fragments in a code base. Traditionally, it has been

used to decrease code size by consolidating it and thus, facilitate program comprehension and software

maintenance. This need stems from the fact that reusing code fragments by copying and pasting them, with

or without minor modifications, is a common scenario in software development that can be detrimental to

software maintenance and evolution. For example, if a bug is found in a code fragment, then all similar code

fragments must also be verified for the presence of this bug.

As clone detection is an important problem, it has been studied extensively and numerous clone detection

techniques exist. Depending on the code level analysis used, they can be classified within the following

categories: text-based [10, 16, 9], token-based [2, 11, 3, 8], tree-based [4, 22, 6], metrics-based [13, 17], and

graph-based [14, 12, 15]. While most existing clone detection techniques operate on source code, clone

detection has also been applied to binary code, since source code is not always available, as in the case of

commercial off-the-shelf (COTS) software. One important application of clone detection on binary code is

the detection of copyright infringements. For example, closed source software should not contain open

source code released under the GNU General Public License (GPL). The proposed approach in this article

Clone Search for Malicious Code Correlation

STO-MP-IST-111 1 - 3

operates on binary code. But before describing it in detail, a brief introduction on the clone detection

terminology is provided.

A code fragment is any sequence of code lines, with or without comments, at any granularity level (e.g.,

function, code block) [21]. A code fragment is a clone of another code fragment if they are similar according

to a given definition of similarity [21]. In clone detection, code fragments can be similar based on their

program text (textual similarity) or functionality (functional similarity). Two similar code fragments form a

clone pair and several clone pairs form a clone cluster. In the literature, the following definitions of the

different clone types are commonly used [20]:

• Textual Similarity

• Type I: Identical code fragments except for variations in whitespace, layouts, and comments.

• Type II: Structurally and syntactically identical fragments except for variations in identifiers,

literals, types, layout, and comments.

• Type III: Copied fragments with further modifications. Statements can be changed, added, or

removed, in addition to variations in identifiers, literals, types, layout, and comments.

• Functional Similarity

• Type IV: Code fragments which perform the same computation, but implemented using

different syntactic variants. These are also referred as semantic clones.

3.0 ASSEMBLY CODE CLONE SEARCH

As previously mentioned, the objective of clone detection is to identify all the highly similar code fragments

within a code base which, in the worst case, might involve the comparison of every code fragment pair. But

given a collection of previously analyzed assembly files and a target assembly code fragment, such as in the

case of malware analysis, the objective is not to identify all the duplicate code fragments. It is only to

identify all the code fragments in the previously analyzed assembly files that are syntactically or

semantically similar to the target assembly code fragment. This problem, known as assembly code clone

search, is formally defined next.

Let A = {A1,...,An} be a collection of previously analyzed assembly files, where each assembly file Ai consists

of a sequence of assembly code instructions <c1, …, cm>. A code fragment f in an assembly file Ai refers to a

subsequence of assembly code instructions f = <ci, …, cj> in Ai, where 1 ≤ i ≤ j ≤ m. Let t = <t1, …, tk> be the

user-specified target code fragment. Let sim(fx, fy) be a function that measures the similarity between two

code fragments fx and fy. Let minS be a user-specified minimum similarity threshold. The problem of

assembly code clone search is to identify all matched code fragments M where every code fragment fx M

satisfies the following conditions:

1. Ai A | fx Ai, i.e., the code fragment fx is a subsequence of some assembly file Ai.

2. sim(fx, t) ≤ minS, i.e., the similarity between the code fragment fx and the target code fragment t is

within the threshold minS.

Clone Search for Malicious Code Correlation

1 - 4 STO-MP-IST-111

4.0 ASSEMBLY CODE CLONE SEARCH FRAMEWORK

4.1 Framework Overview

The code clone search prototype system developed in the context of this research work implements an

improved version of the code clone detection framework proposed by Saebjornsen et al. [18]. Figure 1

provides an overview of its nine processes. A high-level description of each of them is first provided,

followed by a detailed description of the normalization and inexact clone detection processes.

Figure 1: Code clone search process overview (extended from Saebjornsen et al. [18])

1. Disassembler: The first step is to disassemble the input binaries into assembly files using a

disassembler, such as IDA Pro [7].

2. Regionizer: The second step consists of identifying all the functions for each assembly file. Then,

each function is partitioned into an array of overlapping regions with a size of at most w instructions,

using a sliding window with a step size of s, where w and s are user-specified parameters. Figure 2

below shows an example.

 mov edi, edi

 push ebp

 push ebp, esp

 mov eax, dword ptr [epb+8]

Figure 2: Regionizer with a window size of 2 and a stride of 1

3. Normalizer: The third step normalizes constants, memory addresses, and registers in each region to

facilitate their comparison in the subsequent clone detection process. Section 4.2 illustrates the

improvement made to the original normalization process.

4. Exact clone detector: A clone pair is defined as an unordered pair of clone regions which have

similar normalized instructions. A clone cluster is a group of clone pairs. The exact clone detector

identifies clones among the regions by comparing their instruction mnemonics. Two regions are

considered an exact clone if and only if all the normalized instructions in the two regions are

identical. A naïve approach to identify exact clones would be to compare every region pair. Yet, this

approach is too computationally expensive with a complexity of O(n
2
), where n is the total number

of regions. Thus, a hashing approach is used. Specifically, two regions are considered an exact clone

Assembly

Files
Disassembler Normalizer

Exact Clone
Detector

XML

File

Token Indexer

Visualizer

Regionizer

Inexact Clone
Detector

Duplicate Clone
Merger

Regionizer

Binary
Files

Clone Search for Malicious Code Correlation

STO-MP-IST-111 1 - 5

if they share the same hash value. The exact clone detector is an improvement over the work of

Schulman [19].

5. Inexact clone detector: This step extracts features for each region and forms a feature vector,

denoted by v, for each region. Two regions rx and ry are considered an inexact clone if the similarity

between their feature vectors, denoted by sim(vx, vy), is within a user-specified minimum similarity

threshold minS. Section 4.3 explains this process in details. The resulting set of identified clone

clusters might contain many overlapping regions that are meaningless for analysis purposes. This

happens when the step size s is smaller than the window size w. A post-processor identifies and

removes these trivial overlapping instruction sequences.

6. Duplicate clone merger: The inexact clone detector might misclassify two consecutive regions as a

clone. The duplicate clone merger removes clones that are just highly overlapping consecutive

regions. This also happens when the step size s is smaller than the windows size w.

7. Maximal clone merger: Since the clone detection process operates on regions, the maximum size

of the identified clones will correspond to the region size. This prevents the identification of cloned

fragments spread over consecutive cloned regions. As it is more useful to identify a large clone than

several smaller ones, the seventh step merges consecutive cloned regions into a larger clone.

8. Token indexer: Separately from the aforementioned clone detection process, this step parses the

assembly files to create indexes for constants, strings, and imported function names. The goal is to

facilitate the direct access to these tokens during code clone search.

9. Visualizer: A graphical user interface was also implemented to allow users input the required

parameters for code clone detection, specify target code fragments or tokens, and display the

matched clone fragments or tokens from the assembly files.

For more details about the regionizer, exact clone detector, duplicate clone merger, and maximal clone

merger processes, refer to [18]. In the remaining of this section, the improvements and extensions made in

this research compared to the original work of Saebjornsen et al. [18] are described.

4.2 Normalizer

In assembly code, an instruction typically consists of a mnemonic (e.g., mov) and an operands list. Possible

operands can be a register (e.g., eax), a constant (e.g., 0x30004040), or a memory address (e.g.,

[0x4000349e]). As two or more code regions can be similar except for differences in the instructions

operands used, these need to be normalized in order to take into account these variations. Different works in

the literature were investigated and extensive experiments were performed on assembly code samples. These

revealed that different normalization techniques can result in significantly different clones. Therefore, to add

flexibility to the clone detection and search process, the following normalization scheme was implemented.

A constant can be normalized to VAL or VALx, where x is an index number. Similarly, a memory address can

be normalized to MEM or MEMx. Registers can be normalized according to the hierarchy shown in Figure 3.

This figure also illustrates how the EAX, CS, and EDI registers would be mapped according to the different

normalization levels.

Clone Search for Malicious Code Correlation

1 - 6 STO-MP-IST-111

REG
eax REG

cs REG

edi REG

REGSeg, REGGen, REGIdxPtr
eax REGGen

cs REGSeg

edi REGIdxPtr

REGGen8, REGGen16, REGGen32
eax REGGen32

ax REGGen16

ah REGGen8

REGx
eax REG0

cs REG1

edi REG2

Figure 3: Normalization hierarchy for registers and mapping examples

Using the more abstract normalization level, Figure 4 illustrates how some sample assembly code

instructions would be normalized.

Table 1: Normalized assembly code instructions

Assembly Code Normalized Assembly Code
 mov edi, edi mov REG, REG

 push ebp push REG

 push ebp, esp push REG, REG

 mov eax, dword ptr [epb+8] mov REG, MEM

4.3 Inexact Clone Detector

In [18], Saebjornsen et al. proposed an inexact clone detector to identify clone pairs that are not exactly

identical. In general, their approach consists of first extracting a set of features from each region and then

searching for other code regions with the same or similar feature set. Specifically, a feature vector is

constructed based on the following five types of features from each region [18]:

• M, representing the mnemonic of the instruction

• OPTYPE, representing the type of each operand in an instruction

• M × OPTYPE, representing the combination of the mnemonic and the type of the first operand,

when one is present

• OPTYPE × OPTYPE, representing the types of the first and second operands, in that order, of an

instruction with at least two operands

• OPTYPE × Nk, representing each normalized operand with an index under a chosen limit k

Using the same set of features, a new approach which can efficiently identify inexact clone pairs is proposed.

REG

REGSeg

REGx

REGGen REGIdxPtr

REGGen8 REGGen16 REGGen32

Clone Search for Malicious Code Correlation

STO-MP-IST-111 1 - 7

Its algorithm can be described in the following four steps:

1. Compute median vector: The median of each feature for all regions is computed. The resulting

vector is called the median vector. Intuitively, a feature having a median equal to zero implies that

the majority of regions do not contain this feature. It should thus be removed, as it cannot be used to

differentiate regions.

2. Compute binary vectors: A binary vector is computed for each region by comparing the value of a

feature vector with the corresponding value in the median vector. If the feature value is larger than

the corresponding median, then 1 is inserted into the binary vector. Otherwise, 0 is inserted. For a

region with feature values <0, 2, 1, 4, 1>, its binary vector would be <0, 0, 0, 1, 0> with respect to

the median vector <1, 5, 2, 3, 3>.

3. Hash binary vectors: For each binary vector, a hash key of every k consecutive features is

iteratively computed, where k is a user-specified parameter. The regions having the same hash key

are put into the same bucket of a hash table. For example, Table 2 shows that regions 6, 7, 33, and

76 are hashed into the same bucket with respect to the first five consecutive features. The number of

hash tables is bounded by the size of the binary vectors, i.e., the number of features having non-zero

medians.

Table 2: Hash table for inexact clone detection

Key Values (Region No.)

0 8, 9, 22, 156

1 6, 7, 33, 76

2 0, 56, 87, 12

… …

31 53, 21, 1, 9

4. Construct clone pairs: Intuitively, regions that frequently appear together in the same buckets of

different hash tables are similar. They should therefore form a clone pair. The co-occurrence of

regions can be computed by simply scanning the hash tables and keeping track of the co-occurrence

counts using a score table such as Table 3. For example, for hash key 0 in Table 2, the scores of {8,

9}, {8, 22}, {8, 156}, {9, 22}, {9, 156}, and {22, 156} are incremented by 1. Similarly, for hash key

31, the scores of {53, 21}, {53, 1}, {53, 9}, {21, 1}, {21, 9}, and {1, 9} are also incremented by 1.

The pairs of regions having a score above the user-specified threshold minS are considered as clone

pairs.

Table 3: Score table for inexact clone detection

Region No. 0 1 2 3 4 … N

0 - 3 1 1 1 … 12

1 - - 4 2 8 … 4

2 - - - 6 6 … 0

3 - - - - 5 … 0

4 - - - - - ... 1

… … … … … … … …

N - - - - - … -

Clone Search for Malicious Code Correlation

1 - 8 STO-MP-IST-111

5.0 EMPIRICAL STUDY

The objective of the empirical study was to evaluate the proposed assembly code clone search approach in

terms of precision, efficiency, and scalability. Experiments were conducted using three different sets of

binary files. The first set contains two well-known malware: Zeus and Blaster. Zeus [5] is a Trojan horse that

attempts to steal confidential information from a compromised computer. Blaster [1] is a worm that

propagates by exploiting a buffer overflow vulnerability in the Microsoft Windows Remote Procedure Call

(RPC) interface. The second set is a collection of 70 malware obtained from the National Cyber-Forensics

and Training Alliance (NCFTA) Canada. The third and final set is an assortment of 18 open source Dynamic

Link Libraries (DLLs). The experiments were performed on an Intel Xeon X5460 3.16 GHz Quad-Core

processor-based server with 48GB of RAM running Windows Server 2003.

5.1 Accuracy

To evaluate the accuracy of the proposed approach, 20 code fragments were first selected from the 18

disassembled DLLs and clones of these code fragments were manually identified in the assembly files. Then,

the manually identified clones were compared with the results generated by the implemented code clone

search approach to compute the following three measures:

• ()

• ()

• ()
 () ()

 () ()

where Solution is the set of manually identified code clones, Result is the set of code fragments in a search

result, and nij is the number of code fragments in both Solution and Result. Intuitively, F(Solution, Result)

measures the quality of the search Result with respect to the Solution by the harmonic mean of Recall and

Precision. As the goal is to evaluate the quality of the search results with respect to a manually identified

solution, it is infeasible to perform this experiment on a large collection of assembly files.

Figure 4 shows the resulting precision, recall, and F-score measures for two different minimum similarity

thresholds minS (0.5 and 0.8) using a step size s = 1 and a maximum number of features k = 40. Recall,

precision, and F-score are consistently above 80% for different window sizes, suggesting that the clone

detection method is accurate.

Figure 4: Accuracy for s = 1 and k = 40 (open source DLLs)

0

20

40

60

80

100

20 40 60 80

P
re

ci
si

o
n

 (
%

)

Window Size

minS = 0.5 minS = 0.8

0

20

40

60

80

100

20 40 60 80

R
e

ca
l (

%
)

Window Size

minS = 0.5 minS = 0.8

0

20

40

60

80

100

20 40 60 80

F
(%

)

Window Size

minS = 0.5 minS = 0.8

Clone Search for Malicious Code Correlation

STO-MP-IST-111 1 - 9

To evaluate the precision of the proposed clone search method using Zeus and Blaster, the first 10 regions of

each malware were selected as target code fragments. Clones of each selected region were then searched in

the rest of the assembly code. Each identified clone was then manually reviewed to determine whether it was

a valid clone or not. Using a step size s = 1, a maximum number of features k = 40, a minimum similarity

threshold minS = 0.8, and a window size w ranging from 20 to 80, the precision was consistently above 96%.

The approach was also applied on the collection of 70 malware to evaluate the number of both exact and

inexact clones detected. Table 4 shows the numbers for various window sizes.

Table 4: Number of exact and inexact clones detected (malware assortment)

Window Size Exact Clones Inexact Clones

20 18,010 26,6335

40 17,225 27,2008

60 17,162 27,4346

80 16,971 75,9953

5.2 Efficiency

Figure 5 depicts the runtime in seconds for the exact, inexact, and for both clone detection using the

following parameters: s = 1, k = 40, and minS = 0.80. The sample set was the Zeus and Blaster malware, and

various window sizes ranging from 20 to 80 were used. The clone detection process took between 23 and 30

seconds, indicating that its efficiency is not sensitive to the window size.

Figure 5: Runtime vs. window size (Zeus and Blaster malware)

5.3 Scalability

Figure 6 illustrates the runtime in seconds for the different steps of the process using 10 to 70 malware and

the following parameters: s = 1, k = 40, and minS = 0.80. The first step reads and processes the data. The

second and third step respectively detects exact and inexact clones. Step 4 merges the clones and finally, the

results are saved into an XML file. The total processing time ranges from 8 to 258 seconds.

0

5

10

15

20

25

30

35

20 40 60 80

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Window Size

Exact Clones Inexact Clones Exact & Inexact Clones

Clone Search for Malicious Code Correlation

1 - 10 STO-MP-IST-111

Figure 6: Scalability (malware collection)

6.0 CONCLUSION AND FUTURE WORK

In this article, the prototype of a clone search system for malware analysis was implemented. It expands on

the work of Saebjornsen et al. [18] through several improvements and extensions. First, a flexible

normalization scheme was implemented. Second, a new inexact clone detection method was developed.

Third, a search capability on constants, strings, and imported function names was added. Finally, a graphical

user interface was implemented to browse and visualize the identified clones. The performance of the clone

search system was evaluated in terms of accuracy, efficiency, and scalability. Experimental results suggest

that the implemented clone search algorithm is effective at identifying both exact and inexact clones in

assembly code. The current prototype implementation, like most of the works in the literature, supports the

identification of syntactic clones (Type I, II, and III). The identification of semantic clones (Type IV)

remains a challenging research problem for both source and assembly code. Future work will consist of

investigating other approaches for identifying semantic clones in assembly code and conducting additional

case studies to validate them.

7.0 REFERENCES

[1] M. Bailey, et al., “The Blaster Worm: Then and Now,” IEEE Security and Privacy, vol. 3, no. 4, Jul.

2005, pp. 26-31.

[2] B.S. Baker, “On Finding Duplication and Near-Duplication in Large Software Systems,” Proc. of the

2nd Working Conf. on Reverse Eng. (WCRE ‘95), Toronto, Ont., Jul. 1995, pp. 86-95.

0

50

100

150

200

250

300

10 20 30 40 50 60 70

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Window Size

Preprocessing Exact Clones Inexact Clones

Unification Writing Outputs Total

Clone Search for Malicious Code Correlation

STO-MP-IST-111 1 - 11

[3] H.A. Basit, et al., “Efficient Token Based Clone Detection with Flexible Tokenization,” Proc. of the

6th Joint Meeting of the European Software Eng. Conf. and the ACM SIGSOFT Symp. on the

Foundations of Software Eng., Dubrovnik, Croatia, Sept. 2007, pp. 513-516.

[4] I.D. Baxter et al., “Clone Detection Using Abstract Syntax Trees,” Proc. of the Int’l Conf. on Software

Maintenance (ICSM '98), Bethesda, Md., Nov. 1998, pp. 368-377.

[5] H. Bin, et al., “On the Analysis of the Zeus Botnet Crimeware Toolkit,” Proc. of the 8th Ann. Conf. on

Privacy, Security and Trust (PST 2010), Ottawa, Ont., Aug. 2010, pp. 31-38.

[6] W.S. Evans, C.W. Fraser, and F. Ma, “Clone Detection via Structural Abstraction,” Proc. of the 14th

Working Conf. on Reverse Eng. (WCRE ’07), Vancouver, B.C., Oct. 2007, pp. 150-159.

[7] Hex-Rays, “IDA: About,” Aug. 2012; http://www.hex-rays.com/products/ida/index.shtml.

[8] B. Hummel, et al., “Index-Based Code Clone Detection: Incremental, Distributed, Scalable,” Proc. of

the IEEE Int’l Conf. on Software Maintenance (ICSM ‘10), Timisoara, Romania, Sept. 2010, pp. 1-9.

[9] J. Ji, et al., “Source Code Similarity Detection Using Adaptive Local Alignment of Keywords,” Proc.

of the 8th Int’l Conf. on Parallel and Distributed Computing, Applications and Technologies (PDCAT

‘07), Adelaide, Australia, Dec. 2007, pp. 179-180.

[10] J.H. Johnson, “Identifying Redundancy in Source Code Using Fingerprints,” Proc. of the 1993 Conf.

of the Centre for Advanced Studies on Collaborative Research: Software Eng., Toronto, Ont., Sept.

1993, pp. 171-183.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code, IEEE Trans. on Software Eng., vol. 28, no. 7, Jul.

2002, pp. 654-670.

[12] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication in Source Code,” Proc. of the

8th Int’l Symp. on Static Analysis (SAS ’01), Paris, France, Jul. 2001, pp. 40-56.

[13] K.A. Kontogiannis, et al., “Pattern Matching for Clone and Concept Detection,” J. of Automated

Software Engineering, vol. 3, no. 1-2, Jun. 1996, pp. 77-108.

[14] J. Krinke, “Identifying Similar Code with Program Dependence Graphs,” Proc. of the 8th Working

Conf. on Reverse Eng. (WCRE ’01), Stuttgart, Germany, Oct. 2001, pp. 301-309.

[15] C. Liu, et al., “GPLAG: Detection of Software Plagiarism by Program Dependence Graph Analysis,”

Proc. of the 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD ’06),

Philadelphia, Pa., Aug. 2006, pp. 872-881.

[16] A. Marcus and J.I. Maletic, “Identification of High-level Concept Clones in Source Code,” Proc. of

the 16th IEEE Int’l Conf. on Automated Software Eng. (ASE ‘01), Coronado, Calif., Nov. 2001, pp.

107-114.

http://www.hex-rays.com/products/ida/index.shtml

Clone Search for Malicious Code Correlation

1 - 12 STO-MP-IST-111

[17] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the Automatic Detection of Function Clones in

a Software System Using Metrics,” Proc. of the 1996 Int’l Conf. on Software Maintenance (ICSM ’96),

Monterey, Calif., Nov. 1996, pp. 244-253.

[18] A. Saebjornsen, et al., “Detecting Code Clones in Binary Executables,” Proc. of the 18th Int’l Symp. on

Software Testing and Analysis (ISSTA '09), Chicago, Ill., Jul. 2009, pp. 117-128.

[19] A. Schulman, “Finding Binary Clones with Opstrings & Function Digests,” Dr. Dobb’s Journal, Jul.

2005 (Part I), Aug. 2005 (Part II), and Sept. 2005 (Part III).

[20] C.K. Roy and J.R. Cordy, A Survey on Software Clone Detection Research, tech. report 2007-541,

School of Computing, Queen's Univ., Kingston, Ont., 2007.

[21] C.K. Roy, J.R. Cordy, and R. Koschke, “Comparison and Evaluation of code Clone Detection

Techniques and Tools: A Qualitative Approach,” Science of Computer Programming, vol. 74, no. 7,

May 2009, pp. 470-495.

[22] V. Wahler, et al., “Clone Detection in Source Code by Frequent Itemset Techniques,” Proc. of the 4th

IEEE Int’l Workshop on Source Code Analysis and Manipulation (SCAM ‘04), Chicago, Ill., Sept.

2004, pp. 128-135.

