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ABSTRACT

With the wide deployment of smart card automated fare collec-
tion (SCAFC) systems, public transit agencies have been benefit-
ing from huge volume of transit data, a kind of sequential data, col-
lected every day. Yet, improper publishing and use of transit data
could jeopardize passengers’ privacy. In this paper, we present our
solution to transit data publication under the rigorous differential

privacy model for the Société de transport de Montréal (STM). We
propose an efficient data-dependent yet differentially private tran-
sit data sanitization approach based on a hybrid-granularity prefix
tree structure. Moreover, as a post-processing step, we make use
of the inherent consistency constraints of a prefix tree to conduct
constrained inferences, which lead to better utility. Our solution
not only applies to general sequential data, but also can be seam-
lessly extended to trajectory data. To our best knowledge, this is the
first paper to introduce a practical solution for publishing large vol-
ume of sequential data under differential privacy. We examine data
utility in terms of two popular data analysis tasks conducted at the
STM, namely count queries and frequent sequential pattern mining.
Extensive experiments on real-life STM datasets confirm that our
approach maintains high utility and is scalable to large datasets.

Categories and Subject Descriptors

H.2.7 [Database Administration]: [Security, integrity, and protec-
tion]; H.2.8 [Database Applications]: [Data mining]

General Terms

Algorithms, Performance, Security

Keywords

Differential privacy, transit data, non-interactive release, data min-
ing

1. INTRODUCTION
Over the last few years, smart card automated fare collection

(SCAFC) systems have been increasingly deployed in transporta-
tion systems as a secure method of user validation and fare col-
lection. These systems generate and collect passengers’ transit
data every day, which, after being anonymized, needs to be shared
for various reasons, such as administrative regulations, profit shar-
ing and data analysis. Transit data usually contains individual-
specific sensitive information, and publishing raw data would di-
rectly violate passengers’ privacy. In this paper, we study the real-
life transit data publishing scenario at the Société de transport
de Montréal (STM, http://www.stm.info), the public transport
agency in Montréal area, and propose an efficient solution to pub-
lishing transit data under the rigorous differential privacy model [10]
while satisfying the data utility requirements specified by the STM.

The STM deployed SCAFC systems in its transportation network
in 2008. Transit information, such as smart card number and station
ID, is collected when a passenger swipes his smart card at a SCAFC
terminal, and is then stored in a central database management sys-
tem, where the transit information of a passenger is organized as a
sequence of stations in time order, a kind of sequential data (see
a formal definition in Section 3). The deployment of SCAFC sys-
tems allows the seamless integration with other transit networks
of neighboring cities, for example, the Agence métropolitaine
de transport (AMT), which consequently requires data sharing
among several collaborating parties. In addition, periodically, the
IT department of the STM shares transit data with other depart-
ments, e.g., the marketing department, for basic data analysis, and
publishes its transit data to external research institutions for more
complex data analysis tasks, such as marketing analysis [28], cus-
tomer behavior analysis [4], and demand forecasting [28].

According to its preliminary research [4], [20], [5], the STM can
substantially benefit from transit data analysis at strategic, tactical,
and operational levels. Yet, it has also realized that the nature of
transit data is raising major privacy concerns on the part of card
users in information sharing [20]. This fact has been an obstacle
to conducting further data analysis much less performing regular
commercial operations. In this paper, we aim to provide a practical
solution to such a real-life transit data sharing scenario. We point
out that our solution also benefits many other sectors, for example
cell phone communication and credit card payment, which have
been facing a similar dilemma in sequential data publishing and
individual privacy protection.

Previous efforts have been made in addressing the problem of
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transit data publication at the STM. Chen et al. [6] propose lo-
cal suppression techniques based on the (K,C)L-privacy model (a
composition of k-anonymity [26] and confidence bounding [27]).
However, recent works have shown that partition-based privacy
models, for example k-anonymity and confidence bounding, are
vulnerable to many types of privacy attacks, such as composition

attack [14], deFinetti attack [18] and foreground knowledge at-

tack [29], demonstrating their vulnerability to an adversary’s back-
ground knowledge. Due to their deterministic nature, it is fore-
seeable that more types of privacy attacks could be discovered on
these privacy models in the future. For this reason, we employ
differential privacy [10], one of the strongest privacy models. Dif-
ferential privacy provides provable privacy guarantees independent
of an adversary’s background knowledge and computational power
(this claim may not be valid in some special cases [19], but is still
correct for the STM case, as discussed in Section 4.3).

Traditional differentially private non-interactive approaches [3],
[11], [31] are data-independent in the sense that all possible en-
tries in the output domain need to be explicitly considered no mat-
ter what the underlying database is. For high-dimensional data,
such as transit data, this is computationally infeasible. Consider a
transit database D with all stations drawn from a universe of size
m. Suppose the maximum length of a record (the number of sta-
tions in a record) in D is l. These approaches need to generate∑l

i=1 m
i = ml+1−m

m−1
output entries. For a STM transit database

with m = 1, 000 and l = 20, it requires to generate 1060 entries.
Hence, these approaches are not computationally applicable with
today’s systems to real-life transit databases.

To tackle the challenge, we develop a data-dependent solution
by extending the ideas proposed in two very recent papers [23], [7].
The general idea of a data-dependent solution is to adaptively nar-
row down the output domain by using noisy answers obtained from
the underlying database. However, the methods in [23], [7] cannot
be directly applied to sequential data for two reasons. First, the in-
herent sequentiality of sequential data is not considered in [23], [7].
Second, the methods only work for sets, yet a record in a sequential
database may contain a bag of locations. Therefore, non-trivial ef-
forts are needed to develop a differentially private data publishing
approach for sequential data.

Protecting individual privacy is one aspect of sanitizing data.
Another equally important aspect is preserving utility in sanitized
data for data analysis. In this paper, we consider two important
data mining tasks conducted at the STM, namely count queries (see
a formal definition in Section 3.3) and frequent sequential pattern

mining [2]. Count queries, as a general data analysis task, are the
building block of many advanced data mining tasks. In the STM
case, with accurate answers to count queries, data recipients can
answer questions, such as “how many passengers have visited both
stations Guy-Concordia and McGill 1". Frequent sequential pat-
tern mining, as a concrete data mining task, helps, for example,
the STM better understand passengers’ transit patterns and conse-
quently allows the STM to adjust its network geometry and sched-
ules in order to better utilize its existing resources.
Contribution. This is the first paper that introduces a practical so-
lution for publishing large volume of real-life sequential data via
differential privacy in the non-interactive setting. We summarize
the major contributions of the paper as follows. First, we study the
real-life transit data sharing scenario at the STM and propose an
efficient sanitization algorithm to generate a differentially private
sequential data release by making use of a hybrid-granularity pre-

1Guy-Concordia and McGill are two metro stations on the green
line of the STM metro network.

fix tree. We design a statistical process for efficiently constructing
such a noisy prefix tree under Laplace mechanism, which is vital to
the scalability of our solution. We emphasize that our approach
can be seamlessly extended to trajectory data (see Section 4.4).
Second, we make use of two sets of inherent constraints of a pre-
fix tree to conduct constrained inferences, which helps generate a
more accurate release. Third, we conduct an extensive experimen-
tal study over different real-life STM datasets. We examine utility
of sanitized data for two different data mining tasks performed by
the STM, namely count queries (a generic data analysis task) and
frequent sequential pattern mining (a concrete data mining task).
Experimental results demonstrate that our approach maintains high
utility and is scalable to large volume of real-life sequential data.

2. RELATED WORK
More broadly, sequential data can be considered as a special

kind of trajectory data. There have been some recent works [1],
[27], [32], [17], [13], [6], [24] on privacy-preserving sequential
(trajectory) data publishing based on partition-based privacy mod-
els. Abul et al. [1] propose the (k, δ)-anonymity model based
on the inherent imprecision of sampling and positioning systems,
where δ represents possible location imprecision. Terrovitis and
Mamoulis [27] model an adversary’s background knowledge as a
set of projections of sequences in a sequential database, and conse-
quently propose a data suppression technique that limits the con-
fidence of inferring the presence of a location in a sequence to
a pre-defined probability threshold. Yarovoy et al. [32] propose
to k-anonymize a moving object database (MOD) by considering
timestamps as the quasi-identifiers (QIDs). Adversaries are as-
sumed to launch privacy attacks based on attack graphs. Monreale
et al. [24] present an approach based on spatial generalization in
order to achieve k-anonymity. The novelty of their approach lies in
a generalization scheme that depends on the underlying trajectory
dataset rather than a fixed grid hierarchy.

Hu et al. [17] present the problem of k-anonymizing a trajec-
tory database with respect to a sensitive event database. The goal is
to make sure that every event is shared by at least k users. Specifi-
cally, they develop a new generalization mechanism known as local

enlargement. Fung et al. [13] propose the (K,C)L-privacy model
that thwarts both identity linkages on trajectory data and attribute
linkages via trajectory data. Based on the (K,C)L-privacy model,
Chen et al. [6] develop a generic solution for various data utility
metrics by use of local suppression. Compared to all these ap-
proaches [1], [27], [32], [17], [13], [6], [24], the major contribution
of our paper is the use of differential privacy, which provides sig-
nificantly stronger privacy guarantees.

In the last few years, differential privacy has emerged as the de
facto successor to partition-based privacy models. Currently most
of the research on differential privacy concentrates on the interac-

tive setting. Dwork [9] provides an overview of recent works on
differential privacy in the interactive setting.

The works closest to ours are by Blum et al. [3], Dwork et al. [11],
Xiao et al. [31], Mohammed et al. [23], and Chen et al. [7]. All
these works consider non-interactive data publishing under differ-
ential privacy. Blum et al. [3] demonstrate that it is possible to re-
lease synthetic private databases that are useful for all queries over a
discretized domain from a concept class with polynomial Vapnik-
Chervonenkis dimension. However, their mechanism is not effi-
cient, taking runtime complexity of superpoly(|C|, |I|), where |C|
is the size of a concept class and |I| the size of the universe. Dwork
et al. [11] propose a recursive algorithm of generating a synthetic

database with runtime complexity of poly(|C|, |I|). This improve-
ment, however, is still insufficient to handle real-life sequential
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Table 1: Sample sequential database

Rec. # Path

1 L1 → L2 → L3

2 L1 → L2

3 L3 → L2 → L1

4 L1 → L2 → L4

5 L1 → L2 → L3

6 L3 → L2

7 L1 → L2 → L4 → L1

8 L3 → L1

datasets due to the exponential size of |C|. Xiao et al. [31] pro-
pose a wavelet-transformation based approach for relational data

to lower the magnitude of noise, rather than adding independent
Laplace noise.

Two very recent papers [23], [7] point out that data-dependent
approaches are more efficient and more effective for generating
a differentially private release. Mohammed et al. [23] propose a
generalization-based sanitization algorithm for relational data with
the goal of classification analysis. Chen et al. [7] propose a proba-
bilistic top-down partitioning algorithm for set-valued data. Due to
the reasons mentioned in Section 1, they cannot be directly applied
to sequential data.

3. PRELIMINARIES
Let L = {L1, L2, · · · , L|L|} be the universe of locations, where
|L| is the size of the universe. Without loss of generality, we
consider locations as discrete spatial areas in a map. For STM
transit data, L represents all stations in the STM transportation
network. Each record in a sequential database consists of a se-

quence of time-ordered locations drawn from this universe. For-
mally, a sequence S of length |S| is an ordered list of locations
S = L1 → L2 → · · · → L|S|, where ∀1 ≤ i ≤ |S|, Li ∈ L.
A location may occur multiple times in S, and may occur consecu-
tively in S.

A sequential database D of size |D| is composed of a multiset
of sequences D = {S1, S2, · · · , S|D|}. Each sequence represents
the movement history of a record owner. Table 1 presents a sample
sequential database with L = {L1, L2, L3, L4}.

3.1 Prefix Tree
A sequential database can be represented in a more compact way

in terms of a prefix tree. A prefix tree groups sequences with the
same prefix into the same branch. A sequence S′ = L′

1 → L′
2 →

· · · → L′
|S′| is a prefix of a sequence S = L1 → L2 → · · · →

L|S|, denoted by S′ � S, if and only if |S′| ≤ |S| and ∀1 ≤ i ≤
|S′|, L′

i = Li. For example, L1 → L2 is a prefix of L1 → L2 →
L4 → L3, but L1 → L4 is not. We formally define a prefix tree
below.

DEFINITION 3.1 (PREFIX TREE). A prefix tree PT of a se-
quential database D is a triplet PT = (V,E,Root), where V is
the set of nodes labeled with locations, each corresponding to a
unique prefix in D; E is the set of edges, representing transitions
between nodes; Root ∈ V is the virtual root of PT . The unique
prefix represented by a node v ∈ V , denoted by prefix(v,PT ),
is a sequence of locations starting from Root to v.

Each node v ∈ V keeps a doublet in the form of 〈tr(v), c(v)〉,
where tr(v) is the set of sequences in D having prefix(v,PT ),
that is, {S ∈ D : prefix(v,PT ) � S}, and c(v) is a noisy ver-
sion of |tr(v)| (e.g., |tr(v)| plus Laplace noise). tr(Root) contains

Root

L1 : 5

L2 : 5

L4 : 2L3 : 2

L1 : 1

L3 : 3

L1 : 1 L2 : 2

L1 : 1

Figure 1: The prefix tree of the sample data

all sequences in D. We call the set of all nodes of PT at a given
depth i a level of PT , denoted by level(i,PT ). Root is at depth
zero. When PT is clear in the context, it is omitted in the notation.
Figure 1 illustrates the prefix tree of the sample database in Table 1,
where each node v is labeled with its location and |tr(v)|.

3.2 Differential Privacy
Differential privacy, in general, requires that the removal or ad-

dition of a single database record does not significantly affect the
outcome of any analysis based on the database. Therefore, for a
record owner, any privacy breach will not be a result of partici-
pating in the database since anything that can be learned from the
database with his record can also be learned from the one with-
out his record. We formally define differential privacy in the non-

interactive setting [3] as follow.

DEFINITION 3.2 (DIFFERENTIAL PRIVACY). A privacy mech-
anism A gives ǫ-differential privacy if for any database D1 and
D2 differing on at most one record, and for any possible sanitized

database D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eǫ × Pr[A(D2) = D̃] (1)

where the probability is taken over the randomness of A.

Two principal techniques for achieving differential privacy are
Laplace mechanism [10] and exponential mechanism [22]. A fun-
damental concept of both techniques is the global sensitivity of a
function [10] mapping underlying databases to (vectors of) reals.

DEFINITION 3.3 (GLOBAL SENSITIVITY). For any function
f : D → R

d, the sensitivity of f is

∆f = max
D1,D2

||f(D1)− f(D2)||1 (2)

for all D1,D2 differing in at most one record.

Laplace Mechanism. For the analysis whose outputs are real, a
standard mechanism to achieve differential privacy is to add Laplace
noise to the true output of a function. Dwork et al. [10] propose the
Laplace mechanism which takes as inputs a database D, a function
f , and the privacy parameter ǫ. The noise is generated according
to a Laplace distribution with the probability density function (pdf)
p(x|λ) = 1

2λ
e−|x|/λ, where λ is determined by both ∆f and the

desired privacy parameter ǫ.

THEOREM 3.1. For any function f : D → R
d, the mechanism

A
A(D) = f(D) + Laplace(∆f/ǫ) (3)

gives ǫ-differential privacy.
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Exponential Mechanism. For the analysis whose outputs are not
real or make no sense after adding noise, McSherry and Talwar [22]
propose the exponential mechanism that selects an output from the
output domain, r ∈ R, by taking into consideration its score of
a given utility function q in a differentially private manner. The
exponential mechanism assigns exponentially greater probabilities
of being selected to outputs of higher scores so that the final output
would be close to the optimum with respect to q. The chosen utility
function q should be insensitive to changes of any particular record,
that is, has a low sensitivity. Let the sensitivity of q be ∆q =
max∀r,D1,D2 |q(D1, r)− q(D2, r)|.

THEOREM 3.2. Given a utility function q : (D ×R) → R for

a database D, the mechanism A,

A(D, q) =
{
return r with probability ∝ exp(

ǫq(D, r)
2∆q

)

}

(4)

gives ǫ-differential privacy.

3.3 Utility Requirements
In the STM case, sanitized data is mainly used to perform two

data mining tasks, namely count query and frequent sequential pat-

tern mining [2]. Count queries, as a general data analysis task, are
the building block of many data mining tasks.

DEFINITION 3.4 (COUNT QUERY). For a given set of loca-
tions L drawn from the universeL, a count query Q over a database
D is defined to be Q(D) = |{S ∈ D : L ⊆ ls(S)}|, where ls(S)
returns the set of locations in S.

Note that sequentiality among locations is not considered in count
queries, because the major users of count queries are, for example,
the personnel of the marketing department of the STM, who are
merely interested in users’ presence in certain stations for market-
ing analysis, known as passenger counting, but not the sequential-
ity of visiting. Instead, the preservation of sequentiality in sanitized
data is examined by frequent sequential pattern mining. We mea-

sure the utility of a count query Q over the sanitized database D̃ by
its relative error [31], [30], [7] with respect to the true result over
the original database D, which is computed as:

error(Q(D̃)) = |Q(D̃)−Q(D)|
max{Q(D), s} ,

where s is a sanity bound used to mitigate the influences of queries
with extremely small selectivities [31], [30], [7].

For frequent sequential pattern mining, we measure the utility of
sanitized data in terms of true positive (TP), false positive (FP) and
false drop (FD) [12]. Given a positive number k, we denote the
set of top k most frequent sequential patterns with size greater than
1 2 on the original database D by Fk(D) and the set of frequent

sequential patterns on the sanitized database D̃ by Fk(D̃). True
positive is the number of frequent sequential patterns in Fk(D)
that are correctly identified in Fk(D̃), that is, |Fk(D) ∩ Fk(D̃)|.
False positive is the number of infrequent sequential patterns in D
that are mistakenly included in Fk(D̃), that is, |Fk(D̃)−Fk(D)∩
Fk(D̃)|. False drop is the number of frequent sequential patterns

in Fk(D) that are wrongly omitted in Fk(D̃), that is, |Fk(D) ∪
Fk(D̃) − Fk(D̃)|. Since in our setting |Fk(D)| = |Fk(D̃)| = k,
false positives always equal false drops.

2Nearly every single location forms a size-1 frequent sequential
pattern.

Algorithm 1 Sequential Data Sanitization Algorithm

Input: Raw sequential dataset D
Input: Privacy budget ǫ
Input: Height of the prefix tree h
Input: Location taxonomy tree T
Output: Sanitized dataset D̃
1: Noisy prefix tree PT ← BuildNoisyPrefixTree(D, ǫ, h, T );

2: Sanitized dataset D̃ ← GeneratePrivateRelease(PT );

3: return D̃;

4. SANITIZATION ALGORITHM
We first provide an overview of our two-step sanitization algo-

rithm in Algorithm 1. Given a raw sequential dataset D, a pri-
vacy budget ǫ, a user specified height of the prefix tree h and a

location taxonomy tree T , it returns a sanitized dataset D̃ satisfy-
ing ǫ-differential privacy. BuildNoisyPrefixTree constructs a noisy

hybrid-granularity prefix tree PT ofD using a set of count queries
based on the given taxonomy tree T , which defines multiple levels
of granularities over the location universe. It can be either public
knowledge or generated from the location universe on-the-fly by
specifying a fan-out value. In the STM case, we use a two-level tax-
onomy tree where each station can be generalized to the metro/bus
line on which it locates. For the simplicity of illustration, we give
our algorithm based on a two-level taxonomy tree. The extension
to a multiple-level taxonomy tree is straightforward. GeneratePri-

vateRelease employs utility boosting techniques on PT based on
two sets of consistency constraints, and then generates a differen-
tially private release.

4.1 Noisy Prefix Tree Construction
Our strategy for BuildNoisyPrefixTree is to recursively group se-

quences inD into disjoint sub-datasets based on their prefixes. Pro-
cedure 1 presents the details of BuildNoisyPrefixTree. We first cre-
ate a prefix tree PT with a virtual root Root (Lines 2-3). To build
PT , we employ a uniform privacy budget allocation scheme, that
is, divide the total privacy budget ǫ into equal portions ǭ = ǫ

h
, each

is used for constructing a level of PT (Line 4). In Lines 6-20, we
iteratively construct each level of PT in a noisy way.

To satisfy differential privacy, we need to guarantee that every
sequence that can be derived from the location universe (either in
or not inD) has a non-zero probability to appear in the noisy prefix
tree. Therefore, at each level, for each node, we need to consider
every possible location as its potential child. Our goal is to identify
the children that are associated with non-zero number of sequences
(referred to as non-empty node) so that we can continue to expand
them. Here decisions have to be made based on noisy counts.

In order to achieve good utility, it is critical to prune out nodes
associated with zero number of sequences (empty node) reliably as
early as possible. For this reason, instead of using a simple prefix
tree, we divide a level of PT into two sub-levels with different lo-
cation granularities. The first sub-level consists of nodes associated
with generalized location information (generalized node), and then,
depending on noisy counts of these nodes, we decide whether to
further expand them to create the second sub-level in which nodes
are associated with non-generalized locations (e.g., ask the noisy
count of passengers in a metro line and then decide whether to ask
the count of each station on this line). ǭ is then allocated to the two
sub-levels as a function of the fan-out f of the location taxonomy
tree T : the first sub-level receives ǭ1 = 2ǭ

f
and the second receives

ǭ2 = (f−2)ǭ
f

. One important observation is that all nodes on the
same sub-level are associated with disjoint sequence subsets, and
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Procedure 1 BuildNoisyPrefixTree Procedure

Input: Raw sequential dataset D
Input: Privacy budget ǫ
Input: Height of the prefix tree h
Input: Location taxonomy tree T
Output: Noisy prefix tree PT

1: i = 0;
2: Create a prefix tree PT with a virtual root Root;
3: Add all sequences in D to tr(Root);
4: ǭ = ǫ

h
;

5: Calculate ǭ1 and ǭ2 s.t. ǭ1 + ǭ2 = ǭ;
6: while i < h do

7: for each non-generalized node v ∈ level(i) do

8: Ug ← the set of generalized nodes from T ;
9: for each node u ∈ Ug do

10: Add sequences S with prefix(u) � S to tr(u);
11: c(u) = NoisyCount(|tr(u)|, ǭ1);
12: if c(u) ≥ θg then

13: Add u to PT ;
14: Ung ← u’s non-generalized children in T ;
15: for each node w ∈ Ung do

16: Add sequences S with
prefix(w) � S to tr(w);

17: c(w) = NoisyCount(|tr(w)|, ǭ2);
18: if c(w) ≥ θng then

19: Add w to PT ;
20: i++;
21: return PT ;

therefore the privacy budget allocated to a sub-level can be used
in full for each node in it. We provide formal analysis on util-
ity improvement of a hybrid-granularity prefix tree after presenting
Theorem 4.1.

For a dataset with a very large location universe L, processing
all locations explicitly may be slow. We provide an efficient imple-
mentation by separately handling potential non-empty and empty
nodes. For a non-empty node u, we add Laplace noise to |tr(u)|
and use the noisy answer c(u) to decide if it is non-empty. If c(u)
is greater than or equal to the pre-defined threshold θ, we deem that
u is non-empty and insert u to PT . In the STM case, the thresh-

old of a non-generalized node θng = 2
√
2

ǭ2
(two times of the stan-

dard deviation of noise) while the threshold of a generalized node

θg = 4
√
2

ǭ1
. Intuitively, this setting more reliably eliminates empty

nodes while having very limited effect on non-empty nodes. Since
non-empty nodes are typically of a small number, this process can
be done efficiently.

For empty nodes, we need to conduct a series of independent

boolean tests, each calculates NoisyCount(0, ǭ′) to check if it
passes θ, where ǭ′ is the privacy budget assigned to a node (either ǭ1
or ǭ2). The number of empty nodes that pass θ, k, follows the bino-

mial distribution B(m, pθ), where m is the total number of empty
nodes we need to check and pθ is the probability for a single exper-
iment to succeed. We design a statistical process for Laplace mech-
anism to directly extract k empty nodes without explicitly process-
ing every empty node. This is inspired by [8], in which a statistical
process is designed for geometric mechanism [15].

THEOREM 4.1. Independently conducting m pass/not pass ex-

periments based on Laplace mechanism with privacy budget ǭ′ and

threshold θ is equivalent to the following steps: 1) generate a value

k from the binomial distribution B(m, pθ), where pθ = exp(−ǭ′θ)
2

;

2) select k uniformly random empty nodes without replacement

with noisy counts sampled from the distribution

P (x) =

{
0 ∀x < θ

1− exp(ǭ′θ − ǭ′x) ∀x ≥ θ

Proof. The probability of a single experiment passing the threshold
θ is

Pr[PASS] =

∫ ∞

θ

ǭ′

2
exp(−ǭ′x)dx =

exp(−ǭ′θ)
2

.

Since the experiments are independent, the number of successful

experiments, k, follows the binomial distribution B(m, exp(−ǭ′θ)
2

).
Once k is determined, we can uniformly at random select k empty
nodes. The probability density function of the noisy counts x for
the k empty nodes, conditional on x ≥ θ, is:

p(x|x ≥ θ) =

{
0 ∀x < θ
ǭ′

2
exp(−ǭ′x)

pθ
= ǭ′exp(ǭ′θ − ǭ′x) ∀x ≥ θ

The corresponding cumulative distribution function is:

P (x) =

{
0 ∀x < θ∫ x

θ
ǭ′exp(ǭ′θ − ǭ′x)dx = 1− exp(ǭ′θ − ǭ′x) ∀x ≥ θ

Now we give a theoretical analysis on the utility improvement
due to a hybrid-granularity prefix tree in terms of reduction of num-
ber of empty non-generalized nodes that are mistakenly generated.
This number directly reflects the level of noise in sanitized data.

THEOREM 4.2. For an empty node v at level i, a noisy hybrid-

granularity prefix tree of height h reduces the number of empty

non-generalized nodes mistakenly generated due to identifying v
as non-empty by a factor of O(2h−iexp(4

√
2(h− i))).

Proof. From Theorem 4.1, we learn that pθng = exp(−2
√
2)

2
and

pθg = exp(−4
√
2)

2
. Consider an empty node v at level i. In a simple

noisy prefix tree, if v is mistakenly considered as non-empty, the
expected value of number of descendants of v, which are all empty
nodes, is E1 = (|L|pθng )

h−i. In a hybrid-granularity prefix tree,
the expected value of number of descendants of v is

E2 = (fpθng )(
|L|
f

pθg · fpθng )
h−i = (fpθng )(|L|pθgpθng )

h−i.

where f is the fan-out of the location taxonomy tree. This implies
a reduction of

E1

E2
=

1

fpθngp
h−i
θg

= O(2h−iexp(4
√
2(h− i))).

EXAMPLE 4.1. Consider the sequential database D in Table 1,
the height h = 2, and the calculated threshold θ = 3. Suppose
that L1 and L2 can be generalized to L{1,2} and L3 and L4 can be
generalized to L{3,4}. The construction of a possible noisy hybrid-
granularity prefix tree PT is illustrated in Figure 2. A path of PT
may be of a length shorter than h if it has been considered “empty"
before h is reached.

4.2 Private Release Generation
We can generate the sanitized database by traversingPT once in

postorder (ignore generalized nodes), calculating the number n of
sequences terminated at each non-generalized node v and append-
ing n copies of prefix(v,PT ) to the output. However, due to the
noise added to ensure differential privacy, we may not be able to
obtain a meaningful and consistent release. If we leave such incon-
sistencies unsolved, the resulting release may not be meaningful
and therefore provides poor utility.
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Location tr(node)
Root t1, t2, t3, t4, t5, t6, t7, t8

Noisy Size

L{1, 2} t1, t2, t4, t5, t7 8

L1 t1, t2, t4, t5, t7 4 Ø 1

L{3, 4} t3, t6, t8 3

L2 L4 Ø 0 t3, t6, t8 4L3

L{1, 2} t1, t2, t4, t5, t7 6 L{3, 4} Ø 2

L1 Ø 1 t1, t2, t4, t5, t7 5L2

L{1, 2} t3, t6, t8 4 L{3, 4} Ø 2

L1 t8 2 t3, t6 2L2

Figure 2: The noisy hybrid-granularity prefix tree of the sample data

DEFINITION 4.1 (CONSISTENCY CONSTRAINT). In a prefix
tree, there exist two sets of consistency constraints:

1. For any root-to-leaf path p, ∀vi ∈ p, |tr(vi)| ≤ |tr(vi+1)|,
where vi is a child of vi+1;

2. For each node v, |tr(v)| ≥
∑

u∈children(v) |tr(u)|.

Our goal is to enforce such consistency constraints on the noisy
prefix tree (with all generalized nodes removed 3) in order to pro-
duce a consistent and more accurate private release. We adapt the
constrained inference technique proposed in [16] to adjust the noisy
counts of nodes in the noisy prefix tree so that the constraints de-
fined in Definition 4.1 are respected. Note that the technique pro-
posed in [16] cannot be directly applied to our case because: 1)
the noisy prefix tree has an irregular structure (rather than a com-
plete tree with a fixed degree); 2) the noisy prefix tree has dif-
ferent constraints |tr(v)| ≥

∑
u∈children(v) |tr(u)| (rather than

|tr(v)| = ∑
u∈children(v) |tr(u)|). Consequently, we propose a

two-phase procedure to obtain a consistent estimate with respect to
Definition 4.1 for each node (except the virtual root) in the noisy
prefix tree PT .

We first generate an intermediate estimate for the noisy count of
each node v (except the virtual root) inPT . Consider a root-to-leaf
path p ofPT . Let us organize the noisy counts of nodes vi ∈ p into
a sequence S = 〈c(v1), c(v2), · · · , c(v|p|)〉, where vi is a child
of vi+1. Let mean[i, j] denote the mean of a subsequence of S,

〈c(vi), c(vi+1), ..., c(vj)〉, that is, mean[i, j] =
∑j

m=i
c(vm)

j−i+1
. We

compute the intermediate estimate S̃ by Theorem 4.3 [16].

THEOREM 4.3. Let Im = minj∈[m,|p|]maxi∈[1,j]mean[i, j]
and Um = maxi∈[1,m]minj∈[i,|p|]mean[i, j]. The minimum L2

solution S̃ = 〈I1, I2, ..., I|p|〉 = 〈U1, U2, ..., U|p|〉.

The result of Theorem 4.3 satisfies the first type of constraints in
Definition 4.1. However, a node v in PT appears in |leaves(v)|
root-to-leaf paths, where leaves(v) denotes the leaves of the sub-
tree of PT rooted at v, and therefore, has |leaves(v)| intermediate
estimates, each being an independent observation of the true count
|tr(v)|. We compute the consolidated intermediate estimate of v
as the mean of the estimates, normally the best estimate for |tr(v)|.
We denote the consolidated intermediate estimate of v by c̃(v).

After obtaining c̃(v) for each node v, we compute its consistent
estimate c̄(v) in a top-down fashion as follows:

c̄(v) =

{
c̃(v) ifv ∈ level(1,PT )
c̃(v) +min(0,

c̄(w)−∑
u∈children(w) c̃(u)

|children(w)| ) otherwise

where w is the parent of v. It follows the intuition that the ob-
servation

∑
u∈children(w) c̃(u) > c̄(w) is strong evidence that

excessive noise is added to the children. Since the variance of

3The utility improvements of constrained inferences on a prefix
tree with and without generalized nodes are almost identical.

noise in c̄(w) is approximately |children(w)| times smaller than∑
u∈children(w) c̃(u), it is reasonable to decrease the children’s

counts according to c̄(w). However, we never increase the chil-
dren’s counts based on c̄(w) because a large c̄(w) simply indicates
that many sequences actually terminate at w. It is easy to see that
the consistency constraints in Definition 4.1 are respected among
consistent estimates, and therefore the proof is omitted here.

4.3 Analysis
Privacy Analysis. Kifer and Machanavajjhala [19] point out that
differential privacy must be applied with caution. The privacy pro-
tection provided by differential privacy relates to the data generat-
ing mechanism and deterministic aggregate-level background knowl-
edge. In the STM case, transit data is independent of each other and
no deterministic statistics of the raw database will ever be released.
Hence differential privacy is appropriate for our problem. We now
show that Algorithm 1 satisfies ǫ-differential privacy.

THEOREM 4.4. Given the total privacy budget ǫ, Algorithm 1

ensures ǫ-differential privacy.

Proof. Algorithm 1 consists of two steps, namely BuildNoisyPrefix-

Tree and GeneratePrivateRelease. In the procedure BuildNoisyPre-

fixTree, our approach appeals to the well-understood query model
to construct the noisy prefix tree PT . Consider a level of PT ,
which is composed of two sub-levels. Since all nodes on the same
sub-level contain disjoint sets of sequences. According to the par-

allel composition (Theorem 4.5 [21]), the entire privacy budget
needed for a sub-level is bounded by the worst case, that is, 2ǭ

f

for the first sub-level and
(f−2)ǭ

f
for the second sub-level.

THEOREM 4.5. Let Ai each provide ǫi-differential privacy. A

sequence of Ai(Di) over a set of disjoint datasets Di provides

max(ǫi)-differential privacy.

The use of privacy budget on different sub-levels follows sequential

composition (Theorem 4.6 [21]).

THEOREM 4.6. Let Ai each provide ǫi-differential privacy. A

sequence ofAi(D) over the databaseD provides (
∑

i ǫi)-differential

privacy.

Since there are at most h levels, the total privacy budget needed to

build the noisy prefix tree ≤ h× ( 2ǭ
f
+ (f−2)ǭ

f
) = ǫ.

For the procedure GeneratePrivateRelease, we make use of the
inherent constraints of a prefix tree to boost utility. The procedure
only accesses a differentially private noisy prefix tree, not the un-
derlying database. As proven by Hay et al. [16], a post-processing
of differentially private results remains differentially private. There-
fore, Algorithm 1 as a whole maintains ǫ-differential privacy.
Complexity Analysis. Algorithm 1 is of runtime complexity O(|D|·
|L|), where |D| is the number of sequences in the input databaseD
and |L| is the size of the location universe. For BuildNoisyPrefix-

Tree, the major computational cost is node generation and sequence
distribution. For each level of the noisy prefix tree, the number of

218



Table 2: Experimental dataset statistics.

Datasets |D| |L| max|S| avg|S|
Metro 847,668 68 90 4.21

Bus 778,724 944 121 5.67

nodes to generate approximates k(1 + 1
f
)|D|, where k ≪ |L| is

a number depending on |L|. For each level, we need to distribute
at most 2|D| sequences to the newly generated nodes. Hence, the
complexity of constructing a single level is O(|D| · |L|). There-
fore, the total runtime complexity of BuildNoisyPrefixTree for con-
structing a noisy prefix tree of height h is O(h|D| · |L|). In Gener-

atePrivateRelease, the complexity of calculating the intermediate
estimates for a single root-to-leaf path is O(h). Since there can be
at most |D| distinct root-to-leaf paths, the complexity of comput-
ing all intermediate estimates is O(h|D|). To compute consistent
estimates, we need to visit every node exactly twice, which is of
complexity O(|D| · |L|). Similarly, the computational cost of gen-
erating the private release by traversing the noisy prefix tree once in
postorder is O(|D|·|L|). Since h is a very small constant compared
to |D| and |L|, the total complexity of Algorithm 1 is O(|D| · |L|).

4.4 Extensions
Our solution can be seamlessly applied to trajectory data. A tra-

jectory is composed of a sequence of location-timestamp pairs in
the form of loc1t1 → loc2t2 → · · · → locntn, where t1 ≤ t2 ≤
· · · ≤ tn. The time factor is often discretized into intervals at dif-
ferent levels of granularity, e.g., hour, which is typically determined
by the data publisher. All timestamps of a trajectory database form
a timestamp universe.

In this case, we can label each node in the prefix tree by both a
location and a timestamp. Therefore, two trajectories with the same
sequence of locations but different timestamps are considered dif-
ferent. Consequently, when constructing the noisy prefix tree, in
order to expand a node lociti, we have to consider the combina-
tions of all locations and the timestamps in the time universe that
are greater than ti (because the timestamps in a trajectory are non-
decreasing), resulting in a larger candidate set. Due to the efficient
implementation we propose in Section 4.1, the computational cost
will remain moderate.

5. EXPERIMENTAL EVALUATION
In this section, we examine the utility of sanitized data in terms

of count queries and frequent sequential pattern mining, and eval-
uate the scalability of our approach for processing large-scale real-
life data. In particular, we compare the utility improvements of
the method using a hybrid-granularity prefix tree (referred to as
Hybrid) over the method using a simple prefix tree (referred to as
Simple). Our implementation was done in C++, and all experiments
were performed on an Intel Core 2 Duo 2.26GHz PC with 2GB
RAM. Extensive experiments were conducted on two real-life STM
transit datasets, Metro and Bus, which record the transit history of
passengers in the STM metro and bus networks, respectively. The
characteristics of the datasets are summarized in Table 2, where
max|S| is the maximum sequence length and avg|S| the average
length.

5.1 Utility
Count Query. In our first set of experiments, we examine rela-
tive errors of count queries with respect to two different parame-
ters, namely the privacy budget ǫ and the noisy prefix tree height
h. We follow the evaluation scheme from previous works [31], [7].
For each privacy budget, we generate 40,000 random count queries
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Figure 3: Average relative error vs. privacy budget.

with varying numbers of locations. We call the number of locations
in a query the length of the query. We divide the query set into 4
subsets such that the query length of the i-th subset is uniformly
distributed in [1, ih

4
] and each location is randomly drawn from the

location universeL. The sanity bound s is set to 0.1% of the dataset
size, the same as [31], [7].

Figure 3 examines average relative errors under varying privacy
budgets from 0.5 to 1.5 with h = 12. The X-axes represent the
different query subsets by their maximum length max|Q|. As ex-
pected, the average relative errors decrease when ǫ increases be-
cause less noise is added and the construction process is more pre-
cise. In general, our approach maintains high utility for count
queries. Even in the worst case (ǫ = 0.5 and max|Q| = 3),
the average relative error of Hybrid is still less than 8.2% on both
datasets. Such level of relative errors is acceptable for data analysis
at the STM. We can also observe that a hybrid-granularity structure
can substantially reduce average relative errors (with 33%-48% im-
provement), especially on Bus, which is more sparse.

Figure 4 studies how average relative errors vary under different
h values with maximum query length fixed to 6. We can observe
that with the increase of h, the relative errors do not decrease mono-
tonically. Initially, the relative errors decrease when h increases
because the increment of h allows to retain more information from
the underlying database. However, after a certain threshold, the rel-
ative errors become larger with the increase of h, because when h
gets larger, the noise added to each level grows quickly. It is in-
teresting to see that the hybrid-granularity structure indeed better
eliminates noise, and makes relative errors less sensitive to varying
h values. This allows a wider range of h values (e.g., 10-16) to be
used in order to obtain desirable relative errors.
Frequent Sequential Pattern Mining. In the second set of ex-
periments, we demonstrate the utility of sanitized data by frequent
sequential pattern mining. Specifically, we employ PrefixSpan to
mine frequent sequential patterns 4.

4An implementation of the PrefixSpan algorithm proposed in [25],
available at http://code.google.com/p/prefixspan/.
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Figure 4: Average relative error vs. prefix tree height.

Table 3: Utility for frequent sequential pattern mining vs. k
k TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid

100 99/97 1/3 100/100 0/0

150 143/139 7/11 149/144 1/6

200 178/168 22/32 185/177 15/23

250 209/195 41/55 220/209 30/41

300 241/212 59/88 257/233 43/67

Table 3 shows how the utility changes with different top k values
while fixing ǫ = 1.0 and h = 12. When k = 100, the sanitized
data generated by Hybrid is able to give the exact top 100 most fre-
quent patterns that are of size greater than 1. With the increase of
k values, the accuracy (the ratio of true positive to k) decreases.
However, even when k = 300, the accuracy of Hybrid is still
as high as 257/300 = 85.7% on Metro and 233/300 = 77.7%
on Bus. Again we can observe that Hybrid always outperforms
Simple on both datasets under all k values. When k = 300,
the improvement due to the hybrid-granularity structure is 6.6%
on Metro and 9.9% on Bus.

Table 4 presents the utility for frequent sequential pattern mining
under different ǫ values while fixing h = 12 and k = 300. Gen-
erally, larger privacy budgets lead to more true positives and fewer
false positives (false drops). This conforms to the theoretical anal-
ysis that a larger privacy budget results in less noise and therefore
a more accurate result. Since the most frequent sequential patterns
are of small length, they have large supports from the underlying
database. As a result, the utility is relatively insensitive to varying
privacy budgets, and the accuracy is high even when the privacy
budget is small.

Table 5 studies how the utility varies under different h values
with ǫ = 1.0 and k = 300. It is interesting to see that in general
frequent sequential pattern mining is also insensitive to varying h
values. This can be similarly explained by the large supports of fre-
quent sequential patterns, which make them more resistant to noise.
In addition, we can observe that good performance for frequent se-

Table 4: Utility for frequent sequential pattern mining vs. ǫ
ǫ TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid

0.5 227/194 73/106 244/215 56/85

0.75 239/206 61/94 253/224 47/76

1.0 241/212 59/88 257/233 43/67

1.25 243/216 57/84 259/238 41/62

1.5 248/224 52/76 261/242 39/58

Table 5: Utility for frequent sequential pattern mining vs. h
h TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid

6 234/212 66/88 241/221 59/79

8 240/217 60/83 254/232 46/68

10 241/215 58/85 255/236 45/64

12 241/212 59/88 257/233 43/67

14 241/212 59/88 258/233 42/67

16 240/210 60/90 258/231 42/69

18 240/209 60/91 255/230 45/70

20 238/206 62/94 254/228 46/72

quential pattern mining can be obtained by a h value between 10
and 16, the same range as that for count queries.

5.2 Scalability
In the last set of experiments, we examine the scalability of our

approach. Recall that the runtime complexity of our approach is
dominated by the database size |D| and the location universe size
|L|. Therefore, we study the runtime under different database sizes
and different location universe sizes. Figure 5.a presents the run-
time under different database sizes with ǫ = 1.0 and h = 20 for
both Simple and Hybrid. The test sets are generated by randomly
extracting records from Metro and Bus. We can observe that the
runtime is linear to the database size. Moreover, it can be seen
that the computational cost of a hybrid-granularity prefix tree struc-
ture is negligible. This further confirms the benefit of employing a
hybrid-granularity prefix tree.

Figure 5.b shows how runtime varies under different location
universe sizes. Since Metro is of a small universe size, we only
study the effect of universe sizes on Bus. For each universe size,
we remove all locations falling out of the universe from Bus. This
results in a smaller database size. Consequently, we fix the database
size for all test sets to 600,000. Again, it can be observed that the
runtime scales linearly with the location universe size and that the
computational cost of Hybrid is comparable to that of Simple un-
der different location universe sizes. As a summary, our approach
is scalable to large sequential datasets. It takes less than 22 seconds
to sanitize both datasets in all previous experiments.

6. CONCLUSION AND LESSON LEARNED
In this paper, we have studied the problem of publishing transit

data at the STM in the framework of differential privacy. For the
first time, we present a practical solution for sanitizing large-scale
sequential data, which can also be seamlessly applied to trajectory
data. Our solution has been tested on real-life STM transit data
for two fundamental data analysis tasks performed at the STM and
exhibits satisfactory effectiveness and efficiency. We believe that
our solution could benefit many other sectors that are facing the
dilemma between the demands of sequential data publishing and
privacy protection.
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Figure 5: Runtime vs. different parameters.

Finally, we would like to share our collaborative experience with
the public transport sector. Transit data is useful for many data
analysis tasks. So far, we have focused on two most fundamen-
tal ones. Though many data analysis tasks can be done based on
accurate count queries, it is still worth exploring the utility of dif-
ferentially private release for more complex data analysis. Besides
the technical aspect, it is equally important to educate transport ser-
vice practitioners about the latest privacy-preserving technology.
This is especially important for a solution based on differential
privacy because any accidental release of deterministic aggregate-
level information may expose previously sanitized data to privacy
threats [19].
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