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ABSTRACT
In this paper, we study the problem of privacy preserving record
linkage which aims to perform record linkage without revealing
anything about the non-linked records. We propose a new secure
embedding strategy based on frequent variable length grams which
allows record linkage on the embedded space. The frequent grams
used for constructing the embedding base are mined from the orig-
inal database under the framework of differential privacy. Com-
pared with the state-of-the-art secure matching schema [15], our
approach provides formal, provable privacy guarantees and achieves
better scalability while providing comparable utility.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Secu-
rity, integrity, and protection

General Terms
Algorithms, Security, Performance

Keywords
Privacy, Security, Record Linkage, Differential Privacy

1. INTRODUCTION
Record linkage [18, 7] plays a central role in many data integra-

tion and data mining tasks that involve data from multiple sources.
It is the process of identifying records that refer to the same real
world entity across different sources. It is extensively used in many
applications, for example, in linking medical data of the same pa-
tient across different hospitals in the country or in collecting the
credit history of users from several sources. However, many of
these data may contain sensitive personal information that could
disclose individual privacy. For this reason, the problem of privacy
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preserving record linkage has drawn considerable attention over re-
cent years. The objective is to allow two parties to identify records
that are close to each other according to some distance function,
such that no additional information about the data records other
than the result is disclosed to any party.

In the existing literature, several techniques have been proposed,
and they can be mainly categorized into a few categories: Secure
Multiparty Computation (SMC) [13, 20], secure transformation [1,
4, 15, 16], and hybrid methods [8, 10, 11, 19]. SMC techniques use
cryptographic mechanisms and allow two parties to perform record
linkage as a secure function such that no party knows anything ex-
cept its own input and the results. However, they are computa-
tionally prohibitive in practice. Secure transformation methods use
data transformation techniques such as one-way hashing or embed-
ding to map the original data into new data values that cannot be
reversed and then perform record linkage on the transformed data
typically by a third party. While these methods are more efficient,
the challenge is to have a secure transformation while preserving
the accuracy of linkage on the transformed space as high levels of
protection typically implies a great loss of accuracy in the final re-
sults. Finally, hybrid techniques attempt to combine anonymization
or transformation techniques with SMC protocols. They typically
use a privacy preserving blocking step to restrict the comparisons
to smaller groups of records which are then compared by SMC
protocols. While they provide a trade-off between efficiency and
accuracy, the SMC step is still required and are typically not imple-
mented or evaluated due to the high computation cost.

In this paper, we present a new secure data transformation method
based on frequent grams embedding and we provide a comparison
with the approach proposed by Scannepieco et. al. [15] for linking
string records. The latter uses SparseMap [9] to embed strings into
a vector space, where the common base among the parties is formed
by random strings, so that no information is disclosed. However,
as the protocol is designed, the shared base is optimized according
to the data at one party. Therefore, if a malicious party is involved,
some sensitive information could be disclosed. In contrast, our pro-
tocol uses frequent grams as a base for secure embedding which
gives a better representation of the records than a random base and
the frequent grams are mined from the original database with a for-
mal guarantee of differential privacy [5]. As a proof-of-concept,
we focus on string records in this paper, and perform approximate
matching of the records based on a similarity criterion.

Our contributions:
• We propose a novel embedding strategy based on frequent vari-

able length grams to map string records into vectors in the real
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space. We show that the use of frequent variable length grams
substantially increases the utility of the results with respect to
random bases.
• We adapt and extend the privacy preserving mining algorithm in

[3] to mine frequent variable length grams which can be used
as the embedding base. The proposed privacy preserving record
linkage protocol hence satisfies the differential privacy frame-
work which provides formal guarantees of individual privacy.
• Finally, we present a set of empirical experiments using real

world datasets showing the benefit of our approach.
The rest of the paper is organized as follows. In Section 2, we

introduce some basic definitions and the privacy model adopted in
our solution. Section 3 provides a description of the major compo-
nents in our proposed solution. The experiment results are reported
in Section 4. Finally, we conclude the paper in Section 5

2. PRELIMINARIES
In this section, we introduce some notations and definitions re-

lated to our approach.
Let Σ be a finite alphabet, we denote by x = x0x1 · · ·xn−1 a

string of length n where each symbol xi is defined in Σ. Moreover,
we denote by |x| the length of the string x. As a similarity measure
between strings we consider the Edit distance [12] ( dEdit), which
measures the number of edit operations needed to transform a string
into the other one. The problem of record linkage that we consider
in this paper is defined as follows.

PROBLEM 1 (RECORD LINKAGE). Given two sets DA and
DB of string records, find M ⊂ DA × DB , such that M =
{(x, y) | dEdit(x, y) ≤ ed} (matching records) and no informa-
tion about the individual records (x, y) 6∈ M (non-matching records)
is disclosed.

2.1 Differential Privacy
Differential privacy [5] is a recent notion of privacy that aims

to protect the disclosure of information when statistical data are
released. The differential privacy mechanism guarantees that the
computational output is insensitive to change in any particular in-
dividual record of the input data.

DEFINITION 1 (DIFFERENTIAL PRIVACY [6]). A non inter-
active privacy mechanism M has ε-differential privacy if for any
two input sets (databases) DA and DB with symmetric difference
one (neighbor databases), and for any set of outcomes S ⊆ Range(M),

Pr[M(DA) ∈ S] ≤ exp(ε)× Pr[M(DB) ∈ S] (1)

where ε is the privacy parameter (also referred to as privacy bud-
get). Intuitively, lower value of ε implies stronger privacy guaran-
tees, and vice versa.

Two composition properties are extensively used when multiple
differential privacy computations are combined. These two proper-
ties are known as sequential and parallel compositions [14]. The
former states that any sequence of computations that each provides
differential privacy in isolation also provides differential privacy in
sequence. The latter instead holds when the computations involved
are performed on disjoint data. In this case, the privacy cost does
not accumulate but depends only on the worst guarantee.

A common mechanism to achieve differential privacy is the Laplace
mechanism [6] which we will use in this paper. Let f be a statistical
function, and ε be the privacy parameter, the mechanism adds cali-
brated noise to the result f(D) in order to guarantee ε-differential
privacy. The noise is generated from a Laplace distribution with
probability density function pdf(x|λ) = 1

2λ
e−|x|/λ, where the pa-

rameter λ is determined by ε and GS(f), the global sensitivity [6]
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Figure 1: Overview of the Secure Protocol.

of the function to the inclusion and exclusion of any record in the
dataset. We restrict our attention to counting queries, which can be
proven to have GS(count) = 1.

3. OUR SOLUTION

3.1 Overview
We propose an embedding technique based on grams, which al-

lows approximate matching of the records (i.e. within a fixed num-
ber of edit operations). The proposed technique maps the original
data into a vector space by projecting each string in the databases
on a base formed by a set of frequent grams, where a gram of length
q is a substring x0x1 · · ·xq−1 of the original strings.

Each party starts to build a base for the embedding by mining
grams from its own database, and this phase is denoted as mining
phase. This process is performed with a guarantee of differential
privacy, so that the parties involved in the protocol can share their
bases and determine a common base for the embedding without
disclosing any sensitive information of individual records. When a
final base is determined, each party embeds its data using the com-
mon base, and the matching is performed in the embedded space.
We denote this step as embedding phase. Our overall protocol is
illustrated in Figure 1. Our strategy requires the presence of a third
trusted party denoted by C, whose task consists in matching the
records in the embedded space. A summary of the steps is listed as
follows.
1. Mining Phase: Parties A and B apply a differentially private

algorithm to mine their respective databases DA and DB , and
compute private bases BA and BB .

2. Base Generation: One of the two parties is in charge of merg-
ing the two bases and producing a shared base B of frequent
variable length grams.

3. Embedding Phase: Each party A and B, by using the shared
base, embeds its own data and generates a set of vectors VA and
VB respectively, representing the strings in the original datasets.
These sets are sent to the third party C.

4. Matching Phase: The third party C, for each vector s̄ ∈ VA
returns a set of neighbor vectors N from VB that are within
Euclidean distance of Th (global threshold). This set identifies
the matching setM.

Figure 2(a) illustrates the mining and base generation phase. The
party A and B mine their respective datasets and produce a shared
private base formed by the following grams {A,M,MA,E,O}. This
base is used to produce the set of embedded vectors in Figure 2(b).

3.2 Mining phase
Contrary to the SparseMap approach in [15], we construct a base

mined from the original data mainly for two reasons. First, we take
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Figure 2: Base Generation and Embedding of the Data.

advantage of the fact that the strings being matched in record link-
age scenarios typically have similar properties (e.g. same alphabet,
similar length, etc. ). Hence, by using a base mined from the orig-
inal dataset, we can capture this information. Second, a randomly
generated base can not represent every dataset well since it is de-
fined in a generic way and not data dependent.

We form a base by mining the frequent grams in the database.
Formally, given a positive integer k, a minimum length qmin and
a maximum length qmax, our goal is to mine the top-k frequent q-
grams where q ∈ [qmin, qmax], and to use this set as a base for the
embedding. Intuitively, we can obtain a base set that is a good rep-
resentative for all the strings in the databases since frequent grams
are more likely to be shared among the strings. In addition, by re-
stricting the attention to the top-k frequent grams, we can control
the dimensionality of the data in the new space. In order to pro-
tect the privacy of individual records, the grams are mined from
the original dataset to guarantee ε-differential privacy. In our ap-
proach, we consider an extension of the prefix tree mining algo-
rithm [3] originally introduced to mine frequent trajectory data. In
our case, the two databases may be correlated as they may contain
records belonging to the same entity, the total privacy parameter is
split among the two parties holding the dataset, so that the overall
privacy level is ε.

3.2.1 Prefix-tree Miner
The mining algorithm proposed in [3] mines the frequent trajec-

tory data by using a prefix tree. In the same way, we partition the
space of all the possible grams using a top-down approach, where
each partition is identified by a node in a prefix tree T . Each node
has the following information: a prefix ω, an accumulated privacy
budget, and the subset of all the strings in the original database
having ω as a prefix, called the partition represented by the node.

The construction of the prefix tree can be summarized as fol-
lows. Starting from the root of the tree, the database is partitioned
by extending the prefix of the current node using Algorithm 1. For
every symbol a in the alphabet Σ, a new node is attached to the
tree only if the string ωa is a frequent prefix, where ω is the pre-
fix represented by the parent of the current node. To determinate
if a prefix is frequent, a counting query is issued on the partition
of the dataset represented by the current node and the real count
is perturbed by Laplace noise to guarantee differential privacy. In
this process, only partitions with frequent prefixes (count > θ)
are further refined. The allocation of the budget at each level in
the tree is performed at line 6 in Algorithm 1. In our approach,
we propose several strategies to allocate the private budget: linear
allocation, exponential allocation, adaptive, and hybrid. Details

Algorithm 1 Private Prefix-Tree Partitioner
1: procedure PPT PART(node, T )

Input: node node; private prefix-tree T
Output: T private Prefix-Tree

2: while ((node.h ≤ hMAX ) && (node.budget < ε)) do
3: for (every symbol a in the alphabet Σ) do
4: ω ← (path from r to node) + a
5: P ← {x ∈ node.set s. t. ω is a prefix of x}
6: ε̃← ALLOCATE BUDGET(node)
7: count← |P |+ Lap(1/ε̃)
8: if (count > θ) then . Non empty node
9: Add a new node cur as child of node, such that:
10: cur.set← P , cur.pdfilon← ε̃
11: cur.label← ω, cur.h← node.h+ 1
12: cur.budget← cur.budget+ cur.pdfilon
13: PPT PART(cur,T ) . Recursive call
14: end if
15: end for
16: end while
17: return T
18: end procedure

about these strategies are presented later in this section. After we
partition the data, we traverse the prefix tree and apply the con-
sistency constraints for each root-to-leaf path as in [3]. Once the
consistency constraints are enforced, we identify a list of frequent
grams by traversing the tree. As a final result, we return the top-k
grams sorted by their noisy frequencies. An example of the prefix
tree is illustrated in Figure 3.

Budget Allocation Strategies: We investigate and propose more
allocation strategies than the linear allocation introduced in [3].
• Linear: Each node at each level in the tree is allocated the same

amount of budget.
• Exponential: At level i in the tree, a node is allocated a budget

double the amount of its parent.
• Adaptive: This strategy is an adaptation of the previous expo-

nential allocation strategy, where the entire remaining budget on
the path is spent on the next counting query if the current node
represents a non frequent prefix.
• Hybrid: This strategy is a combination of the previous strate-

gies, where the total budget is distributed in the tree according
to qmax. In particular, we reserve half of the total budget to the
nodes on the first qmax levels of the tree, where the budget is al-
located to each node in a linear fashion. For the remaining nodes,
the adaptive strategy is used.

Privacy Analysis: All the partitions produced by Algorithm 1 on
the same level of the tree are disjoint since they correspond to
strings with different prefixes. Therefore, by the parallel compo-
sition property [14], the overall privacy level is determined by the
maximum value of the budget used over all the root-to-leaf path
of the tree. For any path, the overall privacy level is given by the
sequential composition property [14] and can be computed as the
sum of the privacy budget used for each counting query for each
node on the path.

THEOREM 1 (PREFIXTREE ε- PRIVACY). The Prefix-tree Miner
guarantees ε-differential privacy.

PROOF. The proof follows directly from the differential privacy
result proposed in [3] since all the allocation strategies uses at
most ε budget on the root-to-leaf paths in the tree.

Complexity Analysis: Algorithm 1 has running time proportional
to the number of nodes in the prefix tree T . By using a similar
analysis as in [3], it can be shown that our mining approach requires
O(N |Σ|hMAX+1) operations, where N is the size of the dataset,
Σ is the alphabet, and hMAX is the maximum depth in the tree.
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Figure 3: Prefix Tree Example from DA in Figure 2(a). Each nodes has a noisy count, and the set of identifiers for the strings in the partition. Each
branch of the tree is labeled with the symbol used to extend the prefix.

3.3 Embedding phase
In this section, we describe the embedding phase to map strings

into vectors. Let B = {g1, g2, . . . , gk} be a base of k grams, each
string s in the database is mapped into a vector s̄ in Rk, where each
component s̄i represents the number of occurrences of the gram gi
in s, normalized by the length of gi. Let Occs(g) denote the set of
positions in s where the gram g occurs, then each coordinate is de-
fined as s̄i = |Occs(gi)|/|gi|, for i = 1, . . . , k. In this new space,
the distance between vectors is computed using the Euclidean dis-
tance: d′(x̄, ȳ) = ‖x̄ − ȳ‖2. An example of embedded records is
illustrated in Figure 2(b).

Threshold Computation: In the original space, we are interested
in matching strings within ed edit operations; however in the new
space, this task is casted into the problem of finding all the vectors
whose Euclidean distance is within a threshold value Th. This
threshold value plays a central role on the overall performance,
since it will determine the candidate records that may represent
matching strings. Therefore, it is crucial to compute a threshold
value as tight as possible to the real value. This problem is gen-
erally very hard, since proving formal guarantees requires analysis
on the distance distortion and properties of the embedding strategy
used. We define as a global threshold value, the Euclidean distance
that can be used in matching all the records in the new space. This
can be done by estimating how the original distance is distorted af-
ter the embedding map is applied. In this direction, we propose an
initial upper bound for our embedding.

PROPOSITION 1 (UPPER BOUND). Given x and y, two strings
in the original space with Edit distance dEdit(x, y) ≤ ed, then
d′(x̄, ȳ) ≤ ∆q · ed, where ∆q = qmax − qmin + 1

PROOF. The number of grams of length q that can contribute
to the distance is at most q · ed (since on a position i at most q
grams of length q are overlapping). Since the base B used in the
embedding is a subset of all variable length q-grams, it follows
that: d′(x̄, ȳ) = ‖x̄− ȳ‖2 ≤ ∆q · ed.

In addition to this approach, we also studied the concept of per-
sonalized threshold which dynamically computes a threshold value
for each individual record required to be matched. Due to space
restrictions, we focus on global threshold in this paper and refer
readers to [2].

4. EXPERIMENTAL RESULTS
In this section, we present a set of experimental results evaluating

the impact of the private parameter ε and the dimensionality k on
the overall utility of our protocol. We compare our approach with
the method in [15] to show the benefit of our approach in scalability
and stronger privacy model while achieving comparable data utility.

We use two real datasets, NAMES 1 and CITIES. The first con-
tains a list of the most frequent surnames from the Census 2000.
1NAMES is publicly available at United States Census
(http://www.census.gov/genealogy/www/data/2000surnames/)

Table 1: Experimental Datasets Statistics
Dataset N lmax lmin lavg

NAMES 150000 15 4 7
CITIES 5000 23 3 8

Table 2: Experiment Parameters
Symbol Description Default values
ε Private parameter 0.1
k Size of the base 75

qmin Min length of the grams 1
qmax Max length of the grams 3
ed Edit operations {0, 1, 2}

hMAX Max depth of prefix tree lavg

θ Threshold for noisy count as in [3]
Th Global threshold {0, 1.3}
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Figure 4: Utility and threshold: (Left) frequent grams, (Right) ran-
dom grams

The second is a list of the top 5000 most populated cities in U.S.
in 2008. Some of the statistics of the datasets are summarized in
Table 1, where lmax, lmin and lavg are the maximal, minimal and
average lengths of the strings, respectively. The experiment and al-
gorithm parameters, if not specified in the descriptions, assume the
default values as reported in Table 2.

Frequent grams vs random grams: We first verify the advantage
of using frequent grams over random grams in the embedding base.
Figure 4 reports the utility in terms of F1 score [17] for different
values of global threshold (Th) in the embedded space, with a di-
rect comparison between random and frequent grams. We tested
the embedding strategy on the NAMES dataset, by allowing an ap-
proximate matching with the number of edit operations up to 2,
with k = 100. From the graph, it is evident that frequent grams
lead to a considerable improvement in the utility compared to ran-
dom grams (an improvement from 20% to 60%). This result is
justified by the fact that a base of frequent grams is more likely to
share a higher number of grams with the strings. In addition, we
can also observe that when approximate matching is allowed, the
utility decreases as the number of edit operations increases.

Impact of the privacy parameter: The relationship between the
privacy parameter ε and the utility of our protocol is reported in
Figure 5. In these graphs, we also compare the results provided
by private miners with an exact non private miner. We restrict our
attention to the linear and hybrid budget allocation strategies since
their performances are slightly better than those provided by the
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Figure 5: Impact of the privacy parameter: (Left) Exact match,
(Right) Approximate match.
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Figure 6: Running Time Vs N : comparison between the frequent
variable length techniques and Lipschitz embedding.

other two strategies. As we can see, the utility of the protocols
using private miners approaches the results obtained from the non
private algorithm as ε increases. Moreover, this figure points out the
hardness of solving record linkage when approximate matching is
allowed. Indeed, the utility for approximate matching is moderately
smaller than that of exact matching.

Protocol Performances: The scalability results of our strategy are
reported in Figure 6. The running time is measured in millisec-
onds [ms], and it consists of the time needed to mine the base for
each party, to combine the bases to form the shared base, and to
embed the data. As we can see from Figure 6, the running time
for our protocol is linear with the size of the dataset considered.
Figure 6 shows also the running time for the Lipschitz approach
proposed in [15]. For this approach, we measure the time required
to generate the base using the heuristic and produce the embedding
map. As we can see, this approach also scales linearly with the
size of the dataset, but its running time is considerably higher. In
Figure 7 we tested the approaches with different base sizes on the
CITIES dataset. As we can see, Lipschitz provides a better utility
for smaller bases, while our strategies achieve similar results when
k ≥ 20. However, the dependency of the running time with respect
to the dimensionality is exponential for the Lipschitz strategy, while
in our approach is considerably lower.

5. CONCLUSIONS
In this paper, we presented a novel frequent grams based em-

bedding strategy to perform privacy preserving record linkage for
string records. Compared with the state-of-the-art secure match-
ing approach [15], our approach provides formal, provable privacy
guarantees of differential privacy and achieves better scalability
while providing comparable utility. As future work, we plan to
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Figure 7: Performance of Lipschitz and frequent grams embedding
Vs k. (Left) Running time, (Right) Utility

enhance the allocation strategies for the prefix tree miner and the
threshold schemes for matching in embedded space.
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