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Abstract

Most of privacy protection studies for tex-
tual data focus on removing explicit sen-
sitive identifiers. However, personal writing
style, as a strong indicator of the author-
ship, is often neglected. Recent studies, such
as SynTF, have shown promising results on
privacy-preserving text mining. However, their
anonymization algorithm can only output nu-
meric term vectors which are difficult for the
recipients to interpret. We propose a novel text
generation model with a two-set exponential
mechanism for authorship anonymization. By
augmenting the semantic information through
a REINFORCE training reward function, the
model can generate differentially private text
that has a close semantic and similar gram-
matical structure to the original text while re-
moving personal traits of the writing style. It
does not assume any conditioned labels or par-
alleled text data for training. We evaluate the
performance of the proposed model on the real-
life peer reviews dataset and the Yelp review
dataset. The result suggests that our model
outperforms the state-of-the-art on semantic
preservation, authorship obfuscation, and sty-
lometric transformation.

1 Introduction

Privacy has become a vital issue in online data
gathering and public data release. Various machine
learning models and privacy preservation algo-
rithms have been studied for relational data (John-
son et al., 2018), network graph data (Chen et al.,
2014), and transactional data (Li et al., 2012). Some
of them have been successfully adopted in real-life
applications such as telemetry collection (Cortés
et al., 2016). However, the studies on privacy pro-
tection for textual data are still preliminary. Most
related works only focus on replacing the sen-
sitive key phrases in the text (Vasudevan and
John, 2014) without considering the author’s writ-
ing style, which is indeed a strong indicator of a

person’s identity. Even though some textual data,
such as double-blind academic reviews, is released
anonymously, the adversaries may recover the au-
thor’s identity using the personal traits in writing.
Stylometric techniques (Koppel et al., 2011) can
identify an author of the text from 10,000 can-
didates. They are effective across online posts,
articles, emails, and reviews (Ding et al., 2015,
2017). Nevertheless, traditional text sanitization
methods (Narayanan and Shmatikov, 2008) focus
on anonymizing the contents, such as patient infor-
mation, instead of the writing style, so they are inef-
fective against writing style analysis. The original
author can be easily re-identified even if protected
by these traditional approaches (Iqbal et al., 2008,
2010, 2013; Schmid et al., 2015).

Only a few recent studies focus on author-
ship anonymization, aiming to hide the personal
traits of writing style in the given textual data.
Anonymouth (McDonald et al., 2012) is a semi-
automatic framework that offers suggestions to
users to change their writing style. Yet, this frame-
work is not practical since it requires two datasets
as a reference to compare the change in writing
style. Also, the user has to make all the final modi-
fication decisions. SynTF (Weggenmann and Ker-
schbaum, 2018) represents a line of research that
protects the privacy of the numeric vector repre-
sentation of textual data. It adopts the exponential
mechanism for a privacy guarantee, but the output
is only an opaque term frequency vector, not an
interpretable text in natural language. Furthermore,
its token substitution approach does not consider
the grammatical correctness and semantic.

Style transfer is another line of research that tries
to generate text with controllable attributes (Shen
et al., 2017; Hu et al., 2017; Sennrich et al., 2016).
Representative models (Hu et al., 2017) can con-
trol the sentiment and tense of the generated text.
However, they do not modify the personal traits in
writing. Their applications on sentiment and word-
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reordering correspond to the content of the text
more than the writing style. We argue that their
definition of styles, such as sentiment or tense, is
different from the personal linguistic writing char-
acteristics that raise privacy concern. A4NT (Shetty
et al., 2018) is a generative neural network that san-
itizes the writing style of the input text. However, it
requires text samples to be labeled with known au-
thor identities. It is not applicable to many textual
data publishing scenarios. Additionally, according
to the samples provided in the paper, it has difficul-
ties keeping the same semantic meaning between
the original and the generated text. Without using
any privacy model, A4NT does not provide any
privacy guarantee.

To address the aforementioned issues, we pro-
pose an Embedding Reward Auto-Encoder (ER-AE)
to generate differentially private text. Relying on
differential privacy, it protects the author’s identity
through text indistinguishability without assuming
any specific labels, any parallel data or any assump-
tion on the attacker. It guards the privacy of the
data against the worst information disclosure sce-
nario. ER-AE receives the original text as input and
generates a new text using the two-set exponential
mechanism. We propose a REINFORCE (Sutton
et al., 2000) embedding reward function to augment
the semantic information during the text generation
process. The model can keep the generated text a
close semantic and sentiment similarity to the origi-
nal while providing a guarantee that one can hardly
recover the original author’s identity. Unlike the
aforementioned authorship anonymization works,
ER-AE produces human-friendly text in natural
language. Our key contributions are summarized
as follows:

• The first differentially private authorship
anonymization model that can generate human-
friendly text in natural language, instead of a
numeric vector.
• A novel two-set exponential mechanism to over-

come the large output space issue while produc-
ing meaningful results.
• A novel combination of a differential privacy

mechanism with a sequential text generator, pro-
viding a privacy guarantee through a sampling
process.
• A new REINFORCE reward function that can

augment the semantic information through ex-
ternal knowledge, enabling better preservation
of the semantic similarity in the data synthesis

process.
• Comprehensive evaluations on two real-life

datasets, namely NeurIPS & ICLR peer reviews
and Yelp product reviews, show that ER-AE
is effective in obfuscating the writing style,
anonymizing the authorship, and preserving the
semantics of the original text.

All the source code and data are publicly accessible
for reproducibility and transferability.1

2 Related Work

Differential Privacy. Recently, differential pri-
vacy has received a lot of attention in the ma-
chine learning community. The deep private auto-
encoder (Phan et al., 2016) is designed to preserve
the training data privacy. Their purpose is to guar-
antee that publishing the trained model does not
reveal the privacy of individual records. Our pur-
pose is different. We publish the differentially pri-
vate data generated by the model, rather than the
model itself. Most existing models for differentially
private data release, such as Chen et al. (2014) ,
focus on different types of data rather than text.
One recent work (Weggenmann and Kerschbaum,
2018) aims to protect privacy in text data using the
exponential mechanism. However, it releases the
term frequency vectors instead of a readable text.
This approach limits the utility of published data to
only the applications that assume term frequency as
features. In contrast, our goal is to generate differ-
entially private text in a natural language without
compromising individual privacy.

Writing Style Transfer. Studies on writing
style transferal try to change the writing style
revealed from the text according to a given au-
thor. Shetty et al. (2018) design a GAN to trans-
fer Obama’s text to Trump’s style. A sequence to
sequence (seq2seq) model is proposed by Jham-
tani et al. (2017) to transfer modern English into
Shakespearean English. Shetty et al.(2017) design
a model with a cross-alignment method to con-
trol the text sentiment while preserving semantic.
These models can also be applied to writing style
anonymization. However, these studies require the
data to be labeled with authorship identity. They
assume a number of known authors. In contrast,
ours does not assume any label information.

Writing Style Obfuscation. Writing style ob-
fuscation studies try to hide the identity of an au-

1https://github.com/McGill-DMaS/Authorship-
Anonymization
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thor. Anonymouth (McDonald et al., 2012) is a tool
that utilizes JStylo to generate writing attributes. It
gives users suggestions on which way they can
anonymize their text according to two reference
datasets. (Kacmarcik and Gamon, 2006) also pro-
pose a similar architecture to anonymize text. How-
ever, instead of directly changing the text, they all
work on the term frequency vector, whose real-life
utility is limited. Compared with semi-automatic
methods that require users to make a decision, our
approach provides an end-to-end solution that di-
rectly learns from data.

3 Preliminaries and Problem Definition

Adjacency is a key notion in differential privacy.
One of the commonly used adjacency definitions
is that two datasets D1 and D2 are adjacent if D2

can be obtained by modifying one record in D1

(Dwork et al., 2010). Differential privacy (Dwork
et al., 2006) is a framework that provides a rig-
orous privacy guarantee on a dataset. It demands
inherent randomness of a sanitization algorithm or
generation function:

Definition 1. Differential Privacy. Two datasets
are considered as adjacent if there is only one single
element is different. Let privacy buget ε > 0, a
randomized algorithmA : Dn −→ Z, and the image
ofA: im(A). The algorithmA is said to preserve ε-
differential privacy if for any two adjacent datasets
D1, D2 ∈ Dn, and for any possible set of output
Z ∈ im(A):

Pr [A (D1) ∈ Z] ≤ eε · Pr [A (D2) ∈ Z] �

It guarantees that the result from a given algo-
rithm A is not sensitive to a change of any individ-
ual record in D. ε denotes the privacy budget, the
allowed degree of sensitivity. A large ε implies a
higher risk to privacy. However, ε is a relative value
that implies different degrees of risk given different
problems (Weggenmann and Kerschbaum, 2018).
Some studies (Sala et al., 2011) use a large ε, while
the others (Chen et al., 2014) use a smaller value.

Adversary Scenario. Generally in an author-
ship identification problem, one assumes that the
attacker holds an anonymous text authored by one
of the suspects from the dataset. The attacker aims
to infer the true author of the anonymous text based
on a set of reference texts from each suspect. How-
ever, this scenario assumes certain information on
the applicable dataset, such as author labels and
the number of reference text samples. Therefore,

following (Weggenmann and Kerschbaum, 2018),
we define that any two pieces of text as adjacent
datasets.

Adjacency. Any two pieces of text can be
considered adjacent in the strictest scenario that
datasets D1 and D2 both have only one record, and
D2 can be obtained by editing one record in D1

following Definition 1. With differential privacy,
we can have text indistinguishability: one cannot
distinguish the identity of any text to another. In our
case, the identity of a text corresponds to the author
who wrote the text. Along with this, the attacker
would fail in the original authorship identification
scenario since the anonymous text is indistinguish-
able from the rest of the dataset.

Our definition follows Weggenmann and Ker-
schbaum (2018)’s idea, leading to the strictest and
most conservative definition of adjacency.

Definition 2. Differentially Private Text Gener-
ation. Let D denote a dataset that contains a set of
texts where x ∈ D is one of them. |x|, the length
of the text, is bound by l. Given D with a privacy
budget ε, for each x the model generates another
text x̃dp that satisfies εl-differential privacy. �

Following the above definitions, any two datasets
that contain only one record are probabilistically in-
distinguishable w.r.t. a privacy budget ε. It directly
protects the identity of an individual record, disre-
garding whether some of the records belong to the
same author or not. It assumes that every record is
authored by a different author, which is the strictest
situation. Technically, the proposed text generation
approach protects the writing style by reorganizing
the text, replacing tokens with different spelling,
removing the lexical, syntactical and idiosyncratic
features of the given text. The above definition is
based on SynTF (2018), but our target is readable
text rather than numeric vectors, which is more
challenging.

4 ER-AE for Differentially Private Text
Generation

Figure 1 depicts the overall architecture of our pro-
posed ER-AE model, which consists of an encoder
and a generator. The encoder receives a sequence
of tokens as input and generates a latent vector
to represent the semantic features. The generator,
which is incorporated with the two-set exponential
mechanism, can produce differentially private text
according to the latent vector. ER-AE is trained
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Figure 1: Overall architecture of ER-AE.

by combining a reconstruction loss function and a
novel embedding loss function.

Algorithm 1 Generation Procedure of ER-AE
Input: Text: x, Parameters: θ, Encoder: Eθ(), Generator:
Gθ(), Privacy budget: ε.
Produce the latent vector: Eθ(x).
Get probabilities of new tokens: Pr[x̃]← Gθ(Eθ(x)).
for i← 1 to length of x do

Build two candidate token sets based on Pr[x̃]: S, O.
Apply exponential mechanism to choose token set: T .
Randomly sample new i-th token from T : x̃dp[i].

end for
Output: Differentially Private Text: x̃dp.

Our ER-AE model starts with a basic sequence-
to-sequence (seq2seq) auto-encoder structure.
Given a text x, its tokens 〈x1 . . . xl〉 are firstly
converted into a sequence of embedding vectors
〈Em(x1) . . . Em(xl)〉 by Em : V → Rm1 , where
V is the vocabulary across the dataset and m1 is
the embedding dimension. On its top, we apply a
bi-directional recurrent neural network with Gated
Recurrent Unit (GRU) (Cho et al., 2014) that lever-
ages both the forward and backward information.
GRU achieves a comparable performance to LSTM
with less computational overhead (Cho et al., 2014).
Then, the produced final state vectors from both
directions, sf and sb, are concatenated and linearly
transformed to be a latent vector E(x). m is the
hidden state dimension for the GRU function.

E(x) = Wh × concat(sf , sb), (1)

where sf , sb ∈ Rm, Wh ∈ Rh×2m.

The generator is another recurrent neural net-
work with GRU. It generates a text token-by-token.
For each timestamp i, it calculates a logit weight
ziv for every candidate token v ∈ V , conditioned
on the latent vector, last original token xi−1, and

the last hidden state si−1 of the GRU function.

ziv = w>v GRU(E(x), Em(xi−1), si−1) + bv

Let x̃i denote the random variable for the generated
token at timestamp i. Its probability mass function
is proportional to each candidate token’s weight zti.
This is modeled through a typical softmax function:

Pr[x̃i = v] = exp (ziv) /
∑
v′∈V

exp (ziv′) (2)

For each timestamp i, a typical seq2seq model gen-
erates text by applying argmaxv∈V Pr[x̃i = v].
However, this process does not protect the privacy
of the original data.

4.1 Differentially Privacy Text Sampling with
Two-Set Exponential Mechanism

To protect an individual’s privacy and hide the au-
thorship of the original input text, we couple differ-
ential privacy mechanism with the above sampling
process in the generator. The exponential mecha-
nism (McSherry and Talwar, 2007) can be applied
to both numeric and categorical data (Fernandes
et al., 2018). It is effective in various sampling pro-
cess for discrete data. It guarantees privacy protec-
tion by injecting noise into the sampling process:

Definition 3. Exponential Mechanism. Let M
and N be two enumerable sets. Given a privacy
budget ε > 0, a rating function ρ: M × N →
R. The probability density function of the random
variable εε,ρ(m), Pr [εε,ρ(m) = n] is:

exp
(
ε

2∆ρ(m,n)
)∑

n′ exp
(
ε

2∆ρ (m,n′)
) (3)

where ∆, the sensitivity, means the maximum dif-
ference of rating function values between two adja-
cent datasets, and m ∈M, n ∈ N . �



However, according to Weggenmann and Ker-
schbaum (2018), the exponential mechanism re-
quires a large privacy budget to produce meaningful
results while the output space is large, the vocab-
ulary size in our case. It’s nontrivial to randomly
sample a good result directly among 20,000 candi-
dates.

To tackle the large output space issue, inspired by
subsampled exponential mechanism (Lantz et al.,
2015), we propose a two-set exponential mecha-
nism to produce meaningful results with a better
privacy protection. Instead of using a database in-
dependent distribution, we use a model-based dis-
tribution to generate subsets of tokens.

Definition 4. Two-Set Exponential Mechanism.
Let V be a enumerable set with size s. Given the
model-based probabilities of each item in V , Pr[v]
for v ∈ V , an item set S of size k is built by re-
peatedly sampling proportional to Pr[v] with re-
placement. Other items are denoted as setO, where
V = O ∪ S, ∅ = O ∩ S. Let N = {S,O}.
An item set Cdp is chosen from N through the
exponential mechanism with a rating function ρ:∑

v∈C Pr[v]/
∑

C′∈N ,v′∈C′ Pr[v′]. Given ε > 0,
N ∈ N , the probability density function (PDF) of
the random variable εε,ρ(C), Pr [εε,ρ(C) = N ], is:

exp
(
ε

2∆ρ(C,N)
)∑

N ′∈N exp
(
ε

2∆ρ (C,N ′)
) (4)

After choosing the set, Cdp, an item is randomly
picked from the chosen set: v ∼ Random(Cdp).
Thus, given v, w ∈ V , Pr[εε,ρ(v) = w] is:

Pr[wS] ∗ Pr[εε,ρ(C) = S|wS] ∗ Pr[w|wS, S]+

Pr[wO] ∗ Pr[εε,ρ(C) = O|wO] ∗ Pr[w|wO,O],

where Pr[wS] and Pr[wO] are respectively the
probability of w in set S and O, Pr[wO] = (1 −
Pr[w])k. �

Theorem 1. Two-Set Exponential Mechanism.2
Given a privacy budget ε > 0 and the size of output
space s, two-set exponential mechanism is (ε +
ln (s))-differentially private. �

By plugging our model with this mechanism,
we have the probability mass function for εε,ρi(x̃i):
Pr[εε,ρi(x̃i) = tk]. This function models the dis-
turbed probability distribution for all the alternative
token tk to replace the original variable. Accord-
ing to Theorem 4, sampling from εε,ρi(x̃i) for each

2The proof is provided in Appendix B

timestamp i is (ε + ln (s))-differentially private.
Recall that in Definition 1, the timestamp is bound
by l. To generate text x̃dp, the generator samples a
token for timestamp i through the chosen set Ti:

x̃dp[i] ∼ Random(Ti) for i ∈ [1, l] (5)

The composition theorem (Dwork et al., 2014)
is an extension to differential privacy. By repeat-
ing n ε-differentially private algorithms, the com-
plete process achieves an εn-differential privacy.
Algorithm 1 shows the differentially private text
generation of ER-AE. As proved in Appendix A:

Theorem 2. Differentially Private Text Sampling.
Given a privacy budget ε > 0, a sequence length l
> 0, the generator’s sampling function in Eq. 5 is
(ε+ ln (s)) ∗ l-differentially private. �

4.2 Initial Grammar and Semantic
Preservation

To generate a human-friendly text that has a close
semantic to the original one, we need to have a high-
quality rating function ρi for Eq. 4. This is achieved
by training the ER-AE model’s encoder to extract
semantic information, and its generator to learn
the relationships among the tokens for prediction.
We follow an unsupervised learning approach since
we do not assume any label information. First, we
adopt the reconstruction loss function:

Lrecon =
∑

xi∈x,x∈D
− logPr [x̃i = xi] (6)

It maximizes the probability of observing the orig-
inal token xi itself for the random variable x̃i. In
the recent controllable text generation models, the
reconstruction loss plays an important role to pre-
serve grammar structure and semantics of input
data (Shetty et al., 2018) when combined with the
other loss.

4.3 REINFORCE Training for Semantic
Augmentation

Diving into the optimization aspect of the softmax
function, the reconstruction loss function above en-
courages the model to produce a higher probability
on the original token while ignoring the rest can-
didates. It does not consider the other tokens that
may have a similar meaning under a given context.
This issue significantly limits the variety of usable
alternative tokens. Additionally, this loss function
relies on a single softmax function for multi-object



learning, it cannot provide the expressiveness re-
quired by the language model (Yang et al., 2018).
We inspect the candidates and in most of the cases,
only the top-ranked token fits the context in the
text. This is problematic because the mechanism
for our sampling process also relies on the other
candidates to generate text. To address the above
issue, we propose a novel embedding reward func-
tion using the pre-trained word embeddings. Word
representation learning models show that discrete
text tokens’ semantic can be embedded into a con-
tinuous latent vector space. The distance between
word embedding vectors can be a reference to mea-
sure the similarity between different words. To en-
courage our rating function ρi to learn richer and
better substitute tokens, we propose a reward func-
tion that leverages the semantics learned from the
other corpus. The text dataset to be anonymized
and released can be small, and the extra semantic
knowledge learned from the other corpus can pro-
vide additional reference for our rating function.
This reward function is inspired by the Policy Gra-
dient loss function (Sutton et al., 2000), Lembed
is:

−
∑

xi∈x,x∈D

( ∑
v∈Ek(x̃i)

log(Pr[x̃i = v])γ(xi, v)

+
∑
w∼Vk

log(Pr[x̃i = w])γ(xi, w)
)

Generally, this reward function assigns credits to
the under-rated tokens in the reconstruction loss
function. Recall that D is the original dataset and
x is one of its texts. At time step i, this reward
function first assigns rewards to the top-k selected
tokens, denoted as Ek(x̃i), according to probabil-
ity estimates for random variable x̃i in Eq. 2. The
rewards are proportional to their semantic relation-
ship to the original token xi. It is defined as a func-
tion γ : V × V → R, γ(w, v) is:

min
(

cosine(Em(w), Em(v)), 0.85
)

(7)

The min function avoids the generator focusing
only on the original token. By assigning rewards to
Ek(x̃i), it encourages the other candidates having
a close semantic to the targeted one, but it may fail
to reach infrequent tokens. Therefore, in the sec-
ond part of the reward function, we encourage the
model to explore less frequent tokens by random
sampling candidates as Vk. This design balances
the exploitation (top-k) and the exploration (Vk) in
reinforcement learning.

During training, the model is firstly pre-trained
by minimizing the reconstruction loss in Eq. 6
through the Adam optimizer, and adopts the em-
bedding reward loss later. The total loss is

L = λrecon × Lrecon + λembed × Lembed (8)

Specifically, the reconstruction loss can lead the
model to generate grammatically correct text, and
the embedding reward loss encourages the model
to focus more on semantically similar tokens. The
balance of the two loss functions are controlled by
λrecon and λembed.

5 Experiment

All the experiments are carried out on a Windows
Server equipped with two Xeon E5-2697 CPUs
(36 cores), 384 GB of RAM, and four NVIDIA
TITAN XP GPU cards. We evaluate ER-AE on two
different datasets with respect to its effectiveness
for privacy protection and utility preservation.
• Yelp Review Dataset3: All the reviews and tips

from the top 100 reviewers ranked by the number
of published reviews and tips. It contains 76,241
reviews and 200,940 sentences from 100 authors.
• Academic Review Dataset: All the public re-

views from NeurIPS (2013-2018) and ICLR
(2017) based on the original data and the web
crawler provided by (Kang et al., 2018). It has
17,719 reviews, 268,253 sentences, and the au-
thorship of reviews is unknown.
Each dataset is divided into 70/10/20 for

train/dev/evaluation respectively. As mentioned in
the related work discussion, most of the control-
lable text generation and style transferal studies rely
on known authorship or other labels. Other gener-
ation models such as paraphrasing, however, hold
an essentially different goal and cannot provide
a privacy guarantee on the generated data. They
are not applicable to our problem. Therefore, we
pick SynTF (Weggenmann and Kerschbaum, 2018)
and different generation and sampling models for
evaluation:
• Random Replacement (Random-R): This

method generates a new text by replacing each
token in the text by randomly picking substitu-
tion from the vocabulary.
• AE with Differential Privacy (AE-DP): Ex-

tended version of AE with the added two-set
exponential mechanism for text generation. It
does not include the embedding reward.
3http://www.yelp.com/dataset_challenge



Table 1: Results for each evaluation metric on both datasets. ↑ indicates the higher the better. ↓ indicates the lower
the better.

Yelp (100-author) Conferences’ Dataset

Model USE ↑ Authorship ↓ Stylometric↑ USE↑ Stylometric↑
Original text 1 0.5513 0 1 0
Random-R 0.1183 0.0188 62.99 0.1356 65.624
AE-DP 0.6163 0.097 11.443 0.614 9.859
SynTF (2018) 0.1955 0.0518 26.3031 0.2161 25.95
ER-AE (ours) 0.7548 0.0979 13.01 0.7424 9.838

Figure 2: Privacy v.s. Utility. Comparing USE similarity (utility), authorship identification error rate (privacy) and
Stylometrics L2 distance (privacy) for different εs on applicable datasets.

Table 2: The intermediate result of top five words
and their probabilities at that the third and the
forth generation steps.

Input: there are several unique hot dog entrees to choose.

several
AE-DP several 0.98, those 0.007, some 0.003

various 0.002, another 0.001
ER-AE many 0.55, some 0.20, several 0.14

different 0.04, numerous 0.03

unique
AE-DP unique 0.99, different 0.0001, new 3.1e-05,

nice 2.5e-05, other 2.1e-05
ER-AE unique 0.37, great 0.21, amazing 0.15,

wonderful 0.1, delicious 0.05

Table 3: The estimated probability of a good can-
didate sampled with different mechanisms.

Input: there are several unique hot dog entrees to choose.

several unique
Exponential Mechanism 0.0017 0.00091
Two-Set Exponential Mechanism 0.7411 0.6794

• SynTF (Weggenmann and Kerschbaum,
2018): We directly generate the tokens through
SynTF’s differentially private sampling function,
without further extraction of the frequency
vector.

SynTF is a state-of-the-art generation model that
satisfies differential privacy property on textual
data. The other two simple baselines are for ab-
lation test purposes.

For ER-AE, we adopted a two-layers stacked
GRU network for both the encoder and the gener-
ator. There are 512 cells in each GRU layer. The
vocabulary size is 20,000, separately built for each
dataset. All the word embeddings in our model
come from the pre-trained BERT embeddings pro-
vided by (Devlin et al., 2019), which has a dimen-
sion of 768 for each embedding. The maximum
input length of our model is 50, the learning rate
is 0.001, the k for embedding reward loss func-
tion is 5, the λrecon is 1, the λembed is 0.5, and
the batch size is 128. The k in two-set exponen-
tial mechanism is 5. ER-AE is implemented in
TensorFlow (Abadi et al., 2016), and it uses the
tokenizer in the NLTK library. Some traditional
tricks for text generation, such as beam search, are
not mentioned because they are incompatible with
differential privacy. All the models are evaluated
from three aspects: semantic preservation, privacy
protection, and stylometric changes:
• Semantic Preservation (USE): A pre-trained

Universal Sentence Embedding (USE) model4

from Google. It can embed a sentence into a
latent vector that represents its semantics. It is
widely used for supervised NLP tasks such as
sentiment analysis. We measure the degree of
semantic preservation using the cosine similarity
between the latent vector of the original text and

4https://tfhub.dev/google/universal-sentence-encoder/1



Table 4: Sample sentences generated by models.

Input the play place is pretty fun for the little ones .
Random-R routing longtime 1887 somalia pretty anatomical shallow the dedicated drawer rosalie
AE-DP employer play lancaster mute fish fun for wallace little chandler .
SynTF conditioned unique catherine marquis governing skinny garment hu vivid . insists
ER-AE the play place is pretty nice with the little ones !

Input i also ordered a tamarind margarita and it was great .
Random-R substantial char recommended excavation tamarind coil longitudinal recover verify great housed
AE-DP intersection also ordered service tamarind drooling scratched denis monkfish motions .
SynTF carnage spence unsigned also clinging said originated beacon liking strike accomplishments
ER-AE i also requested a tamarind margarita and it were great .

Input i ’m not complaining because you do get exactly what you pay for .
Random-R substantial char recommended excavation tamarind coil longitudinal recover verify great housed
AE-DP comic-book ’m not mins because you donnelly get exactly tenderloin nerves bottomless for aldo box
SynTF leaf penetrated amounted jolted courageous socket fades unwilling tu judges regional numbering
ER-AE i ’m not disappointing because you do make occult what you pay for .

Input the manuscript is well written is provides good insight into the problem .
AE-DP the fig2c is well l102-103 wish provides horseshoe insight into the problem compositionality
SynTF ness voice incoming depending entrances somehow priscilla rows romantic oblivious mall
ER-AE the manuscript is well edited has provides excellent insight into the problem .

Input in particular , the generality of the approach is very well presented .
SynTF wife pierced rotate specialist probe elects prussian beatty eccentric sweating .
ER-AE in particular , this generality of an approach is very well written well

one of the generated text.
• Privacy Protection (Authorship): A state-of-

the-art authorship identification neural network
model (Sari et al., 2017) to identify the au-
thorship of generated text. The model is firstly
trained on the training dataset, and the perfor-
mance is evaluated on the testing set. The au-
thor’s privacy is protected if s/he cannot be iden-
tified using authorship identification techniques.
• Stylometric Changes: Well-established stylis-

tic context-free features such as text length and
a number of function words. We adopt Stylo-
Matrix (Ding et al., 2017) for an aggregation
of features in (Iqbal et al., 2013; Zheng et al.,
2006). The feature vector change is measured by
the difference in L2 norm.

Quantitative Evaluation (Table 1). With a low
utility (USE) score around 0.2 for both datasets,
SynTF, and Random-R generate grammatically in-
correct text and completely change the meaning of
the original one. In contrast, ER-AE without seman-
tic augmentation through REINFORCE training,
denoted as AE-DP, achieves a much higher utility
score of around 0.61. The full model ER-AE, with
an ε of 3, achieves the highest utility score of 0.75
for Yelp reviews and 0.74 for peer reviews. AE-
DP, SynTF, and ER-AE all significantly reduce the
chance of a successful authorship identification at-
tack from 55% to lower than 10% in the Yelp data
and introduce a variation in stylometric features

of more than 10 in magnitude in the peer review
dataset. They are all effective and competitive on re-
moving the personal writing trait from the text data,
but as mentioned above, AE-DP achieves the best
and a much higher utility score. Although Random-
R performs better on privacy protection, its gen-
erated texts are irrelevant to the original. Overall,
with a competitive performance on anonymization,
ER-AE performs significantly better than all of the
other models on utility.

Impact of Embedding Reward. Table 4 shows
that the embedding reward plays an important role
in selecting semantically similar candidates for sub-
stitution. AE-DP assigns a large probability to the
original token and a tiny probability to the others.
If applied with the mechanism, it is more likely to
pick a semantically irrelevant token. ER-AE shows
a smoother distribution and assigns higher proba-
bilities to top-ranked semantically relevant tokens.
Its generated candidates are better.

Case Study. Table 4 shows that both SynTF and
Random-R cannot generate human-friendly text.
Due to the issue of reconstruction loss function [6],
AE-DP cannot substitute token with similarly se-
mantic tokens and destroys the semantic meaning.
ER-AE, powered by embedding reward, can sub-
stitute some tokens with semantically similar ones:
“written" is replaced by “editted", and the whole
sentence still makes sense. Besides, it can preserve
the grammatical structure of the input. However,



due to some missing information from word em-
beddings, the model would fail to generate good
candidates for sampling. The third sample replaces
“exactly" with “ occult". ER-AE still performs way
better than other models.

Utility vs. Privacy. The privacy budget ε con-
trols the trade-off between privacy and utility. A
larger ε implies better utility but less protection
on privacy. However, this is a relative value that
implies different degrees of risk given different
problems (Weggenmann and Kerschbaum, 2018;
Fernandes et al., 2018). As proved by Weggen-
mann and Kerschbaum (2018) a higher ε is intrin-
sically necessary for a large output space, in our
case the vocabulary, to generate relevant text. In
fact, we have already significantly reduced the op-
timal ε value of 42.5 used by Weggenmann and
Kerschbaum (2018) to around 13, given the same
dataset. One possible way to lower the bound of ε
is to directly factor in authorship and utility, such
as topics, into the privacy model. However, it limits
applicable to datasets.

Exponential Mechanism vs. Two-Set Expo-
nential Mechanism. In Table 3, we estimated the
probability of a meaningful token (among top 5
semantically similar tokens) is sampled based on
the intermediate probabilities in Table 2. Given a
large output space of 20,000, the exponential mech-
anism is not likely to sample a meaningful token
with a probability of 0.01 %. However, the two-set
exponential mechanism dramatically improves it
from 0.01 % to around 70%. Our generator has a
much higher chance to generate meaningful results
with a similar privacy budget.

6 Conclusion

In this paper, we propose a novel model, ER-AE,
to protect an individual’s privacy for text data re-
lease. We are among the first to fuse the differential
privacy mechanisms into the sequence generation
process. We demonstrate the effectiveness of our
model on the Yelp review dataset and two peer re-
views datasets. However, we also find that ER-AE
performs not very well on long texts due to the pri-
vacy budget accounting issue. Our future research
will focus on improving long texts generation with
better budget allocation scheme.

7 Ethical Considerations

Our model outperforms others on authorship obscu-
ration and semantic preservation. Similar to other

text generation tools, this model may be abused to
generate fake reviews, but this can be assuaged by
using fake review detection methods. This research
work directly contributes to the area of privacy pro-
tection and indirectly promotes freedom of speech
and freedom of expression in cyberspace.
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A Proof of Differentially Private Text
Sampling.

Theorem 3. Differentially Private Text Sampling.
Given a privacy budget ε > 0, a sequence length l
> 0, the generator’s sampling function in Eq.7 is
(ε+ ln (s)) ∗ l-differentially private. �

Proof. At the generation stage, for each times-
tamp i, our model generates a token by sam-
pling from Eq. 7, which follows the form of ex-
ponential mechanism. This process achieves (ε +
ln (s))-differential privacy as in Definition 4. Ev-
ery input of the generator is the original input
data xi−1 (see Eq.2). Eq.7 satisfies the sequen-
tial composition theorem. By repeating this pro-
cess l times, the complete sampling function pro-
vides (ε + ln (s)) ∗ l-differential privacy. x̃dp is
(ε+ ln (s)) ∗ l-differentially private.

B Proof of Two-Set Exponential
Mechanism.

Theorem 4. Two-Set Exponential Mechanism.
Given a privacy budget ε > 0 and the size of
output space s, two-set exponential mechanism is
(ε+ ln (s))-differentially private. �

Proof. Given tokens sets S and O, V = O ∪ S,
∅ = O ∩ S, and N = {S,O}. Let the choice, C,
on S andO be ε-differentially private, the sampling
of an item in the chosen set be totally random. With
Pr[tk, tkN,N |x] = Pr[tkN |x] ∗ Pr[εε,ρ(C) =
N |tkN, x]∗Pr[tk|N, tkN, x], whereN ∈ N , i ∈
[1, l], tk ∈ V , for any x′ ∼ x:

Pr[εε,ρ(x̃i) = tk|x]

Pr[εε,ρ(x̃i) = tk|x′]
=

Pr[tk, tkS, S|x]

Pr[tk, tkS, S|x′] + Pr[tk, tkO,O|x′]

+
Pr[tk, tkO,O|x]

Pr[tk, tkS, S|x′] + Pr[tk, tkO,O|x′]
.

For the first part, denoted as PS , with V of size
s, by dividing the numerator and denominator with
Pr[εε,ρ(C) = S|tkS, x]∗Pr[tk|S, tkS, x], we can
get:

PS =
Pr[tk, tkS, S|x]

Pr[tk, tkS, S|x′] + Pr[tk, tkO,O|x′]

≥ Pr[tkS|x]

exp (ε) ∗ s
since

Pr[εε,ρ(C) = S|tkS, x′]
Pr[εερ(C) = S|tkS, x]

≤ exp (ε)

Pr[εε,ρ(C) = O|tkO, x′]
Pr[εερ(C) = S|tkS, x]

≤ exp (ε)

Pr[tk|S, tkS, x′]/Pr[tk|S, tkS, x] ≤ s
Pr[tk|O, tkO, x′]/Pr[tk|S, tkS, x] ≤ s.

For the second part, denoted as PO, similarly,
we have PO ≥ P [tkO|x]/(exp (ε) ∗ s). Then,

Pr[εε,ρ(x̃i) = tk|x]

Pr[εε,ρ(x̃i) = tk|x′]
= PS + PO

≥Pr[tkS|x] + Pr[tkO|x]

exp (ε) ∗ s
Since Pr[tkS|x] + Pr[tkO|x] =

1, the equation can be written as:
Pr[εε,ρ(x̃i) = tk|x′]/Pr[εε,ρ(x̃i) = tk|x] ≤
exp (ε) ∗ s = exp (ε+ ln (s)). Therefore,
the two-set exponential mechanism satisfies
(ε+ ln (s))-differential privacy.




