A Multifaceted Framework to Evaluate Evasion, Content Preservation,

and Misattribution in Authorship Obfuscation Techniques

EMNLP 2022, Abu Dhabi - UAE

Background: Authorship Identification

Applications of Authorship Identification

Potentially useful:

- Literature
 - Shakespeare vs. Marlow¹
- Forensics
 - Hate speech.
 - Threatening messages.

Potentially harmful:

- Author of a negative scientific review.
- Prevent freedom of speech.

Identification vs. Obfuscation

Authorship Identification

• We re-evaluate existing obfuscation techniques using a suite of measures.

New!

- Three dimensions:
 - Evade detection (Safety)

Question-Answering!

- Convey the same message (Content preservation)
- Do not implicate others (Fairness)

Evasion

To evade detection by an identification technique.

Content Preservation

To convey the same information as the original text.

Before Obfuscation

• EMNLP is in the **UAE**.

- Lyana took the candy jar.
- Hashem went to a **conference**.
- Omar **got** a scholarship.

After Obfuscation

• EMNLP is in the United Arab Emirates.

- Lyana took the candy **b**ar.
- Hashem went to a **journal**.
- Omar **played** a scholarship?

Misattribution Harm

The side-effect of evading detection.

- Friend
- Classmate
- Colleague

Characterizing Misattribution

• **Confidence** in the outcome of the authorship identification task.

- We can measure this using **entropy**.
 - Higher entropy -> Lower confidence

Case 2

Obfuscation Techniques

- Generic tools
 - Lexical Substitution with BERT (Mansoorizadeh et al., 2016)
 - Back Translation (Meta AI M2M-100) (Schwenk et al., 2021)

- Obfuscation-specific tools
 - Mutant-X (Mahmood et al., 2019)
 - Heuristic Obfuscation Search (A*) (Bevendorff et al., 2019)

Evasion (results)

Identification Accuracy - EBG (5 authors)

Identification: Masking (Stamatatos, E. 2018) followed by character n-grams as features, and a linearSVM classifier.

Evasion (results)

Identification Accuracy - C50 (5 authors)

Identification: Masking (Stamatatos, E. 2018) followed by character n-grams as features, and a linearSVM classifier.

Content Preservation (results)

* Average score over 100, randomly sampled sentences from the EGB dataset.

Misattribution

Entropy (Normalized) - EBG (5 authors)

Misattribution

In conclusion

- We need to use SOTA NLP evaluation techniques which are changing rapidly.
- Current evaluation metric revealed new results.
- Contrast to common belief, Back translation is very competitive with the SOTA.
 - It has low misattribution *arguably* because it has been trained on various writing styles.

• Finally, ... a huge room for improvement!

Thank you very much!

- I just defended my thesis!
- Looking for a research scientist role in North America or the Gulf region.
- I work on NLP/Privacy (Style Analysis)

https://malikaltakrori.github.io/

Empirical Setup

- Datasets:
 - Extended Brennan–Greenstadt Corpus (**EBG**), Reuters Corpus Volume 1(**C50**)
 - Two configurations: **5** authors, **10** authors.
- Identification method:
 - Masking (Stamatatos, E. 2018) character n-grams as features, and a linearSVM classifier.
- Content preservation:
 - QuestEval (Scialom, 2021)

Empirical Setup

	C50				EBG			
Authors	5		10		5		10	
Training set								
Docs	75	0	150		55		110	
Docs / authors:	15	(0.0)	15	(0.0)	11	(0.0)	11	(0.0)
Avg. doc Len (W)	478	(46.4)	452	(60.8)	496	(6.1)	494	(4.8)
Avg. doc Len (C)	3007	(273.1)	2861	(366.9)	3157	(24.0)	3120	(41.8)
Testing set								
Docs	75		150		55		110	
Docs / authors:	15	(0.0)	15	(0.0)	7	(4.0)	6	(3.2)
Avg. doc Len (W)	480	(86.2)	479	(77.6)	496	(14.1)	497	(12.5)
Avg. doc Len (C)	3032	(567.2)	3036	(473.9)	3068	(102.7)	3046	(130.8)
Total docs	150		300		90		169	
Table 8: Corpora statistics. (Mean and SD)								