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Abstract. Privacy-preserving data publishing addresses the problem of
disclosing sensitive data when mining for useful information. Among
the existing privacy models, ε-differential privacy provides one of the
strongest privacy guarantees. In this paper, we address the problem
of private data publishing where data is horizontally divided among
two parties over the same set of attributes. In particular, we present
the first generalization-based algorithm for differentially private data re-
lease for horizontally-partitioned data between two parties in the semi-
honest adversary model. The generalization algorithm correctly releases
differentially-private data and protects the privacy of each party accord-
ing to the definition of secure multi-party computation. To achieve this,
we first present a two-party protocol for the exponential mechanism.
This protocol can be used as a subprotocol by any other algorithm that
requires exponential mechanism in a distributed setting. Experimental
results on real-life data suggest that the proposed algorithm can effec-
tively preserve information for a data mining task.

1 Introduction

Data can be horizontally-partitioned among different parties over the same set
of attributes.These distributed data can be integrated for making better deci-
sions and providing high-quality services. However, data integration should be
conducted in a way that no more information than necessary should be revealed
between the participating entities. At the same time, new knowledge that results
from the integration process should not be misused by adversaries to reveal sen-
sitive information that has not been available before the data integration. In this
paper, we propose an algorithm to securely integrate sensitive data , which is
horizontally divided among two parties over the same set of attributes, whereby
the integrated data still retains the essential information for supporting data
mining tasks. The following scenario further motivates the problem.

Consider a blood bank collects and examines the blood provided from donors
and then distributes the blood to different hospitals. Periodically, hospitals are
required to submit the blood transfusion information, together with the patient
surgery data, to the blood bank for classification analysis [1]. Due to privacy con-
cerns and privacy regulations, hospitals cannot provide any information about
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Table 1. Data Set D1

ID Class Job Sex Age Surgery

1 N Janitor M 34 Transgender

2 Y Lawyer F 58 Plastic

3 Y Mover M 58 Urology

4 N Lawyer M 24 Vascular

5 Y Mover M 34 Transgender

6 Y Janitor M 44 Plastic

7 Y Doctor F 44 Vascular

Table 2. Data Set D2

ID Class Job Sex Age Surgery

8 N Doctor M 58 Plastic

9 Y Doctor M 24 Urology

10 Y Janitor F 63 Vascular

11 Y Mover F 63 Plastic

individual medical records to the blood bank. Accordingly, there is a desider-
atum for an approach that allows anonymizing horizontally-partitioned data
from different providers for data release. The resulted anonymizing data should
not contain individually identifiable information and at the same time the data
providers should not reveal their private data or the ownership of the data to
each other.

Example 1. Suppose the first hospital P1 and the second hospital P2 own the
data sets D1 and D2 as shown in Table 1 and Table 2, respectively. Each hospital
has records for different individuals. The attribute Class contains the label Y
or N, representing whether or not the patient has received blood transfusion.
Both parties want to integrate their data and use the integrated data to build a
classifier on the Class attribute. After the integration, the sensitive data of the
patient #5 can be uniquely identified since he is the only 34-year mover in the
data set. Moreover, we can infer that a 34-year male has performed a transgender
surgery since both patients in the integrated data set has performed it.

In this context, Jurczyk and Xiong [2] have proposed an algorithm to securely in-
tegrate horizontally-partitioned data from multiple data owners. Mohammed et
al. [1] have proposed a distributed algorithm to integrate horizontally-partitioned
high-dimensional health care data. Their methods [1,2] adopt k-anonymity [3,4]
or its extensions [5,6] as the underlying privacy principle. Recently, Wong et al. [7]
and Zhang et al. [8] have shown that algorithms, which satisfy k-anonymity [3,4]
or its extensions [5,6], are vulnerable to minimality attack and do not provide the
claimed privacy guarantee. Although several fixes against minimality attack have
beenproposed [9], newattacks such as composition attack [10] anddeFinetti attack
[11] have emerged against algorithms that adopt k-anonymity or its extensions.

In this respect, differential privacy [12], which is a recently proposed privacy
model, provides provable privacy guarantee and it is, by definition, immune against
all these attacks. A differentially-private mechanism ensures that the probability
of any output (released data) is equally likely from all nearly identical input data
sets and thus guarantees that all outputs are insensitive to any individual’s data.
In other words, an individual’s privacy is not at risk because of the participation in
the data set. In this paper, we present the first generalization-based algorithm for
differentially-private data release for horizontally-partitioned data between two
parties in the semi-honest adversary model. We take the single-party algorithm
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Table 3. Related Work - Summary

Algorithms
Data Owner Privacy Model

Single Multi Differential Pri-
vacy

Partition-based
Privacy

Horizontally Vertically

LeFevre et al. [15], Fung et al. [16], etc � �
Xiao et al. [17], Mohammed et al. [13], etc. � �
Jurczyk and Xiong [2], Mohammed et al. [1] � �
Jiang and Clifton [18], Mohammed et al. [19] � �
Our proposal � �

for differential privacy that has been recently proposed by Mohammed et al. [13]
as a basis and extend it to the two-party setting. The main contribution of our
paper can be summarized as follows:

– Wepresentatwo-partyprotocol for theexponentialmechanismforhorizontally-
partitioned data.We use this protocol as a subprotocol of our main algorithm.

– We present the first non-interactive two-party data publishing algorithm for
horizontally-partitioned data which achieves differential privacy and satisfies
the security definition of secure multiparty computation (SMC). In a non-
interactive framework, a database owner first anonymizes the raw data and
then releases the anonymized version for data analysis. This approach is also
known as privacy-preserving data publishing (PPDP) [14].

– We experimentally show that the proposed algorithm can preserve informa-
tion for classification analysis..

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 overviews privacy and security models adopted in this paper.The two-
party data publishing algorithm for horizontally-partitioned data is presented
in Section 4. In Section 5, we describe the two-party protocol for the exponen-
tial mechanism. We discuss in Section 6 the correctness, the security and the
efficiency of the two-party data publishing algorithm. Section 7 presents the
experimental results, and estimates the computation and communication cost
of the algorithm for a real data set. Section 8 answers some frequently raised
questions. Finally, concluding remarks as well as a discussion of future work are
presented in Section 9.

2 Related Work

The primary goal of our study in this paper is to share data. In contrast, pri-
vacy preserving distributed data mining (PPDDM) [20] allows sharing of the
computed result (e.g., a classifier), but completely prohibits sharing data. In
PPDDM, multiple data owners want to compute a function based on their in-
puts without sharing their data with others. This function can be as simple as a
count query or as complex as a data mining task such as classification, cluster-
ing, etc. However, compared to data mining result sharing, data sharing gives
greater flexibility because recipients can perform their required analysis and data
exploration, and apply different modeling methods and parameters.
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Our approach allows anonymizing data from different sources for data re-
lease without exposing the sensitive information. Jiang and Clifton [18] have
proposed Distributed k-Anonymity (DkA) framework to securely integrate two
data tables while satisfying k-anonymity requirement. Mohammed et al. [19] have
proposed an efficient anonymization algorithm to integrate data from multiple
data owners. Unlike the distributed anonymization problem for horizontally-
partitioned data studied in this paper, these methods [18,19] propose algorithms
for vertically-partitioned data. Jurczyk and Xiong [2] have proposed an algo-
rithm to securely integrate horizontally-partitioned data from multiple data
owners. Mohammed et al. [1] have proposed a distributed algorithm to inte-
grate horizontally-partitioned high-dimensional health care data. To the best of
our knowledge, these are the only two methods [1,2] that generate an anony-
mous table for horizontally-partitioned data. However, both the methods adopt
k-anonymity [3,4] or its extensions [5,6] as the underlying privacy principle;
therefore, are vulnerable to the recently discovered privacy attacks [7,10,11].

Differential privacy [12] has received considerable attention recently as a sub-
stitute for partition-based privacy models for PPDP . However, most of the
research on differential privacy so far concentrates on the interactive [12,21]
and non-interactive [13,17] setting for the single-party scenario. Therefore, these
techniques do not address the problem of privacy-preserving data sharing for
classification analysis; the primary theme of this paper. Finally, Dwork et al.
[22] have proposed a distributed interactive protocol for computing a function
while guaranteeing differential privacy. Given a function, each party first com-
putes the function on its own data and then perturbs the result appropriately
such that the summation of all the perturbed results from all the parties gener-
ates a differentially private output. As mentioned already, interactive approach
does not allow data sharing and therefore does not address the problem studied
in this paper.

3 Background

In this section, we first present an overview of differential privacy. Then, we
briefly discuss the security definition in the semi-honest adversary model. Ad-
ditionally, we overview the required cryptographic primitives for the proposed
algorithm.

3.1 Privacy Model

Differential privacy is a recent privacy definition that provides a strong privacy
guarantee. It guarantees that an adversary learns nothing more about an indi-
vidual, regardless of whether her record is present or absent in the data.

Definition 1. (ε-Differential Privacy) [12] A randomized algorithm Ag is dif-
ferentially private if for all data sets D and D′ where their symmetric difference
contains at most one record (i.e., |D�D′| ≤ 1), and for all possible anonymized
data sets D̂,

Pr[Ag(D) = D̂] ≤ eε × Pr[Ag(D′) = D̂], (1)
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where the probabilities are over the randomness of the Ag.

A standard mechanism to achieve differential privacy is to add random noise to
the true output of a function. The noise is calibrated according to the sensitivity
of the function. The sensitivity of a function is the maximum difference of its
outputs from two data sets that differ only in one record.

Definition 2. (Sensitivity) [12] For any function f : D → R
d, the sensitivity

of f is

Δf = max
D,D′ ||f(D)− f(D′)||1 (2)

for all D,D′ differing in at most one record.

For example, let f be the count function. The Δf is 1 because f(D) can differ
at most by 1 due to the addition or to the removal of a single record.

Dwork et al. [12] have proposed the Laplace mechanism. The mechanism takes
a data set D, a function f , and the parameter λ that determines the magnitude
of noise as inputs. It first computes the true output f(D), and then perturbs the
output by adding noise. The noise is generated according to a Laplace distri-
bution with probability density function Pr(x|λ) = 1

2λexp(−|x|/λ); its variance
is 2λ2 and its mean is 0. Laplace mechanism guarantees that perturbed output
f(D̂) = f(D) + Lap(Δf/ε) satisfies ε-differential privacy, where Lap(Δf/ε) is a
random variable sampled from the Laplace distribution.

McSherry and Talwar [23] have proposed the exponential mechanism to achieve
differential privacy whenever it makes no sense to add noise to outputs. The ex-
ponential mechanism can choose an output t ∈ T that is close to the optimum
with respect to a utility function while preserving differential privacy. It takes
as inputs a data set D, an output range T , a privacy parameter ε, and a util-
ity function u : (D × T ) → R that assigns a real valued score to every output
t ∈ T , where a higher score means better utility. The mechanism induces a
probability distribution over the range T and then samples an output t. Let
Δu = max∀t,D,D′ |u(D, t) − u(D′, t)| be the sensitivity of the utility function.

The probability associated with each output is proportional to exp( εu(D,t)
2Δu ); that

is, the output with a higher score is exponentially more likely to be chosen.

3.2 Security Model

In this subsection, we briefly present the security definition in the semi-honest
adversary model. Moreover, we overview the required cryptographic primitives.

Secure Multiparty Computation. In the semi-honest model, adversaries fol-
low the protocol but may try to deduce additional information from the received
messages. A protocol is private in a semi-honest environment if the view of each
party during the execution of the protocol can be effectively simulated by a
probabilistic polynomial-time algorithm knowing only the input and the output
of that party [24]. Many of the protocols, as it is the case with the proposed
algorithm in this paper, involve the composition of privacy-preserving subpro-
tocols in which all intermediate outputs from one subprotocol are inputs to the
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next subprotocol. These intermediate outputs are either simulated given the fi-
nal output and the local input for each party or computed as random shares.
Using the composition theorem [24], it can be shown that if each subprotocol is
privacy-preserving, then the resulting composition is also privacy-preserving.

Cryptographic Primitives. The required cryptographic primitives utilized in
this paper are:

– Yao’s Protocol [26]. It is a constant-round protocol for secure computa-
tion of any probabilistic polynomial-time function in the semi-honest model.
More specifically, assume that we have two parties P1 and P2 with their
inputs x and y, respectively. Both parties want to compute the value of the
function f(x, y). Then, P1 needs to send P2 an encrypted circuit computing
f(x, .). The received circuit is encrypted and accordingly P2 learns nothing
from this step. Afterwards, P2 computes the output f(x, y) by decrypting
the circuit. This can be achieved by having P2 obtaining a series of keys
corresponding to its input y from P1 such that the function f(x, y) can be
computed given these keys and the encrypted circuit. However, P2 must ob-
tain these keys from P1 without revealing any information about y. This is
done by using oblivious transfer protocol [24].

– Random Value Protocol (RVP) [27]. It describes how two parties can
share a value R ∈ ZQ where R has been chosen uniformly at random
and Q ∈ ZN is not known by either party, but is shared between them.
More specifically, P1 has R1 ∈ ZN and P2 has R2 ∈ ZN such that R =
R1 + R2 mod N ∈ [0, Q − 1] where N is the public key for the an additive
homomorphic scheme.

– Oblivious Polynomial Evaluation (OPE) [28]. It is a protocol involv-
ing two parties, a sender whose input is a polynomial P , and a receiver whose
input is a value α. At the end of the protocol, the receiver learns P (α) and
the sender learns nothing.

4 Two-Party Differentially Private Data Release

In this section, we present our two-party algorithm for differentially-private data
release for horizontally-partitioned data. To facilitate understanding the algo-
rithm, we first present the notation that is used along this paper.

4.1 Notation and Preliminaries

Suppose two parties P1 and P2 own data table D1 and D2, respectively. Both
the parties want to release an integrated anonymous data table D̂(Apr

1 , . . . ,
Apr

d , Acls) to the public for classification analysis. The attributes in D1 and
D2 are classified into three categories: (1) An explicit identifier attribute Ai

that explicitly identifies an individual, such as SSN and Name. These attributes
are removed before releasing the data. (2) A class attribute Acls that contains
the class value, and the goal of the data miner is to build a classifier to ac-
curately predict the value of this attribute. (3) A set of predictor attributes
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Algorithm 1. Two-Party Algorithm

Input: Raw data set D1, privacy budget ε, and number of specializations h
Output: Anonymized data set D̂

1: Initialize Dg with one record containing top most values;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;

4: for l = 1 to h do
5: Determine winner candidate w by DEM(D1,D2,∪Cuti,ε

′);
6: Specialize w on Dg;
7: Replace w with child(w) in ∪Cuti;
8: end for
9: for each leaf node of Dg do
10: Compute the share C1 of the true count C;
11: Compute X1 = C1 + Lap(2/ε);
12: Exchange X1 with P2 to compute (C + 2× Lap(2/ε));
13: end for
14: return Each leaf node with count (C + 2× Lap(2/ε))

Apr = {Apr
1 , . . . , Apr

d }, whose values are used to predict the class attribute.
Given a table D1 owned by P1, a table D2 owned by P2 and a privacy parameter
ε, our objective is to generate an integrated anonymized data table D̂ such that
(1) D̂ satisfies ε-differential privacy and (2) the algorithm to generate D̂ satisfies
the security definition of the semi-honest adversary model.

We require the class attribute to be categorical. However, the values of the
predictor attribute can be either numerical vn or categorical vc. Further, we
require that for each predictor attribute Apr, which is either numerical or cat-
egorial, a taxonomy tree is provided. We assume that there is no trusted third
party who computes the output table D̂ and the parties are semi-honest. More-
over, we assume that the two data sets include disjoint tuples and are defined
on exactly the same schema.

4.2 Anonymization Algorithm

In this section, we present our distributed differentially-private anonymization
algorithm based on generalization for two parties as shown in Algorithm 1. Algo-
rithm 1 is executed by the party P1 (same for the party P2). The algorithm first
generalizes the raw data and then adds noise to achieve ε-differential privacy.

Generalizing the Raw Data. The general idea is to anonymize the raw data
by a sequence of specializations starting from the topmost general state. A spe-
cialization, written v → child(v) replaces the parent value v with its set of child
values child(v). The specialization process can be viewed as pushing the ”cut”
of each taxonomy tree downwards. A cut of the taxonomy tree for an attribute
Apr

i , denoted by Cuti, contains exactly one value on each root-to-leaf path. Each
party keeps a copy of the current ∪Cuti and a generalized table Dg, in addition
to the private table D1 or D2. Initially, all values in Apr are generalized to the
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Job Sex Age
Any_Job Any_Sex [1-99)

Blue-collar Any_Sex [1-60)

[1-99] {[1-60), [60-99)}

White-collar Any_Sex [60-90)

White-collar Any_Sex [1-99) Blue-collar Any_Sex [1-99)

Blue-collar Any_Sex [60-99)

∪Cuti = {Any_Job, Any_Sex, [1-99)}
Any_Job {White-collar, Blue-collar}

∪Cuti = {White-collar,Blue-collar, Any_Sex, [1,99)}

White-collar Any_Sex [1- 60)

Doctor

Any_Job

White-collar Blue-collar

Lawyer Janitor Mover

Any_Sex

Male Female

SexJob
[1-99)

[1-60) [60-99)

Age

Fig. 1. Generalized Data Table (Dg)

topmost value in their taxonomy trees, and Cuti contains the topmost value for
each attribute Apr

i . At each iteration, Algorithm 1 uses the distributed exponen-
tial mechanism to select a candidate for specialization (Line 5) depending on its
score. This can be achieved by calling Algorithm 2 detailed in Section 5. Once
a candidate is determined, both the parties specialize the winner candidate w
on Dg (Line 6) by splitting their records into child partitions according to the
provided taxonomy trees. Then, the parties update their local copy of ∪Cuti
(Line 7). This process is repeated according to the number of specializations h.

Example 2. Consider Table 1 and Table 2 and the taxonomy trees presented at
the bottom of Fig. 1. We do not show the class and the surgery attributes in
Fig. 1 due to space limitation. Initially, Dg contains one root node represent-
ing all the records that are generalized to 〈Any Job,Any Sex, [1-99)〉. ∪Cuti
is represented as {Any Job, Any Sex, [1-99)} and includes the initial candi-
dates. To find the winner candidate, both parties run DEM. Suppose that w
is Any Job → {White-collar,Blue-collar}. Both parties create two child nodes
under the root node as shown in Fig. 1 and updates ∪Cuti to {White-collar,
Blue-collar, Any Sex, [1-99)}. Suppose that the next winning candidate is
[1-99) → {[1-60), [60-99)}. Similarly, the two parties create further specialized
partitions resulting the generalized table in Fig. 1.

Adding Noisy Count. Each party computes the number of its records un-
der each leaf node (Line 10). To have an exchange between the parties that is
differentially-private, each party adds a Laplace noise to its count (Line 11) and
sends the result to the other party (Line 12). The protocol ends up with two
Laplace noises added to the count of each leaf (Line 14).

5 Two-Party Protocol for Exponential Mechanism

Exponential mechanism chooses a candidate that is close to optimum with
respect to a utility function while preserving differential privacy. In the
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Table 4. MAX score calculation for the candidate Any Job

Max
Class

Job
Data Set

Y N

5
3 1 Blue-collar

D1
2 1 White-collar

3
2 0 Blue-collar

D2
1 1 White-collar

8
5 1 Blue-collar

Integrated D1 and D23 2 White-collar

distributed setting, the same candidates are owned by two parties while records
are horizontally-partitioned among them. Consequently, we need a private mech-
anism to compute the same output while ensuring that no extra information is
leaked to any party. In this section, we present a two-party protocol for expo-
nential mechanism in a distributed setting. We adopt the max utility function
to compute the scores. For this reason, we illustrate first how this function is
computed. Other utility functions can be adopted as discussed in Section 8.

5.1 Max Utility Function

To compute the score of each candidate, we adopt the max utility function [13].

Max(D, v) =
∑

a∈child(v)

max
c

(|TD(a, c)|) (3)

where the notation T denotes the set of transactions (records) and |TD(a, c)|
denotes the number of records in D having the generalized value a and the class
value c. Thus, Max(D, v) is the summation of the highest class frequencies over
all child values. The sensitivity Δu of the Max function is 1 because the value
Max(D, v) can vary at most by 1 due to a record change. The following example
clarifies how to evaluate the max utility function.

Example 3. The maximum utility function of the candidate Any Job of Table 1
is 5. Table 4 demonstrates how the value 5 is computed. For each possible child
value of the candidate Any Job, we compute the number of records having the
class value Y and the class value N. Afterwards, we pick the maximum class
frequency for each child value and sum them. In the same vein, the maximum
utility function of the the candidate Any Job of Table 2 is 3. If we integrate the
two tables, the maximum utility function of the candidate Any Job is 8. Note
that, the maximum utility function of an integrated table is not the sum of the
values of maximum utility function of each source data set.

5.2 Distributed Exponential Mechanism

The distributed exponential mechanism (DEM) presented in Algorithm 2 takes
the followings as inputs:(1) Two raw data sets D1 and D2 owned by P1 and P2,
respectively, (2) set of candidates {v1, . . . , vk}, and (3) privacy budget ε. The



Secure Distributed Framework for Achieving ε-Differential Privacy 129

Algorithm 2. Distributed Exponential Mechanism (DEM)

Input: Raw data set D1 owned by P1, raw data set D2 owned by P2, a set of candidates
{v1, . . . , vk} and privacy budget ε
Output: Winner w

1: for each candidate vx where x = 1 to k do
2: for (each possible value of aj of vx where j = 1 to m) do
3: for (each class value ci where i = 1 to l) do
4: P1 computes |TD1(aj , ci)|;
5: P1 computes |TD2(aj , ci)|;
6: end for
7: end for
8: P2 generates a random share α2;
9: (P1 ← α1, P2 ← ⊥) ← MAX(|TD1(aj , ci)|i=1 to l,j=1 to m, |TD2(aj , ci)|

i=1 to l,j=1 to m, α2);
10: P1 chooses a random share βx and defines the following polynomial Q(z) =

lcm(2!, . . . , w!) .10sw .
∑w

i=0

(( ε
2Δu

)s.10
s.(α1+z))i

10s(i−1).i!
− βx;

11: P1 and P2 execute a private polynomial with P1 inputting Q(.) and P2 inputting
α2, in which P2 obtains β′

x = Q(α2).
12: end for
13: (P1 ← γ1, P2 ← ⊥)← SUM(βx,x=1 to k, β

′
x,x=1 to k, γ2);

14: P1 and P2 execute RVP to compute random shares R1 and R2, where (R1 +R2) ∈
Z(γ1+γ2);

15: P1 and P2 evaluates x← COMPARISON(R1, R2, βx,x=1 to k, β
′
x,x=1 to k);

16: return vx;

protocol outputs a winner candidate depending on its score using the exponen-
tial mechanism. The scores of the candidates can be calculated using different
utility functions [13]. In this paper, we adopt the max utility function described
previously to calculate the scores. Given the scores of all the candidates, ex-
ponential mechanism selects the candidate v having score u with the following
probability where Δu is the sensitivity of the chosen utility function.

exp( εu
2Δu

)
∑k

n=1 exp(
εun

2Δu
)

(4)

Next, we detail the steps of the distributed exponential mechanism (DEM).

Computing Max Utility Function. To compute the max utility function for
each candidate vx, the parties P1 and P2 compute |TD1(aj , ci)| and |TD1(aj , ci)|,
respectively for every possible value aj of vx and for every possible value ci
of the class attribute (Lines 2 to 7). After that, the two parties engage in
a secure circuit evaluation process using Yao’s Protocol (Line 9). The values
|TD1(aj , ci)|i=1 to l,j=1 to m, |TD2(aj , ci)|i=1 to l,j=1 to m and α2 are passed to
the MAX circuit where α2 is randomly generated by P2. For each child value
aj of the candidate vx, the circuit MAX, as shown in Algorithm 3, adds the corre-
sponding values |TD1(aj , ci)| and |TD2(aj , ci)| for every possible value ci of the
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Algorithm 3. MAX Circuit

Input: |TD1(aj , ci)|i=1 to l,j=1 to m, |TD2(aj , ci)|i=1 to l,j=1 to m and α2

Output: α1 to P1,⊥ to P2

1: sum = 0;
2: for j = 1 to m do
3: max = 0;
4: for i = 1 to l do
5: ss= |TD1(aj , ci)|+ |TD2(aj , ci)|;
6: if (ss > max) then
7: max = ss;
8: end if
9: end for
10: sum = sum+max;
11: end for
12: α1 = sum - α2;
13: return α1,⊥;

Algorithm 4. COMPARISON Circuit

Input: Random shares R1 and R2, βx,x=1 to k, and β′
x,x=1 to k

Output: Index x to P1 and P2

1: L = 0;
2: R = R1 +R2;
3: for x = 1 to k do
4: β = βx + β′

x;
5: L = L+ β;
6: if (R ≤ L) then
7: return x;
8: end if
9: end for

class attribute. It then computes the maximum value of the results. After that,
the maximum values associated with each child value aj should be summed to
get the max utility function for the candidate vx. To produce random shares of
the max utility function, the circuit subtracts α2, which is randomly generated
by P2, from the resulted score and outputs the result α1 to P1.

Computing Equation 4. The exponential function, exp(x) can be defined
using the following Taylor series:

1 +
x

1
+

x2

2!
+ · · ·+ xi

i!
+ . . . (5)

To evaluate the nominator of Equation 4 for each vx, we need to evaluate the

expression exp( εu
2Δu

) which is equal to exp( ε(α1+α2)
2Δu

). Given the aforementioned
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Taylor series:

exp(
ε(α1 + α2)

2Δu
) =

w∑

i=0

( ε(α1+α2)
2Δu

)i

i!
(6)

Hence, the next step involves computing shares of the Taylor series approxima-
tion. In fact, it computes shares of:

lcm(2!, . . . , w!) .10s(w+1).

w∑

i=0

(( ε
2Δu

)s.(α1 + α2))
i

i!

where:

– lcm(2!, . . . , w!) is the lowest common multiple of {2!,. . . ,w!} and we multiply
by it to ensure that there are no fractions.

– ( ε
2Δu

)s refers to approximating the value of ε
2Δu

up to a predetermined num-
ber s after the decimal point. For example, if we assume s = 4 and ε = ln2
then ( ln2

2×1 )4 = (0.3465). Note that, this approximation does not effect pri-
vacy guarantee since we are using less privacy budget. Also, the impact on
the utility is insignificant. In Section 7, we experimentally show the accuracy
for different privacy budgets.

– 10sw.10s is multiplied by the series to ensure that we end up with an integer
result such that:

lcm(2!, . . . , w!) .10sw.10s.

w∑

i=0

(( ε
2Δu

)s.(α1 + α2))
i

i!

= lcm(2!, . . . , w!) .10sw.

w∑

i=0

10s.
(( ε

2Δu
)s.(α1 + α2))

i

i!

= lcm(2!, . . . , w!) .10sw.

w∑

i=0

(( ε
2Δu

)s.10
s.(α1 + α2))

i

10s(i−1).i!

Since s and w are known to both parties, the additional multiplicative factor
lcm(2!, . . . , w!).10sw.10s is public and can be removed at the end (if desired).
This equation is accurate up to an approximation error which depends on the
value of w. Therefore, scaling is needed and consequently the accuracy of the
exponential mechanism could be affected. However, if the scaling factor is very
large, the total cost in terms of bits will increase. We experimentally measure the
impact of scaling in Section 7 and show that the scaling has very little impact
for the max utility function. The parties should agree on the number of the
considered digits s after the decimal point. The higher accuracy (in terms of the
number of the considered digits after the decimal point) we demand, the higher
cost we pay (in terms of bits). That is for s decimal points, we need log210

s

extra bits. These extra bits result additional computation and communication
cost. More details are provided in Section 7. Note that restricting the values of
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exp( εu
2Δu

) to a finite range is completely natural as calculations performed on
computers are handled in this manner due to memory constraints.

To evaluate the nominator of Equation 4 for each vx in Algorithm 2, P1

chooses a random share βx and defines the following polynomial where s is a
constant number (Line 10):

Q(z) = lcm(2!, . . . , w!) .10sw.
w∑

i=0

(( ε
2Δu

)s.10
s.(α1 + z))i

10s(i−1).i!
− βx

Afterwards, P1 and P2 execute a private polynomial with P1 inputting Q(.) and
P2 inputting α2, in which P2 obtains β′

x = Q(α2) (Line 11). To evaluate the
denominator of Equation 4, the two parties execute the circuit SUM which takes
as input the random shares βx and β′

x for each candidate vx and a random
number γ2 generated by P2 (Line 13). The circuit computes the total sum of the
results that come out because of adding the random shares βx and β′

x for each
candidate vx. It then subtracts γ2, which is randomly generated by P2, from the
value of the total sum and outputs the share γ1 to P1.

Once we compute the denominator and numerator of Equation 4, we can
implement the exponential mechanism by first partitioning the interval [0,1]
into segments according to the corresponding probability mass of each candidate.
Next, we sample a random number uniformly in the range [0,1] and the partition
in which the random number falls determines the winner candidate. However,
this method involves computing a secure division (Equation 4). Unfortunately,
we are not aware of any secure division scheme that fits our scenario where
the nominator value is less than the denominator value. Alternatively, we solve
this problem without a secure division protocol. We first partition the interval
[0,

∑k
x=1 exp(

εux

2Δu
)] into k segments where

∑k
x=1 exp(

εux

2Δu
) ≈ γ1 + γ2 and each

segment corresponds to a candidate vx has a subinterval of length equal to
βx+β′

x. We then sample a random number uniformly in the range [0, γ1+γ2] and
the segment in which the random number falls determines the winner candidate.

Picking a Random Number. The parties P1 and P2 need to pick a random
number uniformly in the range [0, γ1 + γ2], where γ1 + γ2 ≈

∑k
x=1 exp( εux

2Δu
).

This can be achieved by using the Random Value Protocol (RVP) [27] (Line 14).
RVP takes γ1 and γ2 from the parties as input and outputs the random value
shares R1 and R2 to the respective parties, where R = R1 +R2.

Example 4. Suppose the values of the expression exp( εu
2Δu

) is approximated to
60, 150 and 90 for three candidates as shares. Both parties then pick a random
number in the range [0, 300] using the RVP where 300 = 50 + 150 + 90.

Picking a Winner. The two parties engage again in a simple secure circuit
evaluation process using Yao’s Protocol [26] (Line 15). The circuit COMPARISON
compares their random number R with the sum L. The winner vx is the first
candidate such that R ≤ L where L =

∑x
r=1(βx + β′

x).
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6 Analysis

We discuss in this section the correctness, security and efficiency of Algorithm 1.

Proposition 1. (Correctness) Assuming both parties are semi-honest, Algo-
rithm 1 releases ε-differentially private data when data records are divided hori-
zontally among two parties over the same set of attributes.

Proof. Algorithm 1 performs the same function as the single-party algorithm
DiffGen [13] but in a distributed setting. DiffGen is ε-differentially private.
Therefore, we prove the correctness of Algorithm 1 by just proving the steps
that are different from DiffGen:

– Candidate selection. Algorithm 1 selects a candidate for specialization (Line
5) using Algorithm 2. Algorithm 2 selects a candidate vw with probability
∝ exp( εuw

2Δu
). The two parties compute cooperatively exp( εu

2Δu
) for the can-

didates. Then the parties build an interval in the range [0,
∑k

x=1 exp(
εux

2Δu
)]

and partition it among the candidates where each subinterval has a length
equal to exp( εu

2Δu
). Since, the random value lies uniformly between

[0,
∑k

x=1 exp(
εux

2Δu
)] and a candidate is chosen according to this value, the

probability of choosing any candidate is
exp( εu

2Δu
)

∑
k
x=1 exp(

εux
2Δu

)
. Therefore, Algorithm 2

correctly implements exponential mechanism.
– Updating the tree Dg and ∪Cuti. Each party has its own copy of Dg and

∪Cuti. Each party updates these items exactly like DiffGen (Lines 6-7).
– Computing the noisy count. Algorithm 1 also outputs the noisy count of

each leaf node (Line 14), where the noise is equal to 2× Lap(2/ε). Thus, it
guarantees ε

2 -differential privacy.

Since Algorithm 1 performs exactly the same sequence of operations as the single-
party algorithm in a distributed setting where D1 and D2 are kept locally, it is
also ε-differentially private. ��

Proposition 2. (Security) Algorithm 1 is secure under the semi-honest adver-
sary model.

Proof. The security of Algorithm 1 depends on the following steps where the
parties exchange information:

– Algorithm DEM (Line 5): The privacy proof of DEM is as follows:
• Circuit MAX: It can be evaluated securely [24]. Parties input their local
counts |T (aj, ci)| and receive the random share of the MAX value.

• Oblivious Polynomial Evaluation: It has been proven to be secure [28].
• Random Value Protocol (RVP): It has proven to be secure [27].
• Circuits SUM and COMPARISON: Similarly, these circuits can be evaluated
securely [24].

Since, all the above protocols produce random shares and proved to be se-
cure, DEM is also secure due to the composition theorem [24].
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– Exchanging noisy counts (Line 12): Each party initially adds Laplace noise
to its local count and then exchange the noisy count with the other party.
This does not violate differential privacy because the noisy count is already
private according to Laplace mechanism [12].

Therefore, due to Composition Theorem [24], Algorithm 1 is secure. ��

Proposition 3. (Complexity) The encryption and the communication costs of
Algorithm 1 are bounded by O(hk logR) and O(hk logRK), respectively.

Proof. Distributed exponential mechanism (Algorithm 2) dominates the overall
complexity of Algorithm 1. The complexity of DEM is computed as follows:

– Circuit MAX: This circuit is composed of simple add and compare operations
and thus can be implemented by the number of gates linear to the input size
of the circuit. The input includes m× l local counts |T (aj , ci)| and these val-
ues are of size at most log |D|. Hence, the encryption and the communication
complexity of MAX are bounded by O(ml log |D|) and O(ml log |D|K), respec-
tively, where K is the length of the key for a pseudorandom function [29].
The MAX protocol is called at most k times. Therefore, the encryption and the
communication costs are O(kml log |D|) and O(kml log |D|K), respectively.

– Oblivious Polynomial Evaluation: This protocol involves the private evalua-
tion of a polynomial of degree w. Thus, the encryption and the communica-
tion complexity are bounded by O(w) and O(we), where e is the length of an
encrypted element [30]. This protocol is also called k times. Therefore, the
encryption and the communication cost are O(kw) and O(kwe), respectively.

– Random Value Protocol (RVP): The costs of RVP are negligible and there-
fore they are ignored.

– Circuit SUM and COMPARISON: The analysis is similar to MAX circuit. The en-
cryption and the communication complexity of both the circuits are bounded

by O(k logR) and O(k logRK), where R =
⌊
exp( ε

′ux

2Δu
)× 10s

⌋
.

Both the parties execute DEM (Algorithm 2) h times to select the winner can-
didates. Note that Lines 1-12 of Algorithm 2 are not executed in every iteration.
Rather, these lines are only invoked once for each candidate. Hence, the over-
all encryption and communication costs are O(max{kml log |D|, kw, hk logR})
and O(max{kml log |D|K, kwe, hk logRK}), respectively. Since the value of R
is usually very large, the encryption and communication costs can be defined as
O(hk logR) and O(hk logRK), respectively. ��

7 Performance Analysis

In this section, we evaluate the scaling impact on the data quality in terms of
classification accuracy. Moreover, we estimate the computation and the commu-
nication costs of Algorithm 1. We employ the publicly available data set Adult ;
a real-life census data set that has been used for testing many anonymization
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Fig. 2. Classification Accuracy for Different Scaling

algorithms [18,5,6]. It has 45, 222 census records with 6 numerical attributes, 8
categorical attributes, and a binary class column representing two income levels,
≤50K or >50K. All experiments are conducted on an Intel Core i7 2.7GHz PC
with 12GB RAM.

7.1 Experiments

To evaluate the impact on classification quality, we divide the data into training
and testing sets. First, we apply our algorithm to anonymize the training set and
to determine the ∪Cuti. Then, the same ∪Cuti is applied to the testing set to
produce a generalized testing set. Next, we build a classifier on the anonymized
training set and measure the Classification Accuracy (CA) on the generalized
records of the testing set. For classification models, we use the well-known C4.5
classifier [31]. To better visualize the cost and benefit of our approach, we provide
additional measures: (1) Baseline Accuracy (BA) is the classification accuracy
measured on the raw data without anonymization; (2) BA - CA represents the
cost in terms of classification quality for achieving a given ε-differential privacy
requirement; (3) Lower bound Accuracy (LA) is the accuracy on the raw data
with all attributes (except for the class attribute) removed and (4) CA - LA
represents the benefit of our method over the naive non-disclosure approach.

Fig. 2 depicts the classification accuracy CA for the utility function Max where
the privacy budget ε ∈ {0.1, 0.25, 0.5, 1} and the number of considered digits
after the decimal point 2 ≤ s ≤ 10 (i.e., scaling as described in Section 5).
The BA and LA are 85.3% and 75.5%, respectively, as shown in the figure by
the dotted lines. We use 2/3 of the records (i.e., 30,162) to build the classifier
and measure the accuracy on the remaining 1/3 of the records (i.e., 15060). For
each experiment, we execute 10 runs and average the results over the runs. The
number of specializations h is 10 for all the experiments. For ε = 1 and s = 10,
BA - CA is around 2.6% whereas CA - LA is 7.1%. For ε = 0.5, BA - CA
spans from 3.6% to 4%, whereas CA - LA spans from 5.7% to 6.2%. However,
as ε decreases to 0.1, CA quickly decreases to about 79% (highest point), the
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cost increases to about 6.5%, and the benefit decreases to about 3.3%. The
experimental result demonstrates that the classification accuracy is insensitive
to the scaling (the number of considered digits after the decimal points) for the

Max function. This is because the value of exp( ε′
2Δu

u) is large due to the score of
the Max function which is usually a large integer. Therefore, scaling has hardly
any impact on the data utility.

7.2 Cost Estimates

Most of the computation and the communication of Algorithm 1 take place dur-
ing the execution of the DEM (Line 5). The runtime of the other steps is less
than 30 seconds for Adult dataset. Hence, we only elaborate the runtime of the
DEM. As discussed in Section 6, the computation and the communication com-
plexity of the distributed exponential mechanism are dominated by the cost of
the SUM (Line 13) and COMPARISON (Line 15) circuits. In the following, we provide
an estimate for the computation and the communication costs of evaluating the
SUM and COMPARISON circuit. Here, we assume that P1 encodes and P2 evaluates
the encrypted circuit. The roles of P1 and P2 can be swapped.

Computation. The cost of an encryption is denoted by Cm which is 0.02 second
for 1024-bit numbers on a Pentium III processor [28]. For both the circuits, P2

needs to execute a 1-out-of-2 oblivious transfer protocol to get the corresponding
encryption key for its input bits. This is the major computational overhead of
the distributed exponential mechanism. The computation cost of an oblivious
transfer protocol is roughly equal to the cost of a modular exponentiation, which
is Cm. Therefore, the computation overhead is equal to the number of input bits
of P2 times Cm. Each input of the circuit is bounded by 
log2 R� bits, where

R =
⌊
exp( ε′

2Δu
u(D, vi))× 10s

⌋
.


log2 R� =
⌈
log2

(⌊
exp(

ε′

2Δu
)× 10s

⌋)⌉

=

⌈
ε′

2Δu

ln 2
+ log2 10

s

⌉

=

⌈
ε′

2Δu

ln 2
+ (3.3219× s)

⌉

Here, Δu = 1, ε′ = 1
2(6+2×10) = 0.02, u(D, vi) is bounded by the number of the

records |D| = 30162 for Max function, and s = 10 suffices the desired accuracy.
Hence, we have 
log2 R� = 469 bits. The input size of P2 is O(k logR) bits,
where the constant is fairly small. Here, k is the total number of candidates
which is 24 at most for Adult data set. Thus, the cost is k × 
log2 R� × Cm
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= 24× 469× 0.02s ≈ 225 seconds. As mentioned in Section 6, there are at most
h invocations of these circuits. Here, h is the number of specializations which is
set to 10. Hence, the total computational cost is h× 225 ≈ 37.5 mins .

Communication. P1 needs to send a table of size 4K for each gate of the SUM
and COMPARISON circuit, where we assume the key size K is 128 bits. This is the
major communication overhead of the distributed exponential mechanism. Since
these circuits only use addition and comparison operations, the total number of
gates needed to implement these circuits are O(k logR). Thus, the number of
gates, Tg ≈ 24× 469 = 11256. Therefore, the communication cost of sending the
tables is h× 4K ×Tg ≈ 5.76× 107 bits, which takes approximately 37.3 seconds
using a T1 line with 1.544 Mbits/second bandwidth.

Remark. Our estimation ignores the computational cost of evaluating the
circuit and the communication cost of the oblivious transfer protocol. The eval-
uation of the circuit involves decrypting a constant number of ciphertexts (sym-
metric encryption) for every gate which is very efficient compared to oblivious
transfer (modular exponentiations) since the number of gates of the circuit is
linear to the number of input bits. Also, the communication cost of the obvious
transfer protocol is negligible compared to the cost of sending the tables.

8 Discussion

Is differential privacy good enough? What changes are required if there are more
than two parties? Can the algorithm be easily adapted to accommodate a dif-
ferent utility function? In this section, we provide answers to these questions.

Differential privacy. Differential privacy is a strong privacy definition.
However, Kifer and Machanavajjhala [32] have shown that if the records are not
independent or an adversary has access to aggregate level background knowledge
about the data, then privacy attack is possible. In our application scenario,
each record is independent of each other and we assume that no deterministic
statistics of the raw database have ever been released. Hence, differential privacy
is appropriate for our problem.

More than two parties. The proposed algorithm is only applicable for the
two-party scenario because the distributed exponential algorithm, and the other
primitives (e.g., random value protocol) are limited to two-party scenario. The
proposed algorithm can be extended for more than two parties by modifying all
the subprotocols while keeping the general top-down structure of the algorithm
as it is.

Other Utility functions. For each new utility function, we only need to
devise an algorithm to calculate the utility function. Hence, we only have to
change Algorithm 3 to adapt our approach for other utility function.
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9 Conclusion

In this paper, we have presented a two-party differentially-private data release
algorithm for horizontally-partitioned data for the non-interactive setting. We
have shown that the proposed algorithm is differentially private and secure un-
der the security definition of semi-honest adversary model. Moreover, we have
experimentally evaluated the data utility of the algorithm. An intersecting re-
search direction, as a future work, is devising different heuristics for different
data mining tasks.
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