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a b s t r a c t 

Identifying the impacts of occupants on building energy consumption has become an important issue 

in recent years. This is due to the interrelationship of influencing factors such as urban climate, build- 

ing characteristics, occupant behavior, and building services and operation, which makes it challenging 

to identify the role of occupants in energy consumption. The research problem in this study lies in the 

fact that the occupants of a building may not be cautious regarding energy savings, and there exists no 

ground to assess their energy consumption behavior. One solution is the development of a systematic 

comparison procedure between similar buildings. This paper introduces a new procedure for compari- 

son between occupants of several buildings to show the rank of each building among others and suggest 

occupants on reducing their energy consumption and improving their rank. The proposed framework is 

developed based on multiple data-mining methods, including clustering, association rules mining, and 

neural networks. The proposed methodology is composed of two levels. The first considers the amount 

of energy usage by occupants after filtering effects unrelated to the occupant behavior. The second ranks 

the buildings in terms of achieved and potential savings during the time under investigation. To demon- 

strate the application, the methodology was applied on a set of monitored residential buildings in Japan. 

Results suggest that the proposed method enhances the evaluation of buildings’ energy-saving potential 

by revealing the occupants’ contribution. It also provides diverse and prioritized strategies to help occu- 

pants manage their energy consumption by revealing the building energy end-use patterns. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

According to reports published by the Natural Resources Canada

1] , residential and commercial buildings are a main contributor to

otal secondary energy use, making up more than 30% of the total.

his shows the necessity of energy consumption manipulation in

uildings for a sustainable future. Occupants could affect the en-
List of abbreviations: BA, building area; E&I, entertainment and information; ELA, 

quivalent leakage area; EUI, energy use intensity; FRIDGE, refrigerator; GRA, grey 

elational analysis; H&S, housework and sanitary; HC, space heating and cooling; 

LC, heat loss coefficient; HT, house type; HVAC, heating, ventilation, and air con- 

itioning; HWS, hot water supply; KE, kitchen equipment; KITCH, kitchen; LIGHT, 

ighting; NO, number of occupants; OTHER, other end-use loads; PI, performance 

ndex; RA, annual mean global solar radiation; RH, annual mean relative humidity; 

M, rules for modification; RS, rules for savings; T, annual mean air temperature; 

S, annual mean wind speed. 
∗ Corresponding author. 

E-mail address: haghi@bcee.concordia.ca (F. Haghighat). 
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rgy consumption of a building to great extents even if all systems

nd equipment (end-use loads and heating, ventilation, and air

onditioning [HVAC] systems) work perfectly [2] . Recently, there

ave been many improvements in technological solutions, such as

esign and operation of building services [3] . Among these, recent

esearch highlights occupant behavior as an important contributor

hat can increase the energy efficiency of buildings, similar to tech-

ological solutions [4] . 

Generally, the factors influencing the building energy consump-

ion could be divided into four main categories (see Table 1 ). 

Among these, building occupants’ activities and behavior in-

lude factors that indirectly affect energy consumption. For ex-

mple, social and economic factors (energy cost, degree of edu-

ation, etc.) partly affect the occupants’ attitudes toward energy

onsumption [5] . Indoor environmental conditions are also deter-

ined by the occupants; therefore, they are an indicator of oc-

upant behavior. The combined effect of the first three factors on

nergy consumption is identified using advanced simulation pack-

ges that are robust with respect to simulating different scenarios.

owever, modeling occupant behavior is still a challenge due to

https://doi.org/10.1016/j.enbuild.2018.11.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.11.050&domain=pdf
mailto:haghi@bcee.concordia.ca
https://doi.org/10.1016/j.enbuild.2018.11.050
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Table 1 

Influencing factors in energy consumption. 

1 Climate (e.g., outdoor temperature, solar radiation) 

2 Building-related characteristics (e.g., type, area, heat loss coefficients) 

3 Building services (e.g., space heating and cooling, hot water supply) 

4 Building occupant activities and behavior (e.g., user presence, activities) 
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its complexity and indirect effects. Additionally, various statistical

data analysis processes have been applied to establish meaning-

ful relationships among energy consumption and influencing fac-

tors that can help reduce energy consumption effectively. How-

ever, with the increasing amount of data generated by buildings

within the complexity of the systems, especially on occupant be-

havior, these relationships cannot be captured by simple statistical

methods; thus, such methods are inadequate for performance im-

provement. In this study, the challenge is: “How can we develop a

procedure to assess the performance of a group of buildings based

on the occupants’ behavior?”

1.2. Literature review 

Data-mining processes usually involve data preprocessing,

knowledge discovery, and interpretation and selection. Data pre-

processing involves data cleaning, outlier detection, attribute se-

lection, dimensionality reduction, and transformation. Knowledge

discovery aims to extract raw information and discover patterns

in data using either supervised or unsupervised data analytics. In-

terpretation and selection constitute the final step, referred to as

post-mining. It basically means to interpret the results and screen

for potentially useful knowledge. Fan et al. [3] and Miller et al.

[7] carried out a review of the application of data analytics in

building engineering. Different data-mining techniques have been

used by researchers to extract information from building-related

data. Techniques of supervised and unsupervised learning were

used in the framework development [8–13] . Generally, works are

divided into identifying operational patterns, predictive modeling,

and fault detection and diagnosis. Since these concepts are highly

tied together, works often involve some or all of them. 

Operational patterns are found using data analytics tools. One

of them is conventional clustering tools, such as K-means, K-

medoids, DB-scan, etc., which have been used extensively [14,15] .

The observations assigned to the same group are referred to as

having similar operational conditions. As an example, clustering

analysis has been used to study the patterns of HVAC opera-

tion [11,13] and windows opening and closing [10] . Carmo et al.

[16] clustered hourly heat load data of 139 single-family detached

houses to find daily routines of thermal load demand and the

effect of household and building characteristics on energy use.

Usually, typical operation patterns are investigated at the build-

ing, system, or component level. At the building level, whole-

building energy consumption and environment have been consid-

ered [15,17–19] . At the system and component levels, the operation

of HVAC has been investigated as a whole system or as a compo-

nent (pumps, fans, etc.) [20–22] . 

Patterns of operation have also been discovered in the form of

if–then rules. They are useful for identifying the typical working

conditions of the system and discovering faulty conditions. Xue

et al. [23] applied clustering analysis and association rule min-

ing to find typical seasonal operating patterns in a district heat-

ing system. Any deviations from normal patterns show a fault in

the system. Similar works in variable refrigerant flow systems and

chiller systems have been carried out [13,24] . If the analysis of

building-related data is performed in a time-series manner such

as a daily, seasonal, or yearly basis to capture any underlying pat-

terns in time, the knowledge discovered is referred to as temporal
nowledge [6] . Lavin and Klabjan [14] clustered 24-h time–series

nergy data of commercial and industrial buildings to find patterns

f operation over time. The results revealed different patterns of

sage in different months of the year. Fan et al. [25] applied mo-

if discovery (frequent sequential patterns) and temporal associa-

ion rule mining (conclusions are made after a time interval) to

iscover temporal patterns in chiller and air handling unit energy

onsumption. The knowledge discovered was successfully used to

dentify anomalies in an HVAC system and capture building dy-

amics. Patnaik et al. [26] performed techniques of motif discovery

o assess chiller operation in data centers. A similar approach was

pplied by Miller et al. [27] for whole-building energy data and

nergy-saving opportunities. 

Predictive modeling is another topic for data-mining application

n building engineering. Neural networks are extensively used in

he field. Examples are Belman-Flores and Ledesma [28] in the case

f a multilayer perception (MLP) artificial neural network (ANN);

echtler et al. [29] in the case of a dynamic neural network; and

wider [30] , who used an MLP and radial basis (RBF) ANN. 

As pointed out in [4] , there is still a need to develop system-

tic frameworks for evaluation of occupant behavior and its im-

act on building energy consumption. Problems such as identify-

ng the behavior of occupants accurately by analyzing their data

re still at the fundamental levels and have not been solved thor-

ughly by current data analysis methods. On the one hand, this

s due to the lack of clear and consistent definitions of occupant

ehavior and, on the other, to the lack of sufficient data, the high

ost of establishing large databases and storage systems, or privacy

ssues. Novel integration of data-mining techniques can yield new

nsights on occupant behavior analysis and provide new pathways

or energy use management. This study presents a data-mining ap-

roach for analyzing occupants’ energy usage based on a compari-

on among them. 

The challenges that need to be dealt with are: 

• How can one monitor the performance of occupants practically

and accurately without the interference of other factors and

based on their capabilities, so that one is able to give them ap-

plicable prioritized recommendations? 
• How can one develop a process to assess the performance of a

set of buildings based on the energy-saving awareness of their

occupants? 

.3. Statement of novelty 

The occupants of a single building may not be well informed

egarding their energy consumption performance. One solution to

his challenge would be developing a procedure for a comparison

mong occupants of several buildings to show the rank of each

uilding among others and showcase occupants’ potential abili-

ies to reduce energy consumption on specific end-use loads. This

ay, the residents of each building would know their real rank

nd could be motivated to take energy-saving measures. In other

ords, the occupants can learn from each other and be persuaded

o reduce their consumption because they would observe that a

imilar building is consuming less energy. For example, if occu-

ants of a single building see that the occupants of similar build-

ngs are using less energy to provide the required indoor envi-

onment, they might be persuaded to follow them. However, due

o the existence of several factors in energy consumption patterns

f occupants (such as number of occupants, floor area, and house

ype), we cannot simply compare the energy consumption of sev-

ral buildings. Also, the activities that occupants have performed to

ave energy and the degree of their energy consciousness are not

ccounted for. Thus, such simple comparisons are not yet effective.

s many influencing factors as possible should be considered to
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Table 2 

Representative attributes of the four influencing factors on occupant behavior. 

Influencing factor in EUI Attribute Category-unit Abbreviation 

City climate a) Annual mean air temperature Numerical- o C T 

b) Annual mean relative humidity Numerical RH 

c) Annual mean wind speed Numerical-m/s WS 

d) Annual mean global solar radiation Numerical-MJ/m 

2 RA 

Building-related characteristics a) House type a Categorical HT 

b) Building area Numerical-m 

2 BA 

c) Equivalent leakage area b Numerical-cm 

2 /m 

2 ELA 

d) Heat loss coefficient c Numerical-W/m 

2 K HLC 

Occupant-related characteristics a) Number of occupants Numerical NO 

Building services system and operation d a) Space heating and cooling Categorical HC 

b) Hot water supply Categorical HWS 

c) Kitchen equipment Categorical KE 

a The houses are either detached or apartments and are transformed to [0, 1]. 
b Measured by fan pressurization method. 
c Calculated based on building design plans. 
d Either electric or nonelectric. They are transformed to [0, 1]. As all space cooling equipment is electric, the value of HC is 

determined by space heating. 
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ake a fair comparison. Also, if the procedure is well designed,

t can reveal potential saving opportunities for occupants of the

uildings. In this study, a new framework for energy assessment

f a set of buildings is introduced using data-mining techniques.

he details are introduced in the following sections. 

. Methodology 

The proposed method is composed of multiple steps, shown in

ig. 1 . The data from 80 buildings in Japan are collected, and pro-

essed. Outlier detection and removal are applied on the dataset

s preprocessing steps. As a result, four buildings are removed due

o data deficiency. Outliers are substituted by approximations us-

ng regression on other attributes [31] . Each step uses a subset of

vailable features in the data set, which are described in the fol-

owing sections. The proposed method is composed of two-level

anking, as shown in Fig. 1 in red boxes. The first level consid-

rs the amount of energy usage by occupants after filtering out

ffects unrelated to occupants. The second level ranks the build-

ngs in terms of achieved and potential savings during the time

nder investigation. Therefore, the occupants know their specific

ategory in terms of each level. This helps them clearly understand

heir performance and take suitable measures. The methodology

as applied on detailed data of 76 buildings. 

.1. Grey relational analysis 

The influencing factors that affect building energy consumption

re listed in Table 2 . The contribution of each of these factors in

verall energy consumption of buildings (energy use intensity, EUI)

iffers greatly. For example, variation in number of occupants may

ave larger impacts on the total energy consumption than varia-

ion in the annual wind speed. Therefore, weights should be as-

igned to each of these factors. One of the methods that could give

uch weights is grey relational analysis (GRA), which is applied on

he data set as shown in Fig. 1 . GRA tries to identify the causative

actors of a defined objective (energy use, in this case) and sort

hem in terms of their contribution [32] . Considering an n × m data

et, y j denotes the objective sequence (in this case, building en-

rgy consumption), and y i denotes the influencing factors (listed

n Table 2 ). Therefore, i : 1, 2, …m , and j : 1 , 2 , . . . P (in this case,

 = 1), and k : 1 , 2 , . . . n is the index of data point. 

 i ( k ) = 

x i ( k ) 

1 

n 

∑ n 
k =1 x i ( k ) 

(1) 
Similarly, y ( k ) is defined for all objectives. At any data point k ,

he grey relational grade between y ( k ) and y i ( k ) is defined as: 

j ( k ) = 

min 

i 
min 

k 
| y ( k ) − y i ( k ) | + α max 

i 
max 

k 
| y ( k ) − y i ( k ) | 

| y ( k ) − y i ( k ) | + α max 
i 

max 
k 

| y ( k ) − y i ( k ) | (2) 

here α is the “distinguishing coefficient” and is generally set to

.5 [31] . The results are calculated for each data point. The average

s used as the weight for the corresponding attribute and is known

s the relational grade. 

 i = 

1 

n 

n ∑ 

k =1 

ξi ( k ) (3) 

The relational grades are numerical measures, which show the

ffect of the influencing factors on the objectives. Basically, r i > 0.9

enotes a marked influence, r i > 0.8 shows a relatively important

nfluence, and r i > 0.7 an important one; also, r i < 0.6 denotes a

egligible influence [9,32] . 

.2. Level 1 clustering 

Clustering analysis tries to group a set of observations by max-

mizing between-cluster distance and minimizing within-cluster 

imilarities. In other words, it tries to put observations into dis-

inct groups. The buildings are clustered based on influencing fac-

ors unrelated to occupant behavior (mentioned in Table 2 ), so

uildings in the same group have similar characteristics except for

ccupant behavior. In this study, clustering is performed several

imes for different tasks. There are several clustering algorithms,

ach made for different purposes. They are usually applied on two-

imensional data where each row represents an observation and

ach column represents an attribute. Clustering mainly involves

ve main tasks. The first is feature generation, which is the pro-

ess of choosing appropriate attributes for clustering. This is based

n domain knowledge and available data. The attributes chosen for

evel 1 clustering are described in Table 2 . Therefore, buildings in

he same cluster share similar characteristics in terms of weather

onditions, building structure, number of occupants, and building

ervices. 

The second task is choosing proximity measures that differ

ased on the algorithms used. The most widely used measure is

he K-means algorithm, given as: 

n 
 

i =1 

min 
μ j 

∥∥x i − μ j 

∥∥ (4) 

here x i is the i th observation and μj is the cluster center. Other

imilar algorithms are the K-medoids and Manhattan distance,
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Fig. 1. Framework development for building performance comparison based on occupant behavior. 
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Pearson correlation, and cosine similarity algorithms [6] . The third

and fourth tasks are applying the algorithm and explaining the

results. The last task is to measure the goodness of the cluster-

ing, which is done either by external methods (mutual informa-

tion, F-measure, purity, etc.) or internal measures (such as the Sil-

houette index or Dunn index). A list of methods can be found

in [33] . 

Prior to clustering the data, some preprocessing is needed to

make the data consistent, such as unit conversions, outlier diagno-

sis, and normalization. For binary attributes, their two states, such

as house types, that is, [detached house, apartment], are trans-

formed to [0, 1]. Outlier detection is performed using the quan-

tile method, and the outliers were substituted using regression on

other attributes [8,34] . 

If all features are used at the same time for clustering, we may

end up with some buildings in the same cluster with different

climatic conditions, such as outdoor ambient temperature (other

features may be very similar, which would put two buildings in

the same cluster). However, comparing two buildings with differ-

ent climatic conditions does not make sense. To make sure that

the buildings in the same group are as similar as possible in terms

of weather conditions, first, the buildings are clustered in terms of

climatic data (temperature, humidity, wind speed, and solar radia-

tion) and then grouped based on other characteristics described in

Table 2 ( level 1-1 and level 1-2 clustering). 
.3. Level 2 clustering 

Given that all buildings in the same cluster level 1 share sim-

lar characteristics in weather conditions ( level 1-1) and building

nd occupant characteristics ( level 1-2), the differences in energy

onsumption of the buildings of the same cluster ( level 1) are due

o occupant behavior. The buildings are again clustered in terms

f energy use intensities (EUIs), which is an indicator of the occu-

ants’ behavior (indicated in Fig. 1 as level 2 clustering). The de-

ailed attributes are summed up in eight categories: 

(1) Heating, ventilation, and air conditioning (HVAC) 

(2) Hot water supply (HWS) 

(3) Lighting (LIGHT) 

(4) Kitchen (KITCH) 

(5) Refrigerator (FRIDGE) 

(6) Entertainment and information (E&I) 

(7) Housework and sanitary (H&S) 

(8) Other end-use loads (OTHER). 

This clustering groups the buildings into different ener gy use

evels. The number of clusters is determined based on internal

easures, such as the Silhouette index [33] . The clusters are then

anked from highest to lowest EUI. Therefore, the general category

f each group becomes known. Also, the main contributors to such

ifferences will be determined from each of the eight attributes



M. Ashouri, F. Haghighat and B.C.M. Fung et al. / Energy & Buildings 183 (2019) 659–671 663 

Fig. 2. The data-mining process for rule extraction among home appliances to find potential and achieved savings, along with performance index. 

Fig. 3. Rule categorization process [34] . 
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escribed above, which give the occupants information about how

o reduce their overall energy consumption to enter to the lower

UI cluster. This constitutes the level 1 ranking. 

.4. Performance index 

To evaluate the activities of occupants and whether they have

ried to take energy-saving measures, the performance index (PI)

s calculated as described below. It is indicated as PI in Fig. 1 and

s applied on each building. PI is defined as: 

I = AS − PS (5) 

AS is the achieved savings and PS is the potential savings.

chieved savings mean that the occupants are lowering their en-

rgy consumption by taking certain actions to reduce the energy

sage of one or more of the eight end-use loads. The potential sav-

ngs are the amount of energy that could have been saved if the

ccupants do not increase their energy consumption (opposite to

heir previous actions which was lower energy usage of a specific

nd-use load). The process is designed to capture any abnormal be-

avior seen in the recent data based on analysis of historical data

s indicated in Fig. 2 . In this process, the eight end-use loads de-

cribed above are broken down into more detailed data. For exam-

le, KITCH data include washing machine, dryer, rice cooker, oven,

nd so on, depending on the available home appliances [35] . Data

re then clustered based on outdoor hourly temperature so the en-

rgy consumption data share similar weather conditions. Associa-

ion rule mining finds all the patterns in the data, which forms the

asis for alerting occupants when dissimilar behavior to those pat-

erns is seen. The rules are categorized as rules for modification

RMs) and rules for savings (RSs), as shown in Fig. 3 . RMs imply

hat the energy consumption of an appliance is low. Any behav-

or opposite from these rules is flagged as potential savings (PS),

eaning that there is a potential to save energy by following the

ecommendation (the RM). In other words, occupants have shown
 good behavior regarding an end-use load and any behavior op-

osite to that is flagged as waste of energy. For example, consider

nergy consumption of lighting in a room. After analyzing the en-

rgy consumptions, the system may extract a rule that at certain

imes, the light should always be (or most of the times) switched

FF. Any behavior contradicts with this rule (light be switched ON

n the mentioned times) is flagged as inefficient and needs con-

ideration and modification. Any waste of energy is considered as

otential savings for the occupants. RSs imply that the energy con-

umption of an appliance is high. Any behavior opposite to these

atterns is flagged as achieved savings (AS), which shows that oc-

upants have used less energy than their normal usage. Artificial

eural networks are used to quantify the energy-saving potential

nd achieved savings. The flowchart of the process is shown in

ig. 2 . More details are provided in [34] . Based on this defini-

ion, if a building has low potential for improvement and high sav-

ngs achievements, it is considered a very good building regarding

ts occupants’ energy awareness. Buildings in the same cluster are

ompared and ranked based on PI. This comparison gives the occu-

ants of a building an idea of their place regarding their effort s to

ave energy and motivates them to improve their performance us-

ng the clues in level 2 clustering. This makes up the basis of a level

 ranking. More insights are given in the Results and Discussion

ection. The described process is independent of level 1 ranking.

herefore, the occupants of a single building are informed about

heir ranks in both levels and can take suitable actions. 

. Results and discussion 

.1. Grey relational analysis 

Accumulated annual energy use intensity of buildings in 2003

as selected as the objective variable in Grey Relational Analysis

GRA). Because the EUI already contains information about build-

ng area, this factor is not considered in GRA. Results are shown in

able 3 , in which temperature, relative humidity, wind speed, and

olar radiation are functions of time and location and were there-

ore averaged over 12 months for each district. The rest of the vari-

bles are fixed and were calculated using the whole data set. 

The results imply that outdoor air temperature has the great-

st contribution to EUI considering only the weather parameters

except for the Kyusyu region, in which RA has the highest contri-
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Table 3 

Grey relational analysis of influencing factors on energy consumption. 

Factors \ Region Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu 

T 0.799 0.831 0.772 0.737 0.712 0.654 

RH 0.620 0.765 0.644 0.732 0.695 0.661 

RA 0.683 0.662 0.716 0.641 0.690 0.675 

WS 0.584 0.555 0.532 0.601 0.580 0.605 

HT 0.617 

ELA 0.490 

HLC 0.780 

NO 0.701 

HC 0.537 

HWS 0.514 

KE 0.551 

Table 4 

Two sample rules for calculation of achieved and potential savings. 

Premise Conclusion Category 

[TV (low), rice cooker (low), refrigerator (low)] [Kitchen light (low)] RM 

[Microwave (low), rice cooker (low), kitchen light (high)] [Refrigerator (high)] RS 
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bution). This is more obvious in colder climates such as Hokkaido

and Hokuriku. It appears that in warmer climates, the contribu-

tions of weather parameters are similar to each other, for example

in Kyushu regions all parameters are in the range of 0.600–0.675,

while in Hokkaido they are in the range of 0.580–0.800. Among

the other seven variables, heat loss coefficient (HLC) and number

of occupants (NO) play the dominant roles. 

The achieved GRAs for all variables are multiplied by their cor-

responding variables in the buildings data set so the more influen-

tial variables are dominant in clustering the buildings. 

3.2. Reducing effects unrelated to occupant behavior 

3.2.1. Clustering based on weather parameters ( level 1-1) 

As described in Section 2.2 , level 1-1 clustering puts all build-

ings with similar weather conditions in the same group. This way,

buildings in the same group share similar characteristics in terms

of four weather parameters: outside temperature, relative humid-

ity, solar radiation, and wind speed. The results imply two clusters,

which are shown in Fig. 4 . The figure on top shows that one of

the clusters contains buildings from only two regions, Tohoku and

Hokkaido, which are considered cold regions with less radiation.

The figure at the bottom shows the centroids of each cluster. It

is seen that lower temperature and wind speed are the dominant

factors that put these buildings in cluster C2, while other clusters

contain buildings with higher temperature, humidity, wind speed,

and solar radiation. The next step divides each of these two clus-

ters further to consider building characteristics, too. The reason the

buildings are divided first by weather conditions is the importance

of weather parameters in inspecting occupant behavior. 

3.2.2. Clustering based on physical parameters ( level 1-2) 

Level 1-2 clustering was performed on the results obtained from

level 1-1, and the cluster centroids are shown in Fig. 5 . Five clusters

were obtained. 

It is revealed that buildings in clusters C 1_1 and C 2_2 (red

and blue bars) share an electric source for kitchen appliance (KE)

and hot water supply (HWS), while the opposite behavior is seen

in clusters C 1_2, C 1_3, and C 2_1. The high HT value of cluster C

1_3 implies that all buildings in this cluster are apartments, as op-

posed to cluster C 1_2, in which all buildings are, detached houses

( HT = 0 for this cluster). Clusters C 2_1 and C 2_2 have lower out-

door air temperature, solar radiation, relative humidity, and wind

speed compared to clusters C 1_1, C 1_2, and C 1_3 (based on level
-1 clustering). From the highest HC of cluster C 2_1, it can be in-

erred that in cold regions, building owners use gas-based heat-

ng system. It is seen that two variables, HT (house type) and HC

heating/cooling equipment), are dominant in separating the clus-

ers because their values have a high variation. 

There may be some overlaps between the clusters, and it is

uite possible that buildings in the same cluster are grouped to-

ether by the K-means algorithm simply because they have sim-

lar characteristics on some non-occupant-related features. How-

ver, those dissimilar attributes have opposite effects (they neutral-

ze their effect), which causes the algorithm to put the buildings

ogether in one cluster; otherwise, the buildings are not grouped

ith each other. 

Fig. 6 shows the distribution of end-use loads in each cluster,

long with their corresponding proportions. The difference in EUI

etween buildings in the same cluster is attributed to differences

n occupant behavior. The eight end-use loads of each building

ere averaged over a year. As shown in Fig. 6 , KITCH and HWS

re the two important contributors in cluster C 2_2, so the build-

ngs in this cluster need to focus more on these two end-use loads

egarding energy saving. However, FRIDGE and E&I are the two

ominant factors of EUI in cluster C 2_1. Also, HVAC, LIGHT, and

RIDGE are the main contributors in cluster C 1_3, while cluster C

_1 shows a uniform distribution among different end-use loads.

his shows that occupants in different clusters show different be-

aviors regarding the intensities of end-use load usage. The notice-

ble increase in HWS in cluster C 2_2 may be attributed to the low

utside air temperature of the buildings in this cluster (this cluster

omes from C 2 which includes colder regions). Also, all buildings

n this cluster have electrical heaters (see Fig. 5 ) and apparently

ccupants tend to use them more than kerosene heaters. 

Buildings in the same cluster share similar holistic character-

stics, which makes it reasonable to compare them to each other

o reveal the occupant effects on building EUI, while buildings in

ifferent clusters should not be compared in terms of energy con-

umption, mainly due to the existence of the influencing parame-

ers listed in Table 2 . 

.3. Level 1 ranking 

To rank the buildings in each cluster to determine which

uildings are responsible for the EUI increase, a second cluster-

ng was applied on each cluster based on attributes described in

ection 2.3 . The optimum number of clusters according to the Sil-

ouette index [9] was two in all clusters. Thus, the cluster cen-
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Fig. 4. Clustering level 1-1 results on statistics and percentages of instances assigned to each cluster. 
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roid with lower EUI was named Low Energy Consumer , meaning

hat the buildings in this cluster generally had lower energy us-

ge. The other cluster, on the other hand, was buildings with high-

nergy usage and was named High Energy Consumer . The occupants

f these buildings need to modify their behavior in order to reduce

heir energy consumption. 

Fig. 7 shows the result of the level 1 rankings. Every building

f the data set falls into one of the leaves of the graph shown. By

ollowing the branches of the curve, some information about the

eneral characteristics of the buildings and weather conditions of

he buildings in that cluster can be found. For example, buildings

n clusters C 2_1 and C 2_2 are all in cold regions where temper-

ture, humidity, and solar radiation, are low. Buildings in cluster

 2_1 have low equivalent leakage areas and nonelectric hot wa-

er supply and space heaters, while buildings in C 2_2 have elec-

ric heaters and hot water supply. By looking at clustering level 2,

eneral occupant behavior is extracted. For example, buildings in

luster C 2_1 are clustered further into two groups of high and low

nergy consumers . Cluster C 2_1_1 is the cluster with higher energy
onsumption in the majority of end-use loads, such as HVAC, HWS,

IGHT, FRIDGE, E&I, and OTHER. Therefore, the occupants need to

ocus on these end-use loads. More information about all 10 ob-

ained clusters is shown in Fig. 7 . 

Fig. 8 shows clustering centroids for each end use. By analyzing

lustering level 2 results, specific occupant behavior is determined.

ome of the implications are as follows: 

High energy consumer buildings in cluster C 1_1 (top left graph

n Fig. 8 ) have higher energy consumption specifically in HVAC,

ITCH, and FRIDGE, which implies that building occupants in this

luster should give primary consideration to these activities and

ring their energy consumption level to low values. The activities

hat need more consideration in cluster C 1_2 are FRIDGE, HVAC,

nd OTHER. The end-use load that deserves attention in all build-

ngs is FRIDGE, because it is the main contributor in nearly all clus-

ers ( high energy consumers ), and HVAC is a main contributor in

ll clusters except C 2_1. Also, C 1_1 shows a uniform distribution

f energy usage in end-use loads. Blue bars show the centroid of

uildings at the low energy consumption level. It is important to
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Fig. 5. Distribution of seven physical and occupant characteristics in level 1-2 clustering. 

Fig. 6. Distribution of eight end-use loads in different clusters. 
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mention that sometimes one activity may have a higher portion

compared to its corresponding value in the high energy consumers ,

but the overall energy consumption of occupants (based on Eu-

clidean distance in the K-means algorithm) puts them in the low

energy category. Such activities are E&I in cluster C 1_3 and KITCH

and H&S in cluster C 2_1. Occupants may focus on these activities

to save more energy. 

Level 2 clustering gives the building occupants of each cluster

( level 1) a basis to reduce their energy consumption by compar-

ing their consumption with similar group. Low energy consumers

are encouraged to improve their building’s performance by focus-

ing on major end-use loads and comparison with the best building
in their section. m  
.4. Level 2 ranking 

For each building in the same cluster ( level 1), the PI was cal-

ulated and the results were reported. Buildings with a higher PI

ave a higher place regarding energy consumption, while occu-

ants of buildings with a lower PI are informed to take suitable ac-

ions to reduce their energy consumption level and improve their

ank. Potential and achieved savings are calculated based on the

xtracted rules (RM and RS rules in Fig. 3 ). Two sample rules are

ndicated in Table 4 . The first rule indicates that when the living

oom TV, kitchen rice cooker, and refrigerator consume low en-

rgy during the day, kitchen outlet lights should be switched off

ost of the time (based on this rule, which is derived using histor-
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Fig. 7. Results of level ranking. Details of clusters and their general characteristics. 

i  

t  

a  

f  

(  

e  

t  

a  

o  

T  

o  

g  

p  

p  

F  

c  

v  

b  

a  

a  

l

 

e  

g  

t  

m  

i  

T  

e  

e  

b  

o  

k  

t  

1  

b  

t  

a  

b  

c  

a  
cal data). This occupant behavior is frequent; thus, it is expected

hat kitchen lights should be off when the three loads mentioned

re low. This rule is categorized as an RM rule, and any record

ollowing the premise ([TV (low), rice cooker (low), refrigerator

low)]) but not the conclusion ([Kitchen light (high)]) is consid-

red inefficient. The occupant is warned about this issue. To es-

imate the potential savings associated with this waste of energy,

n ANN model is built based on the rule in which the input and

utput are the premise and conclusion, respectively (as shown in

able 4 ). Figs. 9 and 10 show the outputs of the models based

n the rules represented in Table 4 , which are obtained by plug-

ing the values of the premise into the model and getting the out-

ut. The recorded (real) values and their differences are also re-

orted in the figure. Fig. 9 corresponds to the sample RS rule, and

ig. 10 refers to the sample RM rule. The potential savings are cal-

ulated based on the difference between modified and recorded

alues, and achieved savings are estimated based on the difference

etween expected and recorded values. This process is repeated for

ll extracted rules. The cumulative potential savings are reported

s a percentage (shown in Table 5 ). The achieved savings is calcu-
ated in a similar manner for RS rules. t  
It is important to mention that in Eq. (5 ), AS and PS are

xpressed in terms of percentages, and their subtraction may

ive negative, zero, or positive values. Negative values mean that

he achieved savings are less than the potential savings, zero

eans they are the same, and positive means the potential sav-

ngs are lower than the achieved savings, which is the best case.

able 5 shows part of the results in cluster C 1_1_1 ( high en-

rgy consumers ; there are 14 buildings in this cluster). High en-

rgy consumers (red bars in Fig. 8 ) and low energy consumers (blue

ars in Fig. 8 ) are ranked separately; therefore, a clear ranking

f each building is given to tenants, giving them opportunities to

now their place among other buildings and see how to improve

heir rank. For example, based on Table 5 , building 3 in cluster C

_1_1 is a high energy consumer according to clustering level 2 (red

ars in Fig. 8 , top left). Therefore, the tenants are advised to try

o modify their behavior (especially on the use of HVAC, KITCH,

nd FRIDGE based on Fig. 8 , top left) to improve their place. This

uilding shows a relatively good performance in terms of PI be-

ause it is in second place among the other four buildings, with

 PI of –2%. The best building has a PI of 1%. Similar interpreta-

ions are possible for other buildings in the data set. Similar re-
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Fig. 8. Clustering level 2 results. Data in all clusters were clustered again in terms of EUI. Centroids are shown in blue and red bars and are categorized as buildings with 

either low or high energy consumption, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 5 

Part of results of two-level ranking system for buildings in cluster 2 in high energy consumers . 

Building no. Cluster Level 1 ranking Level 2 ranking AS PS PI 

1 C1_1_1 High energy consumer 4 12% 21% –9% 

2 3 10% 15% –5% 

3 2 10% 12% –2% 

4 1 11% 10% 1% 
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sults are obtained and can be reported to the occupants of other

buildings. 

4. Limitations and future insights 

Some limitations of the proposed methodology are as follows.

By resolving these shortcomings, it would be possible to increase

the accuracy of the proposed methodology. 
Having no hourly data for end-use loads is an important chal-

enge in level 2 ranking that makes association rule mining less

ealistic given that the services might not be operating simultane-

usly. Consequently, estimations may not be as accurate as would

e the case if hourly data were known. Having hourly data would

mprove the accuracy and reliability of the process beyond that

iven by daily data. 
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Fig. 9. Calculation of achieved savings based on a sample RS rule. 

Fig. 10. Calculation of potential savings based on a sample RM rule. 
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Another challenge originates from data deficiency. For instance,

he number of occupants is present in the data set; however, more

nformation—age, level of activity, number of adults and children,

ime of arrival and departure, and so on—can be incorporated into

able 2 . Also, knowing this information would help us provide

ore detailed recommendations based on which activities or be-

aviors of children or adults consume the most energy. The most

seful information would be, knowing occupants’ daily schedules,

references (e.g., lighting level, room temperature), and holidays. 

The size of the data set is also an important factor for most

ata-mining techniques. Usually, increasing the number of data

oints will improve the accuracy of machine learning algorithms.
ighty buildings may not be enough to do a perfect clustering. The

ata set available for this study covered 2003 and 2004 and part

f 2002 and 2005 on a daily, monthly, and yearly basis (depending

n different parts of the process). Higher-resolution data would in-

rease the size of the data set, making data-mining results more

eliable. 

One problem in clustering level 1 may be that it is quite possi-

le that buildings in the same cluster have similar characteristics

n some non–occupant-related features but are dissimilar in other

on-occupant-related features. To reduce the effect of this prob-

em, each characteristic was multiplied by its GRA (grey relational

nalysis). Therefore, those characteristics with higher GRA values
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are dominant in determining the cluster to which the building be-

longs. Also, clustering level 1 was divided into two subsections, lev-

els 1-1 and 1-2, to prioritize the weather parameters in clustering.

If one tries to increase the accuracy of the clustering in terms of

any characteristics, it is possible to increase the subsections of level

1 clustering to even more than two (for example, one more level

for number of occupants). However, this makes the cluster sizes

smaller, and we were limited by the database size in this study.

Increasing the size of the database can solve this issue. 

Having a 24-hour temperature profile of each building through-

out the year can further improve clustering level 1 - 1 to capture

fluctuations in weather data. However, we have used the annual

average values due to the data deficiency. 

When feedback is given to the high energy consumer , they are

expected to take suitable measures to improve their rank. This can

be achieved by a real case evaluation to see the effectiveness of the

proposed system, especially if the ranking is performed online so

the occupants can see the effect of their energy saving measures

within a short period of time. 

The first part of the methodology ( level 1 ranking) is based

on comparison between several buildings. If the low energy con-

sumers are wasting some energy, there is still room for improve-

ment which is not identifiable through current methodology. In

other words, the buildings are not comparing themselves with the

best cases. This limitation lays the foundation for the future work,

which is creating a role model building for energy usage evalua-

tion. 

5. Conclusions 

A novel two-level ranking system for a set of buildings was pro-

posed based on occupant behavior and activities. Buildings were

first clustered using the K-means method into two levels, levels 1 - 1

and 1 - 2, to reduce the effects of non-occupant-related factors and

put buildings into separate groups. The differences between the

buildings’ energy consumption in the same clusters are attributed

to occupant roles. A second clustering in terms of eight end-use

loads was performed in each group to yield a level 1 ranking for

each building (high and low energy consumers). Performance in-

dex was defined in terms of achieved and potential savings to de-

termine the amount of savings for each building based on detailed

operational data and was named level 2 ranking. Results show that,

using the information provided by the two ranking levels, tenants

of a certain building are able to understand their performance in

terms of energy usage compared to other buildings and get rec-

ommendations on how to reduce their energy consumption and

improve their rank. 
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